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High-order mixed-type differential equations with
weighted integral boundary conditions *

M. Denche & A. L. Marhoune

Abstract

In this paper, we prove the existence and uniqueness of strong solu-
tions for high-order mixed-type problems with weighted integral boundary
conditions. The proof uses energy inequalities and the density of the range
of the operator generated.

1 Introduction

Let a be a positive integer and @ be the set (0,1) x (0,7). We consider the
equation

O*u 9oty
= — 4+ (-1)%0) 7= = t 1
cui= T4 (100 D = f(a,0), )
where the function a(t) and its derivative are bounded on the interval [0, T':
0<ag<a(t) <ai, (2)
da(t
d(t ) S ag . (3)

To equation (1) we attach the initial conditions

lhiu=u(z,0)=p(x), lLu= %(m,O) =¢(xz) xze€(0,1), (4)
the boundary conditions
8—Z‘(Ot)—a—i(lt)—O for 0<i<a-k-—1,t€(0,7) (5)
oz Y T gt T e Bst=a ’ )

and integral conditions

1
/xiu(x,t)dx:o, for 0<i<2k—1, 1<k<a te(0,7). (6)
0
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where ¢ and v are known functions which satisfy the compatibility conditions
given in (5)-(6).

Various problems arising in heat conduction [3, 4, 8, 9], chemical engineering
[6], underground water flow [7], thermo-elasticity [14], and plasma physics [12]
can be reduced to the nonlocal problems with integral boundary conditions.
This type of boundary value problems has been investigated in [1, 2, 3, 4, 5, 6, 8,
9, 10, 13, 16] for parabolic equations and in [11, 15] for hyperbolic equations. The
basic tool in [2, 10, 16] is the energy inequality method which, of course, requires
appropriate multipliers and functional spaces. In this paper, we extend this
method to the study of a high-order mixed-type partial differential equations.

2 Preliminaries

In this paper, we prove existence and uniqueness of a strong solution of problem
(1)-(6). For this, we consider the problem (1)-(6) as a solution of the operator
equation

Lu=F, (7)

where L = (L,l1,l2), with domain of definition D(L) consisting of functions

u € W3*?*(Q) such that 6£ch (%) € Ly(Q), i =0,a+ k — 1 and u satisfies
conditions (5)-(6); the operator L is considered from E to F', where E is the
Banach space consisting of functions u € Lo(Q), satisfying (5)-(6), with the

finite norm

Puz R L PP
lulf = /} i Z’ay‘m' dz dt 8)
N /lakﬁuz ‘ k+1u|2d
ozltlgT 3ac¢ ozo—For 40

where Jbu = [ [;*... 05’“’1 u(&,t)dé. Here F is the Hilbert space of vector-
valued functions F = (f,, ) obtained by completing of the space La(Q) x
W3%(0,1) x W2%(0,1) with respect to the norm

||]-'||Ff/ Iis da:dt+/ Z}M |8xaw2d : (9)

Then we establish an energy inequality

lullg < Gl Lullp, (10)

and we show that the operator L has the closure L.

Definition A solution of the operator equation Lu = F is called a strong
solution of the problem (1)-(6).
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Inequality (10) can be extended to u € D(L), i.e.,
Jully < Cy ||Lu|| ., Vu€ D).

From this inequality we obtain the uniqueness of a strong solution if it exists,
and the equality of sets R(L) and R(L). Thus, to prove the existence of a strong
solution of the problem (1)-(6) for any F € F, it remains to prove that the set
R(L) is dense in F.

Lemma 2.1 For any function u € E, we have

1
0

Proof Integrating — fo xJ* ‘Zté‘ Jk+1 ‘gté‘ dx by parts, and using elementary in-

equalities we obtain (11). O

Lemma 2.2 Forue E and 0 <i < a—k, we have
1 o 1
Oty o ) 0% ou 2
S <4(a—’“>—1/ —(JF=)|"dx. 12
/0 | mae| < o PGl (12)

Proof Integrating by parts — fo x 6;;! 11 (J* %—?)Lf (J* %—f) dzx and using el-

Oxo—i—1

ementary inequalities yield (12). &

Lemma 2.3 For u € E satisfying the condition (4) we have

8uac7'
Z/ exp(—cr) 8(1 )‘2d:1:
i/ (l—m)‘%Fdx (13)

1 0
+34°‘ ktl _ //exp ct Jku|ddt

where ¢ > 1 and 0 <7 <T.

Proof Integrating by parts fOT exp(—ct) (63;:67; gggf dt for i =0, — k — 1, using

elementary inequalities, and lemma 2.2, we obtain (13).

3 An energy inequality and its applications

Theorem 3.1 For any function u € D(L), we have

lullp < Gl Lullp, (14)
where Cy = exp(cT) max(8.4%, %)/ min(%, L) , with the constant c satisfying

c>1 and 3(cag —ag) >2(4*7F1 —1). (15)
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Proof Let

8%u
Mu = (-1)*J*—— 5

For a constant ¢ satisfying (15), we consider the quadratic form
T 1 .
Re/ / exp(—ct)LuMu dz dt, (16)
o Jo
which is obtained by multiplying (1) by exp(—ct)Mu, then integrating over Q7,

with @™ = (0,1) x (0,7), 0 <7 < T, and then taking the real part. Integrating
by parts in (16) with the use of boundary conditions (5) and (6), we obtain

T 1
Re / / exp(—ct) LuMu dz dt
o Jo

T 1 2
/ / exp(—ct)‘Jk%fdx dt (17)

aa kJrlu aa k+2—
+Re/ / exp(—ct)a 8 P i Y dx dt .

By substituting the expression of Mwu in (16), using elementary inequalities and
Lemma 2.1 we obtain

T 1 T 1
Re/ / exp(—ct)LuMudzdt < 8.4’“/ / exp(—ct)}£u|2da:dt (18)
0o Jo 0o Jo

17t L 0% 2
+§/0 /0 exp(—ct)|J W‘ dx dt.

By integrating the last term on the right-hand side of (17) and combining the
obtained results with the inequalities (15), (18) and lemmas 2.2, 2.3 we obtain

T pl 1 a—k a—k .1 o
8.4’“/ / exp(—ct)|£u|2d:cdt+%/ a(O)‘gxa_k‘2dx+Z/ ‘Z;Fdx
> / / exp(—ct ‘Jk ‘ dx dt + Z/ exp(—cT) 3 u(a: 7) |2da:

- ot? ox?
+Z/ /exp Ct‘a%at‘ dx dt (19)

1 P o k+1 (
+§/o exp(—c )a(T)‘i&ca For | dx

Using elementary inequalities and (2) we obtain

2 ar 1 0%y 2 kot 0o 2
8.4k/Q\cu| dxdt+7/o oyl dx+;/o 1557 d=
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77t 2 8um7’ 2
> exp(—cT)[g/O /o ‘Jk 8152‘ dx dt—l—Z/ |—=—|"dz  (20)
a—k 1 ;
T 8z+1u 9 P k+1
+;/0 /0 | Parae| dmdt+ 5 / T kf)t fas

As the left hand side of (20) is independent of 7, by replacing the right hand

side by its upper bound with respect to 7 in the interval [0,7], we obtain the
desired inequality. &

Lemma 3.2 The operator L from E to F admits a closure.

Proof Suppose that (u,) € D(L) is a sequence such that
U, >0 inFE (21)
and
Lu, - F inF. (22)
We need to show that F = (f,¢1,92) = 0. The fact that ¢; = 0; i = 1,2;

results directly from the continuity of the trace operators [;.
Introduce the operator
02((1 — z)*tk Jky) (o1 | 0oL ot 9*((1 — m)o“"kav))
ot? ﬁxaf)t Ox® ’

defined on the domain D(Ly) of functions v € W2*?(Q) satisfying

£Q’U =

8v| _0 8iv| _aiv|
ot'=T T 90 T gt !
we note that D(Ly) is dense in the Hilbert space obtained by completing L2(Q)
with respect to the norm

V|t=r =0 =0, i=0,a—1.

Io]]? = / (1 — @)X 0| oy | da .
Q

Since
/ fA—z)tkjhydedt = lim [ Lu,(l—z)*T*kJkudedt
Q n—oo Q
= lim U, LoUdxdt =0,
n—oo
Q
holds for every function v € D(Ly), it follows that f = 0. &

Theorem 3.1 is valid for strong solutions, i.e., we have the inequality
lull g < Cy HZUHF , Vu € D(L),

hence we obtain the following.
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Corollary 3.3 A strong solution of (1)-(6) is unique if it exists, and depends
continuously on F = (f,p,9) € F.

Corollary 3.4 The range R(L) of the operator L is closed in F, and R(L) =
R(L).

4 Solvability of Problem (1)-(6)

To proof solvability of (1)-(6), it is sufficient to show that R(L) is dense in F'.
The proof is based on the following lemma

Lemma 4.1 Let Do(L) = {u € D(L) : lyu = 0,lpu = 0}. If for u € Do(L) and
some w € La(Q), we have

/ (1—-2)*Luwdzdt =0, (23)
Q
then w = 0.

Proof The equality (23) can be written as follows

0%u 0% 9ty
- 1-2)*— =(-1* [ Q1-2)*_— .(24
/Q( oyt e dr dt = (1) /Q( PP (ag wdrdr. (24
For w(z, t) given, we introduce the function v(z,t) = (—1)*9%*((1—z)?**w)/0x2k,
then we have fol z'v(z,t)dr = 0 for i = 0,2k — 1. Then from equality (24) we
have
o> 9ty

(9 u
E) o ( E) o E)
Q X X t

Integrating by parts the right hand side of (25) 2k times, we get

V2T dz dt. (25)

2
- 8—;‘J2kﬁdmdt: / A0 L5 daat, (26)
o O o ot

a—k a—k
where A(t)u = (—1)"%(@%).
When we introduce the smoothing operators J- 1 = (I + 5%)*1 and (J-1)*

with respect to ¢ [16], then these operators provide solutions of the problems

- 49.(t)

O ) = o), (27)
ge(t)|t=0 = 0,
and
B0 = ), (28)

9ele=r = 0.
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The solutions have the following properties: for any g € L2(0,T), the functions
ge = (J-Y)g and g = (J71)*g are in Wi (0 T) such that g |t=o= 0 and
g% |t=r= 0. Moreover, J-! commutes with 6t’ SO fOT |g€ — g}2dt — 0 and
fOT x —g‘th—>0, fora—)O

Replacing in (26), % by the smoothed function J_- 19 i using the relation
A)Jr = J7TA(T) + EJe_la’g(:)JE_ , and using properties of the smoothing

€
operators we obtain

ou ov*

ou— 0A Ou
2k A *
8tJ (m)d xdt = /Q (t)—at’ugdl‘dt—l-

o ot (at) UFdadt.  (29)

Passing to the limit,(29) is satisfied for all functions satisfying the conditions

(4)-(6) such that 2+ (a2 4) € Ly(Q) for 0 < i < .

The operator A(t) has a continuous inverse on Ly(0,1) defined by
At (30)

/ / o /m [ e e
+ZC

Then we have

dndm cdNa—k—1 -

/1 A7 (t)gdr =0. (31)
0

Hence the function (4%). can be represented in the form (%), = J-tA"1AZ%,

Then Z}(%%). = A.(t A( )24, where

8ak il

Ac(t)g = (-1)7] Z e b v RS I G

Consequently, (29) becomes

@JW@ dvz

o, ——
[ )t = / A1) S (o7 + AT da b, (33)

in which A%(¢) is the adjoint of the operator A.(¢). The left-hand side of (33)
is a continuous linear functional of %. Hence the function h, = v} + cAXv?

has the derivatives a he € Ly(Q), %(aa‘**kha) € Ly(Q), i =0, — k, and the

Oxo—k
following conditions are satisfied ‘
O'h, O'h, L
B |z=0 = B0 ey =0, =00 k-1 (34)

The operators AZ(t) are bounded in Lo(Q), for e sufficiently small we have
leAZ(®)]l1,@) < 1; hence the operator I + £AZ(t) has a bounded inverse in
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Ly(Q). In addition, the operators aiaAEi(t), 1 =0,a — k are bounded in L2(Q).
From the equality

0'he ; R OFAL(t) aﬁks e
o = (I +e = Zc o —, i=0,a—k—1 (35)

we conclude that v} has derivatives %;),f in Ls(Q), i = 0,a — k — 1. Taking into

account (34) and (35), for i = 0, — k — 1, we have

81‘,0* 8kA* 81 k *
T+eAx(t r =
(I +eAL(1)) Oz +e ZC Ozk  Opi—Fk -] =0 0, (36)
871,0* 8 81 k *
T+ eAx(t r = 0.
[( +eAz (1)) 8ac¢ ZC 8xk Hxi— k} =1 0 (37)
Similarly, for e sufficiently small, and each fixed x € [0, 1] the operators aiaAEi(t),

i =0,a — k are bounded in Ly(Q) and the operator I + A% (¢) is continuously
invertible in Lo(Q). From (36) and (37) result that v} satisfies the conditions

o} O
ozt |w=0 T ot |x:1
So, for € sufficiently small, the function v} has the same properties as h.. In
addition v* satisfies the integral conditions (6).

Putting u = fot Jy exp(en)vz (n, 7)dndr in (26), with the constant c satisfying

—0, i=0a—k—1,

2
cag — ag — Z—i > 0, and using (28), we obtain

2_
/(—1)kexp(ct)v;ﬂkvdxdt = —/(—1)’€A()@exp( ct)a—2 dz dt
0 0 at at
Ou vt
At S dxdt.
= [ VM0 G (38)
Integrating by parts each term in the right-hand side of (38), we have
ou 0%u
c 0k +1y 9 8@ —k+
> 2 —ct —ct
= z/Qa(t)e L 0Ot et kat| i
ou Ov* 6&2 0%~ k+1
—e [ (—1)FA( = dz dt —2/ drdt. (4
Rel E/Q( AW T G ) = 5 o el (40)

Now, using (39) and (40) in (38), with the choice of ¢ indicated above, we
have 2Re [, exp(ct)vij*vdzdt < 0, then 2Re [, exp(ct)vJ? vdrdt < 0 as e

approaches zero. Since Re fQ exp(ct)‘J’“ﬁ‘2 dx dt = 0, we conclude that J*v =
0, hence w = 0, which completes the present proof. &

Theorem 4.2 The range R(L) of L coincides with F.
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Proof Since F is a Hilbert space, we have R(L) = F if and only if the following
implication is satisfied:

1 a=k o i a—k a—k,/,
/zufdmdt+/( hud  OTlud W o (a)
Q 0 =0

oxt Oxt Oxe—k Qyra—k

for arbitrary v € E and F = (f, p,¢) € F, implies that f, ¢, and ¢ are zero.

Putting u € Do(L) in (41), we obtain fQ Lufdrdt = 0. Taking w =
f/(1 —z)?* and using lemma 4.1 we obtain that f/(1 — z)?* = 0, then f = 0.
Consequently, Vu € D(L) we have

dz=0. (42)

/1 L9 dE 0 Flyu 92k
0 = Ox' Oz dxa—k 9roa—k

The range of the trace operator (l1,l2) is everywhere dense in a Hilbert space

with norm
1 a—k ; —k
o2 0% 2 . 41/2
|/ > Il + et e

Therefore, (¢,1) = (0,0) and the present proof is complete.
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