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EXISTENCE OF GROUND STATE SOLUTIONS FOR
QUASILINEAR SCHRÖDINGER EQUATIONS WITH VARIABLE
POTENTIALS AND ALMOST NECESSARY NONLINEARITIES

SITONG CHEN, XIANHUA TANG

Communicated by Binlin Zhang

Abstract. In this article we prove the existence of ground state solutions for
the quasilinear Schrödinger equation

−∆u + V (x)u−∆(u2)u = g(u), x ∈ RN ,

where N ≥ 3, V ∈ C1(RN , [0,∞)) satisfies mild decay conditions and g ∈
C(R, R) satisfies Berestycki-Lions conditions which are almost necessary. In

particular, we introduce some new inequalities and techniques to overcome
the lack of compactness.

1. Introduction

We study the existence of ground state solutions for the quasilinear Schrödinger
equation

−∆u+ V (x)u−∆(u2)u = g(u), x ∈ RN , (1.1)
where N ≥ 3, V : RN → R and g : R→ R satisfy the following assumptions:

(A1) V ∈ C(RN , [0,∞)) and V (x) ≤ V∞ := lim|y|→∞ V (y) for all x ∈ RN ;
(A2) g ∈ C(R,R), lim|t|→0 g(t)/t = 0 and lim|t|→∞ |g(t)|/|t|2·2∗−1 = 0, where

2∗ = 2N/(N − 2) and 2 · 2∗ is the critical exponent for (1.1);
(A3) there exists s0 ∈ R such that G(s0) > 1

2V∞s
2
0, where G(t) =

∫ t
0
g(s)ds.

This type of equation has been introduced in [3, 13] to study a model of self-
trapped electrons in quadratic or hexagonal lattices (see also [2]). After the work of
Poppenberg [17], equations like (1.1) have received much attention in mathematical
analysis and applications in recent years, see e.g. [6, 11, 16, 18, 19, 28].

Observe that formally (1.1) is the Euler-Lagrange equation associated to the
following functional

J(u) =
1
2

∫
RN

(1 + 2u2)|∇u|2dx+
∫

RN
V (x)u2dx−

∫
RN

G(u)dx. (1.2)

Since J is not well defined in general in H1(RN ), we employ an argument developed
by Colin and Jeanjean [11], and make the change of variables by v = f−1(u), where
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f is defined by

f ′(t) =
1√

1 + 2|f(t)|2
on [0,+∞), f(−t) = −f(t) on (−∞, 0].

After the change of variables from J , we obtain the functional

I(v) = J(u) = J(f(v))

=
1
2

∫
RN
|∇v|2dx+

∫
RN

V (x)f2(v)dx−
∫

RN
G(f(v))dx.

(1.3)

Note that

|f(t)| ≤ |t|, |f(t)| ≤ 21/4|t|1/2, f(t)/2 ≤ f ′(t)t ≤ f(t), ∀t ∈ R. (1.4)

Under assumptions (A1) and (A2), we have I ∈ C1(H1(RN ),R), and critical points
of I are solutions of the semi-linear equation

−∆v + V (x)f(v)f ′(v) = g(f(v))f ′(v), x ∈ RN , (1.5)

moreover, v is a solution of (1.5) if and only if u = f(v) solves (1.1), see [11, 16]. A
solution is called a ground state solution if its energy is minimal among all nontrivial
solutions. For more related semi-linear problems, we refer to [5, 4, 7, 9, 10, 21, 20,
23, 28, 29] and so on.

Under assumptions (A1) and (A2), almost all of the previous works on (1.1)
required g satisfies a global growth condition, for example, g(t) = |t|p−2t with
2 < p ≤ 4, see [19, 25]; or

(AR) there exists µ ≥ 4 such that g(t)t ≥ µG(t) ≥ 0, ∀t ∈ R;
or

(Ne) g(t)/|t|3 is nondecreasing for t ∈ R \ {0},
see [26, 27] and so on. In these papers, (AR) or (Ne) seems essential for the appli-
cation of the mountain pass type theorem or the Nehari technique. In particular,
with the aid of the Pohoz̆aev manifold, Ruiz and Siciliano [19] and Wu and Wu [25]
proved the existence of ground state solutions by assuming additional conditions
on V , respectively:

(A4) V ∈ C1(RN ,R+) and t 7→ t(N+2)/(N+p)V (t1/(N+p)x) is concave for any
x ∈ RN ;

(A5) V ∈ C1(RN ,R+), V (x) = V (|x|) and t3−p∇V (tx) · x is non-increasing on
t ∈ (0,∞) for any x ∈ RN .

We would like to point out that the strategies used in [26, 27] rely heavily on the
form g(t) = |t|p−2t. Different from previous works, we shall establish the existence
of ground state solutions for (1.1) in presence of a Berestycki-Lions nonlinearity,
that is g satisfies (A2) and (A3). This type of nonlinearity was introduced by
Berestycki and Lions [1] for the study of the Schrödinger equation

−∆v + v = g(v), x ∈ RN .

However, the approach used in [1] does not work for (1.1) because of the term
∆(u2)u and V (x) 6≡ constant. These difficulties enforce the implementation of new
ideas and techniques. To the best of our knowledge, there seem to be no similar
results for (1.1).

To state our results, we introduce the following decay assumptions on ∇V :
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(A6) V ∈ C1(RN ,R) and there exists θ ∈ [0, 1) such that ∇V (x) · x ≤ (N−2)2θ
2|x|2

for all x ∈ RN \ {0};
(A7) V ∈ C1(RN ,R) and ‖max{∇V (x) · x, 0}‖N/2 < 2S, where

S = inf
u∈H1(RN )\{0}

‖∇u‖22/‖u‖22∗ .

By an argument as [1, Proposition 1], we conclude the Pohoz̆ave type identity
corresponding to (1.1)

P(v) :=
N − 2

2
‖∇v‖22 +

1
2

∫
RN

[NV (x) +∇V (x) · x]|f(v)|2dx

−N
∫

RN
G(f(v))dx = 0 ,

(1.6)

which is also used in [25, Lemma 2.1]. Let

M := {v ∈ H1(RN ) \ {0} : P(v) = 0}. (1.7)

To recover the compactness of Sobolev spaces embeddings in RN , different from
[25], we study the “limiting problem”:

−∆u+ V∞u−∆(u2)u = g(u) in RN , (1.8)

and compare the critical level of (1.1) with the one of (1.8), instead of using radial
compactness. Corresponding to (1.3) and (1.7), we define

I∞(v) =
1
2

∫
RN
|∇v|2dx+

V∞
2

∫
RN
|f(v)|2dx−

∫
RN

G(f(v))dx, (1.9)

for all v ∈ H1(RN ), and

M∞ := {v ∈ H1(RN ) \ {0} : P∞(v) = 0}, (1.10)

where

P∞(v) :=
N − 2

2
‖∇v‖22 +

NV∞
2

∫
RN
|f(v)|2dx−N

∫
RN

G(f(v))dx. (1.11)

We state our main results as follows.

Theorem 1.1. Assume that V∞ > 0, (A2) and (A3) hold. Then problem (1.8) has
a ground state solution u∞ = f(v∞) such that

I∞(v∞) = inf
M∞

I∞ = inf
v∈Λ

max
t>0

I∞(vt) > 0,

where vt(x) := v(x/t) and

Λ :=
{
v ∈ H1(RN ) :

∫
RN

[1
2
V∞|f(v)|2 −G(f(v))

]
dx < 0

}
.

Theorem 1.2. Assume that (A1)–(A3) and (A6) hold. Then (1.1) has a ground
state solution.

Theorem 1.3. Assume that (A1)–(A3) and (A7) hold. Then (1.1) has a ground
state solution.

To prove Theorem 1.1, we must show that m∞ := infM∞ I∞ is achieved without
global compactness and any information on (I∞)′. To do this, we use the scaling
technique and some new inequalities related to I∞(v),P∞(v) and I∞(vt) (see (2.4)
and Lemma 2.5). To prove Theorems 1.2 and 1.3, following the idea of Jeanjean and
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Toland [15], we first construct a special bounded (PS) sequence (see (3.13)), then
we prove that this bounded sequence converges weakly to a non trivial critical point
of I by showing a crucial inequality cλ < m∞λ (see Lemmas 3.4 and 3.5) inspired
by [8, 22]. Unlike the existing literature, it is not required that v∞ obtained in
Theorem 1.1 is positive in the proof of the above inequality.

Remark 1.4. In Theorem 1.1 we establish the minimax characterization of m∞

which is much simpler than the usual characterizations related to the Mountain
Pass level. Our results complement and extend the existing ones on (1.1) in the
literature.

The rest of the paper is organized as follows. In Section 2, we study the existence
of ground state solutions for the limiting problem (1.8) by using the Pohoz̆aev
manifold, and give the proof of Theorem 1.1. In Section 3, based on the idea of
Jeanjean and Toland [15], that is an approximation procedure to obtain a bounded
(PS)-sequence for I, we show the existence of ground state solutions for (1.1), and
complete the proofs of Theorems 1.2 and 1.3.

Throughout this paper, we denote the usual norms of H1(RN ) and Ls(RN ) by

‖u‖ =
(∫

RN
(|∇u|2 + u2)dx

)1/2

, ‖u‖s =
(∫

RN
|u|sdx

)1/s

, s ∈ [2,∞)

respectively, and positive constants possibly different in different places, by C1, C2, . . . .

2. Ground state solutions for the limiting problem (1.8)

In this section, we assume that V∞ > 0, and give the proof of Theorem 1.1.

Lemma 2.1. Assume that (A2) holds. Then

I∞(v) = I∞(vt) +
1− tN

N
P∞(v) +

2−NtN−2 + (N − 2)tN

2N
‖∇v‖22, (2.1)

for all v ∈ H1(RN ) and t > 0.

Proof. Note that

I∞(vt) =
tN−2

2
‖∇v‖22 +

tN

2
V∞‖f(v)‖22 − tN

∫
RN

G(f(v))dx. (2.2)

From (1.9), (1.11) and (2.2), we deduce that (2.1) holds. �

By a simple calculation, we can verify that

g(t) := 2−NtN−2 + (N − 2)tN > g(1) = 0, ∀t ∈ [0, 1) ∪ (1,+∞). (2.3)

Thus, it follows from (2.1) and (2.3) that

I∞(v) > I∞(vt) +
1− tN

N
P∞(v), ∀u ∈ H1(RN ), t ∈ (0, 1) ∪ (1,∞). (2.4)

Corollary 2.2. Assume that (A2) holds. Then

I∞(v) = max
t>0

I∞(vt), ∀v ∈M∞.

Lemma 2.3. Assume that (A2) and (A3) hold. Then Λ 6= ∅, and for any v ∈ Λ,
there exists a unique tv > 0 such that vtv ∈M∞.
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Proof. In view of the proof of [1, Theorem 2] and the property of f , (A3) implies
Λ 6= ∅. Let v ∈ Λ be fixed and define a function ζ(t) := I∞(vt) on (0,∞). Clearly,
by (1.11) and (2.2), we have

ζ ′(t) = 0⇔ N − 2
2

tN−2‖∇v‖22 +
NV∞

2
tN
∫

RN
|f(v)|2dx

−NtN
∫

RN
G(f(v))dx = 0

⇔ P∞(vt) = 0 ⇔ vt ∈M∞.

(2.5)

By (A2), (A3), (2.2) and the definition of Λ, we get limt→0 ζ(t) = 0, ζ(t) > 0 for
t > 0 small and ζ(t) < 0 for t large. Therefore maxt∈(0,∞) ζ(t) is achieved at some
tv > 0 so that ζ ′(tv) = 0 and vtv ∈M∞.

Next we claim that tv is unique for any v ∈ Λ. For any given v ∈ Λ, if there exist
two positive constants t1 6= t2 such that vt1 , vt2 ∈M∞, i.e. P∞(vt1) = P∞(vt2) = 0,
then (2.4) implies

I∞ (vt1) > I∞ (vt2) +
tN1 − tN2
NtN1

P∞ (vt1) = I∞ (vt2)

> I∞ (vt1) +
tN2 − tN1
NtN2

P∞ (vt2) = I∞ (vt1) .
(2.6)

This contradiction shows tv > 0 is unique for any v ∈ Λ. �

Lemma 2.4. Assume that (A2) and (A3) hold. Then

m∞ = inf
M∞

I∞ = inf
v∈Λ

max
t>0

I∞(vt) > 0.

Proof. It follows from Lemma 2.1 and Corollary 2.2 that

m∞ = inf
M∞

I∞ = inf
v∈Λ

max
t>0

I∞(vt).

Next we prove m∞ > 0. By (A2), (1.4) and Sobolev embedding inequality, one has∫
RN

G(f(v))dx ≤ V∞
4
‖f(v)‖22 + C1‖f(v)‖2·2

∗

2·2∗

≤ V∞
4
‖f(v)‖22 + C2‖∇v‖2

∗

2 , ∀v ∈ H1(RN ).
(2.7)

By (1.11) and (2.7), one has

N − 2
2
‖∇v‖22 +

NV∞
2
‖f(v)‖22 = N

∫
RN

G(f(v))dx

≤ NV∞
4
‖f(v)‖22 +NC2‖∇v‖2

∗

2 ,

(2.8)

for all v ∈ M∞, which implies there exists ρ0 > 0 such that ‖∇v‖2 ≥ ρ0 for all
v ∈M∞. By (1.9) and (1.11), we have

I∞(v) =
1
N
P∞(v) +

1
N
‖∇v‖22 ≥

1
N
ρ2

0, ∀v ∈M∞.

This shows that m∞ = infM∞ I∞ > 0. �

Lemma 2.5. Assume that (A2) and (A3) hold. Then m∞ = infM∞ I∞ is achieved.
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Proof. Let {vn} ⊂ M∞ be such that I∞(vn)→ m∞ > 0. By (1.9) and (1.11), one
has

m∞ + o(1) = I∞(vn)− 1
N
P∞(vn) =

1
N
‖∇vn‖22, (2.9)

which yields that {‖∇vn‖2} is bounded. Next, we prove that {‖vn‖2} is bounded.
By (1.11) and (2.7), one has

N − 2
2
‖∇vn‖22 +

NV∞
2
‖f(vn)‖22 = N

∫
RN

G(f(vn))dx

≤ NV∞
4
‖f(vn)‖22 +NC2‖∇vn‖2

∗

2 ,

(2.10)

which implies {‖f(vn)‖2} is bounded. Then it follows from (1.4) and Sobolev
embedding inequality that∫

RN
v2
ndx =

∫
|vn|≤1

v2
ndx+

∫
|vn|>1

v2
ndx

≤ C3

∫
|vn|≤1

|f(vn)|2dx+
∫

RN
|vn|2

∗
dx

≤ C3‖f(vn)‖2 + S−2∗/2‖∇vn‖2
∗

2 .

(2.11)

Hence, {vn} is bounded in H1(RN ). By (A2) and (1.4), for some p ∈ (2, 2∗) and
any ε > 0, one has

|G(f(t))| ≤ ε
(
|f(t)|2 + |t|2

∗
)

+ Cε|t|p, ∀t ∈ R. (2.12)

Since P∞(vn) = 0 and ‖∇vn‖2 ≥ ρ0 by (2.8), from (1.11), (2.12) and Lions’
concentration compactness principle [24, Lemma 1.21], one can easily prove that
there exist δ > 0 and {yn} ⊂ RN such that

∫
B1(yn)

|vn|2dx > δ/2. Let v̂n(x) =
vn(x+ yn). Then

I∞(v̂n)→ m∞, P∞(v̂n) = 0, (2.13)
and there exists v∞ ∈ H1(RN ) \ {0} such that v̂n ⇀ v∞ in H1(RN ), v̂n → v∞ in
Lsloc(RN ) for s ∈ [1, 2∗), v̂n → v∞ a.e. on RN . Let wn = v̂n − v∞. By a standard
argument (see [24]), we have

I∞(v̂n) = I∞(v∞)+I∞(wn)+o(1), P∞(v̂n) = P∞(v∞)+P∞(wn)+o(1). (2.14)

From (1.9), (1.11), (2.13) and (2.14), one has
1
N
‖∇wn‖22 = m∞ − 1

N
‖∇v∞‖22 + o(1), P∞(wn) = −P∞(v∞) + o(1). (2.15)

If there exists a subsequence {wni} of {wn} such that wni = 0, then we have

I∞(v∞) = m∞, P∞(v∞) = 0, (2.16)

which implies that Lemma 2.5 holds. Next, we assume that wn 6= 0. We claim
that P∞(v∞) ≤ 0. Otherwise, if P∞(v∞) > 0, then (2.15) implies P∞(wn) < 0,
and so wn ∈ Λ for large n. In view of Lemma 2.4, there exists tn > 0 such that
(wn)tn ∈M∞. From (1.9), (1.11), (2.1), (2.3) and (2.15), we deduce

m∞ − 1
N
‖∇v∞‖22 + o(1) =

1
N
‖∇wn‖22 = I∞(wn)− 1

N
P∞(wn)

≥ I∞
(
(wn)tn

)
− tNn
N
P∞(wn) ≥ m∞,
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which is a contradiction due to v∞ 6= 0. Thus P∞(v∞) ≤ 0, and so v∞ ∈ Λ. In
view of Lemma 2.4, there exists t̂ > 0 such that (v∞)t̂ ∈ M∞. From (1.9), (1.11),
(2.1), (2.3), (2.13) and the weak semicontinuity of the norm, one has

m∞ = lim
n→∞

[
I∞(v̂n)− 1

N
P∞(v̂n)

]
=

1
N

lim
n→∞

‖∇v̂n‖22

≥ 1
N
‖∇v∞‖22 = I∞(v∞)− 1

N
P∞(v∞)

≥ I∞ ((v∞)t̂)−
t̂N

N
P∞(v∞) ≥ m∞,

which implies that (2.16) holds. �

In the same way as in [22, Lemma 2.13], we can obtain the following lemma.

Lemma 2.6. Assume that (A2) and (A3) hold. Then minimizers of infM∞ I∞ are
critical points of I∞.

Proof of Theorem 1.1. In view of Lemmas 2.4-2.6, there exists v∞ ∈M∞ such that
(I∞)′(v∞) = 0 and I∞(v∞) = m∞ = infv∈Λ maxt>0 I

∞(vt) > 0. �

3. Ground state solutions for (1.1)

In this section, we give the proofs of Theorems 1.2 and 1.3. To find a bounded
(PS) sequence of I, we use the following result due to Jeanjean and Toland [15].

Proposition 3.1. Let X be a Banach space and let J ⊂ R+ be an interval, and

Φλ(u) = A(u)− λB(u), ∀λ ∈ J,

be a family of C1-functional on X such that
(i) either A(u)→ +∞ or B(u)→ +∞, as ‖u‖ → ∞;

(ii) B maps every bounded set of X into a set of R bounded below;
(iii) there are two points v1, v2 in X such that

c̃λ := inf
γ∈Γ̃

max
t∈[0,1]

Φλ(γ(t)) > max{Φλ(v1),Φλ(v2)}, (3.1)

where
Γ̃ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2} .

Then, for almost every λ ∈ J , there exists a sequence {un(λ)} such that
(i) {un(λ)} is bounded in X;

(ii) Φλ(un(λ))→ cλ;
(iii) Φ′λ(un(λ))→ 0 in X∗, where X∗ is the dual of X.

To apply Proposition 3.1, for λ ∈ [1/2, 1], we introduce two families of functional
defined by

Iλ(v) :=
1
2

∫
RN

(
|∇v|2 + V (x)|f(v)|2

)
dx− λ

∫
RN

G(f(v))dx, (3.2)

I∞λ (v) :=
1
2

∫
RN

(
|∇v|2 + V∞|f(v)|2

)
dx− λ

∫
RN

G(f(v))dx, (3.3)

for all v ∈ H1(RN ).
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If I ′λ(v̄) = 0 and (I∞λ )′(v∞) = 0, then v̄ and v∞ satisfy the Pohoz̆aev type
identities Pλ(v̄) = 0 and P∞λ (v∞) = 0 respectively, where

Pλ(v) =
N − 2

2
‖∇v‖22 +

1
2

∫
RN

[NV (x) +∇V (x) · x] |f(v)|2dx

−Nλ
∫

RN
G(f(v))dx,

(3.4)

P∞λ (v) =
N − 2

2
‖∇v‖22 +

NV∞
2

∫
RN
|f(v)|2dx−Nλ

∫
RN

G(f(v))dx. (3.5)

By Lemma 2.1, we have the following lemma.

Lemma 3.2. Assume that (A2) holds. Then

I∞λ (v) = I∞λ (vt) +
1− tN

N
P∞λ (v) +

2−NtN−2 + (N − 2)tN

2N
‖∇v‖22, (3.6)

for all v ∈ H1(RN ) and t > 0.

In view of Theorem 1.1, I∞1 = I∞ has a minimizer v∞1 on M∞1 =M∞, i.e.

v∞1 ∈M∞1 , (I∞1 )′(v∞1 ) = 0 and m∞1 = I∞1 (v∞1 ), (3.7)

where

M∞λ =
{
v ∈ H1(RN ) \ {0} : P∞λ (v) = 0

}
, m∞λ = inf

M∞λ
I∞λ , ∀λ ∈ [1/2, 1].

Since (1.8) is autonomous, V ∈ C(RN ,R) and V (x) ≤ V∞ but V (x) 6≡ V∞, then
there exist x̄ ∈ RN and r̄ > 0 such that

V∞ − V (x) > 0, |v∞1 (x)| > 0 a.e. |x− x̄| ≤ r̄. (3.8)

Lemma 3.3. Assume that (A1)–(A3) hold. Then
(i) there exists T > 0 independent of λ such that Iλ ((v∞1 )T ) < 0 for all λ ∈

[1/2, 1];
(ii) there exists a positive constant κ0 independent of λ such that for all λ ∈

[1/2, 1],

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) ≥ κ0 > max {Iλ(0), Iλ ((v∞1 )T )} ,

where

Γ =
{
γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, γ(1) = (v∞1 )T

}
;

(iii) cλ is bounded for λ ∈ [1/2, 1];
(iv) m∞λ is non-increasing on λ ∈ [1/2, 1];
(v) lim supλ→λ0

cλ ≤ cλ0 for λ0 ∈ (1/2, 1].

Since m∞λ = I∞λ (v∞λ ) and
∫

RN G(f(v∞λ ))dx > 0, then the proof of Lemma 3.3 is
standard (see [14, Lemma 2.3]), so we omit it.

Lemma 3.4. Assume that (A1)–(A3) hold. Then there exists λ̄ ∈ [1/2, 1) such
that cλ < m∞λ for λ ∈ (λ̄, 1].

Proof. The proof is similar to [22, Lemma 4.5], and we give the outlines for the
completeness. It is easy to check that Iλ ((v∞1 )t) is continuous on t ∈ (0,∞).
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Hence for any λ ∈ [1/2, 1], we can choose tλ ∈ (0, T ) such that Iλ ((v∞1 )tλ) =
maxt∈(0,T ] Iλ ((v∞1 )t). Setting

γ0(t) =

{
(v∞1 )(tT ), for t > 0,
0, for t = 0.

Then
γ0 ∈ Γ, Iλ ((v∞1 )tλ) = max

t∈[0,1]
Iλ (γ0(t)) ≥ cλ, (3.9)

where Γ and cλ are defined by Lemma 3.3 (ii). Let

ζ0 := min{3r̄/8(1 + |x̄|), 1/4}. (3.10)

Then it follows from (3.8) and (3.10) that

|x− x̄| ≤ r̄

2
and s ∈ [1− ζ0, 1 + ζ0]⇒ |sx− x̄| ≤ r̄. (3.11)

Since P∞(v∞1 ) = 0, we have
∫

RN G(f(v∞1 ))dx > 0. Let

λ̄ := max
{1

2
, 1−

(1− ζ0)N mins∈[1−ζ0,1+ζ0]

∫
RN [V∞ − V (sx)]|f(v∞1 )|2dx

2TN
∫

RN G(f(v∞1 ))dx
,

1− min{g(1− ζ0), g(1 + ζ0)}‖∇v∞1 ‖22
2NTN

∫
RN G(f(v∞1 ))dx

}
,

(3.12)

where g is defined by (2.3). Then (2.3), (3.8) and (3.11) imply that 1/2 ≤ λ̄ < 1.
We distinguish two cases:
Case i: tλ ∈ [1−ζ0, 1+ζ0]. From (3.2), (3.3), (3.6)-(3.9), (3.11), (3.12) and Lemma
3.3 (iv), we have

m∞λ ≥ m∞1 = I∞1 (v∞1 ) ≥ I∞1 ((v∞1 )tλ)

= Iλ ((v∞1 )tλ)− (1− λ)tNλ

∫
RN

G(f(v∞1 ))dx

+
tNλ
2

∫
RN

[V∞ − V (tλx)]|f(v∞1 )|2dx

≥ cλ − (1− λ)TN
∫

RN
G(f(v∞1 ))dx

+
(1− ζ0)N

2
min

s∈[1−ζ0,1+ζ0]

∫
RN

[V∞ − V (sx)] |f(v∞1 )|2dx

> cλ, ∀λ ∈ (λ̄, 1].

Case ii: tλ ∈ (0, 1 − ζ0) ∪ (1 + ζ0, T ). From (A1), (2.3), (3.2), (3.3), (3.6), (3.7),
(3.9), (3.12) and Lemma 3.3 (iv), we have

m∞λ ≥ m∞1 = I∞1 (v∞1 ) ≥ I∞1 ((v∞1 )tλ) +
g(tλ)‖∇v∞1 ‖22

2N

= Iλ ((v∞1 )tλ)− (1− λ)tNλ

∫
RN

G(f(v∞1 ))dx

+
tNλ
2

∫
RN

[V∞ − V (tλx)]|f(v∞1 )|2dx+
g(tλ)‖∇v∞1 ‖22

2N
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≥ cλ − (1− λ)TN
∫

RN
G(f(v∞1 ))dx+

min{g(1− ζ0), g(1 + ζ0)}‖∇v∞1 ‖22
2N

> cλ, ∀λ ∈ (λ̄, 1].

In both cases, we obtain that cλ < m∞λ for λ ∈ (λ̄, 1]. �

Lemma 3.5. Under the assumptions of Theorem 1.2 or Theorem 1.3, for almost
every λ ∈ (λ̄, 1], there exists vλ ∈ H1(RN ) \ {0} such that I ′λ(vλ) = 0 and Iλ(vλ) =
cλ.

Proof. In view of Proposition 3.1 and Lemma 3.3, for almost every λ ∈ (λ̄, 1], there
exists a bounded sequence {vn(λ)} ⊂ H1(RN ) (for simplicity, we denote it by {vn})
such that

Iλ(vn)→ cλ > 0, I ′λ(vn)→ 0. (3.13)
By a splitting lemma [12, Lemma 3.3], there exist a subsequence of {vn}, still
denoted by {vn}, and vλ ∈ H1(RN ), an integer l ∈ N ∪ {0}, and w1, . . . , wl ∈
H1(RN ) \ {0} such that vn ⇀ vλ in H1(RN ), I ′λ(vλ) = 0,

(I∞λ )′(wk) = 0, I∞λ (wk) ≥ m∞λ , 1 ≤ k ≤ l, (3.14)

cλ = Iλ(vλ) +
l∑

k=1

I∞λ (wk). (3.15)

Since I ′λ(vλ) = 0, then we have Pλ(vλ) = 0. Since ‖vn‖9 0, we deduce from (3.14)
and (3.15) that if vλ = 0, then

l ≥ 1, cλ = Iλ(vλ) +
l∑

k=1

I∞λ (wk) ≥ m∞λ ,

which contradicts Lemma 3.4. Thus vλ 6= 0. By (1.4), (3.2) and (3.4), one has

Iλ(vλ) = Iλ(vλ)− 1
N
Pλ(vλ) =

1
N
‖∇vλ‖22 −

1
2N

∫
RN
∇V (x) · x|f(vλ)|2dx. (3.16)

If (A6) holds, then it follows from (1.4) and Hardy inequality that∫
RN
∇V (x) · x|f(vλ)|2dx ≤ θ(N − 2)2

2

∫
RN

v2
λ

|x|2
dx ≤ 2θ‖∇vλ‖22,

which, together with (3.16), imply

Iλ(vλ) ≥ 1− θ
N
‖∇vλ‖22 > 0. (3.17)

If (A7) holds, then it follows from (1.4) and Sobolev embedding inequality that∫
RN
∇V (x) · x|f(vλ)|2dx

≤
(∫

RN
|max{∇V (x) · x, 0}|N/2dx

)2/N(∫
RN
|vλ|2N/(N−2)dx

)(N−2)/N

≤
‖max{∇V (x) · x, 0}‖N/2

S
‖∇vλ‖22,

this and (3.16), imply

Iλ(vλ) ≥
2S − ‖max{∇V (x) · x, 0}‖N/2

2NS
‖∇vλ‖22 > 0. (3.18)
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Thus, by (3.15) and either of (3.17) and (3.18), one has

cλ = Iλ(vλ) +
l∑

k=1

I∞λ (wk) > lm∞λ for λ ∈ (λ̄, 1],

which, together with Lemma 3.4, imply that l = 0 and Iλ(vλ) = cλ. �

Lemma 3.6. Under the assumptions in Theorem 1.2 or Theorem 1.3, there exists
v̄ ∈ H1(RN ) \ {0} such that I ′(v̄) = 0 and 0 < I(v̄) < c1.

Proof. From Lemma 3.5, there exist {λn} ⊂ [λ̄, 1] and {vλn} ⊂ H1(RN ) \ {0}
(denoted it by {vn}), such that

λn → 1, cλn → c∗, I ′λn(vn) = 0, 0 < Iλn(vn) ≤ cλn ≤ c1 + o(1). (3.19)

From (3.19) and either of (3.17) and (3.18), we can deduce that {‖∇vn‖2} is
bounded. Next, we prove that {‖vn‖2} is bounded. To this end, it suffices to
show that {‖f(vn)‖2} is bounded due to (2.11). Let

ϕn = f(vn)/f ′(vn) =
√

1 + 2f2(vn)f(vn), ∀n ∈ N.
Note that

|∇(f(vn))| = |∇vn|√
1 + 2f2(vn)

. (3.20)

By (1.4) and (3.20), one has

|ϕn| ≤ 2|vn|, |∇ϕn| =
(

1 +
2f2(vn)

1 + 2f2(vn)

)
|∇vn| ≤ 2|∇vn|, ∀n ∈ N,

which implies ϕn ∈ H1(RN ) for all n ∈ N. Using (A1), it is easy to check that
there exists a constant γ0 > 0 such that∫

RN
[|∇u|2 + V (x)u2]dx ≥ γ0‖u‖22, ∀u ∈ H1(RN ). (3.21)

Then it follows from (3.19), (3.20) and (3.21) that

0 = 〈I ′λn(vn), ϕn〉

=
∫

RN

(
1 +

2f2(vn)
1 + 2f2(vn)

)
|∇vn|2dx+

∫
RN

V (x)f2(vn)dx

−
∫

RN
g(f(vn))f(vn)dx

≥
∫

RN
[|∇(f(vn))|2 + V (x)f2(vn)]dx−

∫
RN

g(f(vn))f(vn)dx

≥ γ0‖f(vn)‖22 −
∫

RN
g(f(vn))f(vn)dx,

(3.22)

which, together with (A2), (1.4) and Sobolev embedding inequality imply

γ0‖f(vn)‖22 ≤
∫

RN
g(f(vn))f(vn) ≤ γ0

2
‖f(vn)‖22 + C5‖vn‖2

∗

2∗

≤ γ0

2
‖f(vn)‖22 + C5S

−2∗/2‖∇vn‖2
∗

2 .

(3.23)

This shows that {‖f(vn)‖2} is bounded due to the boundedness of {‖∇vn‖2}.
Hence, {vn} is bounded in H1(RN ). The rest of the proof is similar to that of
Lemma 3.5, so we omit it. �
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Proof of Theorems 1.2 and 1.3. Let

K := {v ∈ H1(RN ) \ {0} : I ′(v) = 0}, m̄ := inf
v∈K

I(v).

Then Lemma 3.6 shows that K 6= ∅ and m̄ ≤ c1. Similar to the proofs of (3.17) and
(3.18), we have I(v) = I1(v) ≥ 0 for all v ∈ K, and so m̄ ≥ 0. Let {vn} ⊂ K be such
that I ′(vn) = 0 and I(vn)→ m̄. In the same way as the one of Lemma 3.6, we can
prove that {vn} is bounded in H1(RN ). By Lemma 3.4, we have m̄ ≤ c1 < m∞1 .
Similar to the proof of Lemma 3.5, we can deduce that there exists v̄ ∈ H1(RN )\{0}
such that I ′(v̄) = 0 and I(v̄) = m̄. �
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