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High-order mixed-type differential equations with

weighted integral boundary conditions ∗

M. Denche & A. L. Marhoune

Abstract

In this paper, we prove the existence and uniqueness of strong solu-
tions for high-order mixed-type problems with weighted integral boundary
conditions. The proof uses energy inequalities and the density of the range
of the operator generated.

1 Introduction

Let α be a positive integer and Q be the set (0, 1) × (0, T ). We consider the
equation

Lu :=
∂2u

∂t2
+ (−1)αa(t)

∂2α+1u

∂x2α∂t
= f(x, t), (1)

where the function a(t) and its derivative are bounded on the interval [0, T ]:

0 < a0 ≤ a(t) ≤ a1 , (2)

da(t)

dt
≤ a2 . (3)

To equation (1) we attach the initial conditions

l1u = u(x, 0) = ϕ(x), l2u =
∂u

∂t
(x, 0) = ψ(x) x ∈ (0, 1), (4)

the boundary conditions

∂i

∂xi
u(0, t) =

∂i

∂xi
u(1, t) = 0, for 0 ≤ i ≤ α− k − 1, t ∈ (0, T ), (5)

and integral conditions

∫ 1
0

xiu(x, t)dx = 0, for 0 ≤ i ≤ 2k − 1, 1 ≤ k ≤ α t ∈ (0, T ). (6)
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2 High-order mixed-type differential equations EJDE–2000/60

where ϕ and ψ are known functions which satisfy the compatibility conditions
given in (5)-(6).
Various problems arising in heat conduction [3, 4, 8, 9], chemical engineering

[6], underground water flow [7], thermo-elasticity [14], and plasma physics [12]
can be reduced to the nonlocal problems with integral boundary conditions.
This type of boundary value problems has been investigated in [1, 2, 3, 4, 5, 6, 8,
9, 10, 13, 16] for parabolic equations and in [11, 15] for hyperbolic equations. The
basic tool in [2, 10, 16] is the energy inequality method which, of course, requires
appropriate multipliers and functional spaces. In this paper, we extend this
method to the study of a high-order mixed-type partial differential equations.

2 Preliminaries

In this paper, we prove existence and uniqueness of a strong solution of problem
(1)-(6). For this, we consider the problem (1)-(6) as a solution of the operator
equation

Lu = F , (7)

where L = (L, l1, l2), with domain of definition D(L) consisting of functions

u ∈ W 2α,2
2 (Q) such that ∂

i

∂xi
(∂
α−k+1u
∂xα−k∂t

) ∈ L2(Q), i = 0, α+ k − 1 and u satisfies
conditions (5)-(6); the operator L is considered from E to F , where E is the
Banach space consisting of functions u ∈ L2(Q), satisfying (5)-(6), with the
finite norm

‖u‖2E =

∫
Q

∣∣Jk ∂2u
∂t2

∣∣2 +
α−k∑
i=0

∣∣∂i+1u
∂xi∂t

∣∣2 dx dt (8)

+ sup
0≤t≤T

∫ 1
0

α−k∑
i=0

∣∣∂iu
∂xi

∣∣2 + ∣∣∂α−k+1u
∂xα−k∂t

∣∣2 dx ,

where Jku =
∫ x
0

∫ ξ1
0
. . .
∫ ξk−1
0

u(ξ, t)dξ. Here F is the Hilbert space of vector-
valued functions F = (f, ϕ, ψ) obtained by completing of the space L2(Q) ×
W 2α
2 (0, 1)×W

2α
2 (0, 1) with respect to the norm

‖F‖2F =

∫
Q

∣∣f ∣∣2 dx dt+
∫ 1
0

α−k∑
i=0

∣∣∂iϕ
∂xi

∣∣2 + ∣∣∂α−kψ
∂xα−k

∣∣2 dx . (9)

Then we establish an energy inequality

‖u‖E ≤ C1 ‖Lu‖F , (10)

and we show that the operator L has the closure L.

Definition A solution of the operator equation Lu = F is called a strong
solution of the problem (1)-(6).
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Inequality (10) can be extended to u ∈ D(L), i.e.,

‖u‖E ≤ C1
∥∥Lu∥∥

F
, ∀u ∈ D(L).

From this inequality we obtain the uniqueness of a strong solution if it exists,
and the equality of sets R(L) and R(L). Thus, to prove the existence of a strong
solution of the problem (1)-(6) for any F ∈ F , it remains to prove that the set
R(L) is dense in F .

Lemma 2.1 For any function u ∈ E, we have
∫ 1
0

∣∣J2k ∂2u
∂t2

∣∣2dx ≤ 4k
∫ 1
0

∣∣Jk ∂2u
∂t2

∣∣2 dx . (11)

Proof Integrating −
∫ 1
0
xJk ∂

2u
∂t2

Jk+1 ∂
2u
∂t2

dx by parts, and using elementary in-
equalities we obtain (11). ♦

Lemma 2.2 For u ∈ E and 0 ≤ i ≤ α− k, we have
∫ 1
0

∣∣∂i+1u
∂xi∂t

∣∣2dx ≤ 4(α−k)−i
∫ 1
0

∣∣ ∂α
∂xα
(Jk

∂u

∂t
)
∣∣2dx . (12)

Proof Integrating by parts −
∫ 1
0
x ∂

α−i

∂xα−i
(Jk ∂u

∂t
) ∂

α−i−1

∂xα−i−1
(Jk ∂u

∂t
) dx and using el-

ementary inequalities yield (12). ♦

Lemma 2.3 For u ∈ E satisfying the condition (4) we have

α−k∑
i=0

∫ 1
0

exp(−cτ)
∣∣∂iu(x, τ)

∂xi

∣∣2 dx

≤
α−k∑
i=0

∫ 1
0

(1 − x)
∣∣∂iϕ
∂xi

∣∣2 dx (13)

+
1

3
(4α−k+1 − 1)

∫ τ
0

∫ 1
0

exp(−ct)
∣∣ ∂α
∂xα
(Jk

∂u

∂t
)
∣∣2 dx dt ,

where c ≥ 1 and 0 ≤ τ ≤ T .

Proof Integrating by parts
∫ τ
0 exp(−ct)

∂i+1u
∂xi∂t

∂iu
∂xi dt for i = 0, α− k − 1, using

elementary inequalities, and lemma 2.2, we obtain (13).

3 An energy inequality and its applications

Theorem 3.1 For any function u ∈ D(L), we have

‖u‖E ≤ C1 ‖Lu‖F , (14)

where C1 = exp(cT )max(8.4
k, a12 )/min(

a0
2 ,
7
8 ) , with the constant c satisfying

c ≥ 1 and 3(ca0 − a2) ≥ 2(4
α−k−1 − 1). (15)
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Proof Let

Mu = (−1)kJ2k
∂2u

∂t2
.

For a constant c satisfying (15), we consider the quadratic form

Re

∫ τ
0

∫ 1
0

exp(−ct)LuMudxdt, (16)

which is obtained by multiplying (1) by exp(−ct)Mu, then integrating over Qτ ,
with Qτ = (0, 1)× (0, τ), 0 ≤ τ ≤ T , and then taking the real part. Integrating
by parts in (16) with the use of boundary conditions (5) and (6), we obtain

Re

∫ τ
0

∫ 1
0

exp(−ct)LuMudxdt

=

∫ τ
0

∫ 1
0

exp(−ct)
∣∣Jk ∂2u

∂t2

∣∣2 dx dt (17)

+Re

∫ τ
0

∫ 1
0

exp(−ct)a(t)
∂α−k+1u

∂xα−k∂t

∂α−k+2u

∂xα−k∂t2
dx dt .

By substituting the expression ofMu in (16), using elementary inequalities and
Lemma 2.1 we obtain

Re

∫ τ
0

∫ 1
0

exp(−ct)LuMudxdt ≤ 8.4k
∫ τ
0

∫ 1
0

exp(−ct)
∣∣Lu∣∣2 dx dt (18)

+
1

8

∫ τ
0

∫ 1
0

exp(−ct)
∣∣Jk ∂2u

∂t2

∣∣2 dx dt .
By integrating the last term on the right-hand side of (17) and combining the
obtained results with the inequalities (15), (18) and lemmas 2.2, 2.3 we obtain

8.4k
∫ τ
0

∫ 1
0

exp(−ct)
∣∣Lu∣∣2 dx dt+ 1

2

∫ 1
0

a(0)
∣∣∂α−kψ
∂xα−k

∣∣2dx+
α−k∑
i=0

∫ 1
0

∣∣∂iϕ
∂xi

∣∣2dx

≥
7

8

∫ τ
0

∫ 1
0

exp(−ct)
∣∣Jk ∂2u

∂t2

∣∣2 dx dt +
α−k∑
i=0

∫ 1
0

exp(−cτ)
∣∣∂iu(x, τ)

∂xi

∣∣2dx

+

α−k∑
i=0

∫ τ
0

∫ 1
0

exp(−ct)
∣∣∂i+1u
∂xi∂t

∣∣2 dx dt (19)

+
1

2

∫ 1
0

exp(−cτ)a(τ)
∣∣∂α−k+1u(x, τ)

∂xα−k∂t

∣∣2dx
Using elementary inequalities and (2) we obtain

8.4k
∫
Q

∣∣Lu∣∣2 dx dt + a1

2

∫ 1
0

∣∣∂α−kψ
∂xα−k

∣∣2dx+
α−k∑
i=0

∫ 1
0

∣∣∂iϕ
∂xi

∣∣2dx
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≥ exp(−cT )
[7
8

∫ τ
0

∫ 1
0

∣∣Jk ∂2u
∂t2

∣∣2 dx dt+
α−k∑
i=0

∫ 1
0

∣∣∂iu(x, τ)
∂xi

∣∣2 dx (20)

+
α−k∑
i=0

∫ τ
0

∫ 1
0

∣∣∂i+1u
∂xi∂t

∣∣2 dx dt+ a0

2

∫ 1
0

∣∣∂α−k+1u(x, τ)
∂xα−k∂t

∣∣2dx]

As the left hand side of (20) is independent of τ , by replacing the right hand
side by its upper bound with respect to τ in the interval [0, T ], we obtain the
desired inequality. ♦

Lemma 3.2 The operator L from E to F admits a closure.

Proof Suppose that (un) ∈ D(L) is a sequence such that

un → 0 in E (21)

and
Lun → F in F . (22)

We need to show that F = (f, ϕ1, ϕ2) = 0. The fact that ϕi = 0; i = 1, 2;
results directly from the continuity of the trace operators li.
Introduce the operator

L0v =
∂2((1 − x)α+kJkv)

∂t2
+ (−1)α+1

∂α+1

∂xα∂t
(a(t)

∂α((1 − x)α+kJkv)

∂xα
),

defined on the domain D(L0) of functions v ∈W
2α,2
2 (Q) satisfying

v|t=T = 0
∂v

∂t
|t=T = 0

∂iv

∂xi
|x=0 =

∂iv

∂xi
|x=1 = 0 , i = 0, α− 1 .

we note that D(L0) is dense in the Hilbert space obtained by completing L2(Q)
with respect to the norm

‖v‖2 =

∫
Q

(1− x)2(α+k)
∣∣Jkv∣∣2 dx dt.

Since ∫
Q

f(1− x)α+kJkv dx dt = lim
n→∞

∫
Q

Lun(1− x)α+kJkv dx dt

= lim
n→∞

∫
Q

unL0v dx dt = 0 ,

holds for every function v ∈ D(L0), it follows that f = 0. ♦

Theorem 3.1 is valid for strong solutions, i.e., we have the inequality

‖u‖E ≤ C1
∥∥Lu∥∥

F
, ∀u ∈ D(L),

hence we obtain the following.
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Corollary 3.3 A strong solution of (1)-(6) is unique if it exists, and depends
continuously on F = (f, ϕ, ψ) ∈ F .

Corollary 3.4 The range R(L) of the operator L is closed in F , and R(L) =
R(L).

4 Solvability of Problem (1)-(6)

To proof solvability of (1)-(6), it is sufficient to show that R(L) is dense in F .
The proof is based on the following lemma

Lemma 4.1 Let D0(L) = {u ∈ D(L) : l1u = 0, l2u = 0}. If for u ∈ D0(L) and
some ω ∈ L2(Q), we have∫

Q

(1− x)2kLu$ dxdt = 0 , (23)

then ω = 0.

Proof The equality (23) can be written as follows

−

∫
Q

(1− x)2k
∂2u

∂t2
$dxdt = (−1)α

∫
Q

(1− x)2k
∂α

∂xα
(a
∂α+1u

∂xα∂t
)$dxdt. (24)

For ω(x, t) given, we introduce the function v(x, t) = (−1)k∂2k((1−x)2kω)/∂x2k,

then we have
∫ 1
0
xiv(x, t)dx = 0 for i = 0, 2k − 1. Then from equality (24) we

have

−

∫
Q

∂2u

∂t2
J2kv dx dt = (−1)α

∫
Q

∂α

∂xα
(a
∂α+1u

∂xα∂t
)J2kv dx dt. (25)

Integrating by parts the right hand side of (25) 2k times, we get

−

∫
Q

∂2u

∂t2
J2kv dx dt =

∫
Q

A(t)
∂u

∂t
v dx dt, (26)

where A(t)u = (−1)α ∂
α−k

∂xα−k
(a∂

α−ku
∂xα−k

).

When we introduce the smoothing operators J−1ε = (I + ε ∂
∂t
)−1 and (J−1ε )

∗

with respect to t [16], then these operators provide solutions of the problems

ε
dg
ε
(t)

dt
+ gε(t) = g(t), (27)

gε(t)|t=0 = 0,

and

−ε
dg∗ε(t)

dt
+ g∗ε(t) = g(t), (28)

g∗ε(t)|t=T = 0 .
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The solutions have the following properties: for any g ∈ L2(0, T ), the functions
gε = (J

−1
ε )g and g∗ε = (J

−1
ε )

∗g are in W 1
2 (0, T ) such that gε |t=0= 0 and

g∗ε |t=T= 0. Moreover, J
−1
ε commutes with ∂

∂t
, so

∫ T
0

∣∣gε − g
∣∣2dt → 0 and∫ T

0

∣∣g∗ε − g∣∣2dt→ 0, for ε→ 0.
Replacing in (26), ∂u

∂t
by the smoothed function J−1ε

∂u
∂t
, using the relation

A(t)J−1ε = J−1ε A(τ) + εJ−1ε
∂A(τ)
∂τ

J−1ε , and using properties of the smoothing
operators we obtain

∫
Q

∂u

∂t
J2k(

∂v∗ε
∂t
) dx dt =

∫
Q

A(t)
∂u

∂t
v∗ε dx dt+ ε

∫
Q

∂A

∂t
(
∂u

∂t
)εv∗ε dx dt. (29)

Passing to the limit,(29) is satisfied for all functions satisfying the conditions

(4)-(6) such that ∂
i

∂xi
(a∂

α+1u
∂xα∂t

) ∈ L2(Q) for 0 ≤ i ≤ α.
The operator A(t) has a continuous inverse on L2(0, 1) defined by

A−1(t)g (30)

= (−1)α
∫ x
0

∫ ηα−k−1
0

. . .

∫ η1
0

[ ∫ η
0

∫ ξα−k−1
0

. . .

∫ ξ1
0

1

a
g(ξ)dξdξ1 . . . dξα−k−1

+
α−k∑
i=1

Ci(t)
ηi−1

(i− 1)!

]
dηdη1 . . . dηα−k−1 .

Then we have ∫ 1
0

A−1(t)g dx = 0 . (31)

Hence the function (∂u∂t )ε can be represented in the form (
∂u
∂t )ε = J

−1
ε A−1A∂u∂t .

Then ∂A∂t (
∂u
∂t )ε = Aε(t)A(t)

∂u
∂t , where

Aε(t)g = (−1)
α
[
a′(t)J−1ε

g

a
+
α−k∑
i=1

∂α−k

∂xα−k
{ xi−1

(i− 1)!
J−1ε Ci

}]
. (32)

Consequently, (29) becomes

∫
Q

∂u

∂t
J2k(

∂v∗ε
∂t
) dx dt =

∫
Q

A(t)
∂u

∂t
(v∗ε + εA

∗
εv
∗
ε) dx dt, (33)

in which A∗ε(t) is the adjoint of the operator Aε(t). The left-hand side of (33)
is a continuous linear functional of ∂u

∂t
. Hence the function hε = v∗ε + εA

∗
εv
∗
ε

has the derivatives ∂
ihε
∂xi
∈ L2(Q),

∂i

∂xi
(a∂

α−khε
∂xα−k

) ∈ L2(Q), i = 0, α− k, and the
following conditions are satisfied

∂ih
ε

∂xi

∣∣
x=0
=
∂ih

ε

∂xi

∣∣
x=1
= 0 , i = 0, α− k − 1. (34)

The operators A∗ε(t) are bounded in L2(Q), for ε sufficiently small we have
‖εA∗ε(t)‖L2(Q) < 1; hence the operator I + εA∗ε(t) has a bounded inverse in
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L2(Q). In addition, the operators
∂iA∗ε(t)
∂xi

, i = 0, α− k are bounded in L2(Q).
From the equality

∂ihε

∂xi
= (I + εA∗ε(t))

∂iv∗ε
∂xi

+ ε

i∑
k=1

Cki
∂kA∗ε(t)

∂xk
∂i−kv∗ε
∂xi−k

, i = 0, α− k − 1 (35)

we conclude that v∗ε has derivatives
∂iv∗ε
∂xi
in L2(Q), i = 0, α− k − 1. Taking into

account (34) and (35), for i = 0, α− k − 1, we have

[
(I + εA∗ε(t))

∂iv∗ε
∂xi

+ ε

i∑
k=1

Cki
∂kA∗ε(t)

∂xk
∂i−kv∗ε
∂xi−k

]
x=0

= 0 , (36)

[
(I + εA∗ε(t))

∂iv∗ε
∂xi

+ ε

i∑
k=1

Cki
∂kA∗ε(t)

∂xk
∂i−kv∗ε
∂xi−k

]
x=1

= 0 . (37)

Similarly, for ε sufficiently small, and each fixed x ∈ [0, 1] the operators ∂
iA∗ε(t)
∂xi

,

i = 0, α− k are bounded in L2(Q) and the operator I + εA∗ε(t) is continuously
invertible in L2(Q). From (36) and (37) result that v

∗
ε satisfies the conditions

∂iv∗ε
∂xi

∣∣
x=0
=
∂iv∗ε
∂xi

∣∣
x=1
= 0, i = 0, α− k − 1,

So, for ε sufficiently small, the function v∗ε has the same properties as hε. In
addition v∗ε satisfies the integral conditions (6).

Putting u =
∫ t
0

∫ τ
0
exp(cη)v∗ε (η, τ)dηdτ in (26), with the constant c satisfying

ca0 − a2 −
a22
a0
≥ 0, and using (28), we obtain

∫
Q

(−1)k exp(ct)v∗εJ
2kv dx dt = −

∫
Q

(−1)kA(t)
∂u

∂t
exp(−ct)

∂2u

∂t2
dx dt

+ε

∫
Q

(−1)kA(t)
∂u

∂t

∂v∗ε
∂t

dx dt . (38)

Integrating by parts each term in the right-hand side of (38), we have

Re

∫
Q

(−1)kA(t)
∂u

∂t
exp(−ct)

∂2u

∂t2
dx dt (39)

≥
c

2

∫
Q

a(t)e−ct
∣∣∂α−k+1u
∂xα−k∂t

∣∣2 dx dt − 1
2

∫
Q

∂a

∂t
e−ct
∣∣∂α−k+1u
∂xα−k∂t

∣∣2 dx dt .

Re(−ε

∫
Q

(−1)kA(t)
∂u

∂t

∂v∗ε
∂t

dx dt) ≥
−εa22
2a0

∫
Q

exp(−ct)
∣∣∂α−k+1u
∂xα−k∂t

∣∣2 dx dt. (40)
Now, using (39) and (40) in (38), with the choice of c indicated above, we

have 2Re
∫
Q
exp(ct)v∗ε j

2kv dx dt ≤ 0, then 2Re
∫
Q
exp(ct)vJ2kv dx dt ≤ 0 as ε

approaches zero. Since Re
∫
Q
exp(ct)

∣∣Jkv∣∣2 dx dt = 0, we conclude that J2kv =
0, hence ω = 0, which completes the present proof. ♦

Theorem 4.2 The range R(L) of L coincides with F.
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Proof Since F is a Hilbert space, we have R(L) = F if and only if the following
implication is satisfied:

∫
Q

Luf dx dt+

∫ 1
0

(

α−k∑
i=0

∂il1u

∂xi
∂iϕ

∂xi
+
∂α−kl2u

∂xα−k
∂α−kψ

∂xα−k
)dx = 0, (41)

for arbitrary u ∈ E and F = (f, ϕ, ψ) ∈ F , implies that f , ϕ, and ψ are zero.
Putting u ∈ D0(L) in (41), we obtain

∫
Q
Luf dx dt = 0. Taking ω =

f/(1− x)2k, and using lemma 4.1 we obtain that f/(1− x)2k = 0, then f = 0.
Consequently, ∀u ∈ D(L) we have

∫ 1
0

α−k∑
i=0

∂il1u

∂xi
∂iϕ

∂xi
+
∂α−kl2u

∂xα−k
∂α−kψ

∂xα−k
dx = 0 . (42)

The range of the trace operator (l1,l2) is everywhere dense in a Hilbert space
with norm

[ ∫ 1
0

α−k∑
i=0

∣∣∂iϕ
∂xi

∣∣2 + ∣∣∂α−kψ
∂xα−k

∣∣2 dx]1/2 .
Therefore, (ϕ, ψ) = (0, 0) and the present proof is complete.
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