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SINGULAR REGULARIZATION OF OPERATOR EQUATIONS IN
Ly SPACES VIA FRACTIONAL DIFFERENTIAL EQUATIONS

GEORGE L. KARAKOSTAS, IOANNIS K. PURNARAS

ABSTRACT. An abstract causal operator equation y = Ay defined on a space of
the form L1 ([0, 7], X), with X a Banach space, is regularized by the fractional
differential equation
e(DEye)(t) = —ye=(t) + (Aye)(t), t€0,7],

where D§ denotes the (left) Riemann-Liouville derivative of order o € (0,1).
The main procedure lies on properties of the Mittag-Leffler function combined
with some facts from convolution theory. Our results complete relative ones
that have appeared in the literature; see, e.g. [5] in which regularization via
ordinary differential equations is used.

1. INTRODUCTION

Regularization employs several techniques in order to approximate solutions of
ill-posed problems such as

My = f, (1.1)

where M is an operator acting on a space X and taking values in another space Y.
Basically, the problem is characterized as an ill-posed problem, if either solutions
do not exist for some f, or uniqueness of solutions is not guaranteed, or continuous
dependence on data does not hold. The latter is equivalent to saying that there is
no continuous inverse of M. In order to solve an ill- posed problem (approximately),
we should regularize it, namely, replace this problem by a suitable family of well-
posed problems whose solutions approximate (in some sense) the solution of the
ill-posed problem which we look for.

However, it is not true that such a process may produce an approximation of the
solutions of the original equation for all situations. To see it, we borrow an example
from the literature (e.g., [I7, [18]) adopted to our situation, as follows: Consider the
2 x 2 matrix-operator M and the function f given by

d

N ht 01} and  f(t) := {p?t)},
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where p is a differentiable function on [0, 1], say. The exact solution of the operator
equation (1.1 in the space C1([0,1],R) x C([0,1],R) is given by

x(t) =p(t), yt)=p'(t), tel0,1].

Take a small number ¢ and let
0
10 = £0+ | gl
be a small perturbation of f. Then we obtain the exact solution

velt) = plt) + esint/e?), y.(6) = p'(1) + © cos(t/e?)
Hence the quantity
[xg(t)} B [x(t)] B [5sin(t/52)]
y=(t)]  [y(t)] | % cos(t/e?)
becomes large enough if the number ¢ tends to 0. This means that the solution
changes a lot after a small change in the right side of equation.

In case that M is a compact linear operator between two Hilbert spaces, a
regularizing form should consist of the equation

(M*M +¢e)x. = M*f, (1.2)

where M* is the adjoint of M, see [I0]. In [7] the regularization has its right
side M* f5, where f5 is a (noisy) approximation of f. The works [2I] 22] refer to
Tikhonov-reqularization, i.e. regularization of minimazing problems. According to
such problems, an equation of the form

b
/ k(t,s)z(s)ds = f(t) (1.3)

is replaced by the equation

b
/ k(t, 5)a(s)ds + ex.(t) = (1),
or the equation

b
/kw$Mme%®:ﬁ@

and then one looks for the convergence of the net z.. Here a noisy fs replaces f,
for small §; see, e.g., the interesting survey presented in [I6]. Approximation of the
kernel k of is used by other authors, see, e.g., [19]. Approximation of both
the perturbation and the operator applies elsewhere, [9]. Some authors, as, e.g. [3],
dealing with the Volterra equation

| K oatas = s, (1.4)

apply the so called method of the simplified (or Lavrentiev) regularization, consist-
ing of an approximation of the perturbation f and the local reqularization, realized
by an approximate equation of the form

tte t
/ k(t+e,s)x(s)ds + / k(t+e,s)x(s)ds = f(t+¢),
t 0

where ¢ is a parameter tending to 0.
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In [27] another approach is applied to by taking an approximation of both
the kernel k and the output f. For a more general setting see, also, [28].

Regularization of abstract equations of the form can be realized by approx-
imating the output f, as, e.g. in [§] and for Fredholm integral equations, as, e.g., in
[30]. Regularization of the Hammerstein’s type equation z + BAxz = f, is achieved,
(see, e.g., [26]) by replacing it with the equation z.+(B+eJ)(A+eJ)z. = f5, where
g, 0 are positive reals tending to 0 and the functions f, fs are such that || f — f5|| < d.
Here A and B are operators, and x, f are elements in a given Banach space X, with
x being the unknown element in X.

In case that the operator M has the form My = Ay — y + f, the problem
leads to the fixed point problem

y = Ay. (1.5)

It is known (see, e.g., [5, p. 89]) that a continuous compact operator A (in the
sense of Krasnoselskii) defined on a locally convex Hausdorff space has a fixed point.
Regularization theory of such an equation (especially), when A is a monotone or
a non-expansive operator defined in a Hilbert or (even in a) Banach space, forms
a large field, and most of the authors make use of variation techniques, see, e.g.
[1 2 4 T4, 29] and the references therein.

In case refers to a space of functions y : [0,1] — R, say, namely we have

y(t) = (Ay)(t), te[0,1], (1.6)
regularization is achieved by a differential equation of the form
d
eZy(t) +y(t) — (Ay)(t) = 0. (1.7)

This is done elsewhere (see, e.g., the book [5] p. 140], and the references therein),
when y has to be a continuous function, say, y € C([0,T],R). Similar things occur
for a neutral differential equation discussed in [I1]. An immediate consequence of
this approach is that, in this case, a solution of is approximated by a sequence
(ye,,) of real-valued functions having continuous first order derivatives.

For fractional differential equations a few results, analogous to above, are known.
We should refer to the problem

D (x —x(0) —e) = f(t,x) +¢&, x(0)=x +¢,

discussed in [15], where conditions are given so that, as e tends to 0, the maximal
solution 7(¢; ) tends to the maximal solution n(¢) of the problem

Dg(x —x(0)) = f(t,2), 2(0) = o,

uniformly on any compact interval [0,¢;] of the domain of 7. In this work we assume
that A is defined on an Li-space of X-valued functions, where X is a Banach
space, and we regularize by an equation involving continuous functions with
Lebesgue-integrable first order derivatives. To succeed in such an approach we work
in Ly-spaces and use the fractional equation

e(Dgye)(t) = —ye(t) + (Aye)(t), a.a. te€[0,7]:= I, (1.8)

for ¢ tending to 0. Here, D§y. is the (left) Riemann-Liouville derivative of f of
order a.

A central role to our approach is played by some facts from convolution theory,
as well as the Mittag-Leffler function. It is known that the relation of the latter
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with the fractional calculus, is analogous of that of the exponential function with
standard calculus. See, for instance, [I2, subsection 3.2].

We investigate when, for some 7 € (0, T}, there is a sequence of solutions of the
fractional differential equation converging in the sense of Li-norm on [0, 7] to
solutions of equation , when the parameter ¢ approaches 0.

2. PRELIMINARIES

2.1. Fractional calculus. Throughout this paper we shall work on a real Banach
space X endowed with a norm || - ||x, and on the space LT := L,([0,T], X), for
some 1" > 0 fixed, with norm

Iyl = / ly(s) | xds.

Several books in the literature present surveys on the classical fractional calculus.
Two exhaustive such books are the ones by Podlubny [24] and Miller and Ross [20].
We recall some basic definitions and results adopted for our purposes, namely we
consider the meaning of fractional derivative and integral on an X-valued function
defined on the interval [0, T].

Let T' be the Euler Gamma function. It is well known (see, e.g., [31]) that
on the positive real axis the function I' admits a local minimum 0.885603... at
Tmin = 1.461632144... and it is increasing for x > ;. Later on we shall use the
monotonicity of ' on the interval [2,+00).

For u € LT and « € (0,1), the (left) fractional Riemann-Liouville derivative of
f of order o, is defined by

(D)) = =gy | (= uds

where the integral is in the Bohner sense.
As in [24], [pp. 59-73, and relation (2.122)], we can see that the first composition
formula with integer order n derivative holdﬂ

) (0)#
& (M) = DO (t) — —_— .
DRG0 = D) = 3 55 (21)
Now consider the problem
(D§w)(®) = f(8), aa te.T], (D§~w®)| _ =b (2.2)

t=0
where b € X.

Although the following result can be implied from arguments borrowed from the
literature (see, e.g., [24] Theorem 3.1, p. 122 and relation (3.7) in p. 123), we shall
give our proof for two reasons: First we want this work to be complete. Second,
the functions used here take values in the abstract Banach space X and not in R,
as it is used elsewhere (and in [24, Theorem 3.1]).

Let B be the (real) Betta function, namely the function defined for p,o > 0 by

1
B(p,0) = / (1—6)P7'9°"1dg
0

LThe relation holds even for a < 0.
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This is connected with the Gamma function by the relation

I(p)(o)

B(Pva):m'

Lemma 2.1. The function y defined by

y(t) = ;a(;)b + ﬁ/@ (t —s)* "1 f(s)ds, a.a. t€]0,T),

is the only solution of the problem (2.2)).
Proof. We show that y satisfies the problem (2.2)). We have

D50)) = T . sy dsh
" mi / (t=s)" / (s =) () drds
N F(a)l“él —ayat ! t— @, a)b | "
Ry, @ [ s
1 d

- FT1 —a) a/o f(r)drB(1 — a,«)
d t
=4 [ i = s, s

where, in the integration, we used the substitution s =: (1 —0)r +0t, 0 € [0,1].
Similarly we obtain

d d [*
DEy)®)| =) b —/t— dr|  =o.
50| _, = 50| b+ 5 [ ¢=nrwa]
The inverse is implied by an application [24], Theorem 3.1, p.122]. O

2.2. The Mittag-Leffler function. The Mittag-Leffler function of order a(> 0)
is defined on the complex plane by

E.(2) ::¥W'

From a result of Feller referred by Pollard [25], we know that there is a nondecreasing
and bounded function F, such that

+oo
B (—a) = /0 e~ dE,(s), x> 0. (2.4)

It follows that this function is positive, non-increasing, it tends to 0 as * — 400
and since E,(0) = 1, the quantity E,(—x) is not greater than 1. More properties
of this function and of some generalizations of it can be found in [24].
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3. MAIN RESULTS

Let A : LT — LT be a causal operator, namely, it satisfies (Az)(t) = (Ay)(t),
whenever x(s) = y(s), for a.a. s € [0,¢], (for the continuous case see, e.g., [13], [23]
and the references therein). This characteristic guarantees that, for any 7 € (0, 7],
the operator A maps the ball

Bl i={yeL7:|ylli <r},

into the space L]. Suppose, also, that A is continuous and compact in the sense
that, it maps bounded sets into relatively compact sets. Hence, in case that for
some 7 > 0 it holds

A(By) C Br,
the following Schauder’s fixed point theorem applies and ensures the existence of a
fixed point of A in Br.

Theorem 3.1 ([5l p. 89]). Let E be a real Banach space and K C E a closed,
bounded and convex set. If C: K — K is a continuous compact operator, then C
has at least one fized point.

Now, for any fixed € > 0 and small enough, say € < 1, consider the fractional
differential equation

e(Dgy)(t) = —y(t) + (Ay)(t), a.a. te€][0,T], (3.1)

where the derivative DSy is in the sense of Riemann-Liouville and « € (0, 1).
Let b be a (nonzero) real number and consider the initial value problem

(DEw)(1) = —y(t) + - (). (D59 (1)

According to Lemma a function y is a solution of the problem, if and only if it
satisfies the equation
e /t<t o Ty(s)ds+— /t<t o1 (Ay)(s)ds. (3.2)
= — —s s)ds —s s)ds. (3.
TR @) PIETE @) Jo g’

Our main result in this work is given in the following theorem:

=b.

t=0

Theorem 3.2. If A is a causal, compact and continuous operator on LT, then,
there exists a certain T € (0,T), such that, for any sequence (&,) converging to 0,
there is a sequence of solutions (y,) of equation converging in the L7-sense
to a solution y of equation

y(t) = (Ay)(t), a.atel0,7].
The proof of the above theorem will be given in the last section. It is noteworthy

that the theorem has several interesting consequences, as the following one.

Corollary 3.3. Let k be a positive integer, W a continuous and causal operator
defined on the C*([0,T], X)-space and let a € (0,1). Then, there exists a certain
7 € (0,T] such that, for any sequence (e,) converging to 0, there is a sequence of
solutions (x,,) of the problem

5(D§+aac)(t) = —z® @)+ Wa)(t), aa tel0,7], (3.3)

tD0)=0, j=0,1,....k—1, (DEt*"lz)(1) 0 b,
t=
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converging, in the sup-norm || - |7, sense, to a solution of the problem
2 M (t) = (Wz)(1)
D0)=0, j=01,...,k—1.
Proof. Set y = z(®). Then, due to , we have

(D§y)() = (D§a)(6) and (D ~'9)(1)],_, = (DE*2)(0)| _ =

and, moreover,
t k—1
(t—s)
t) = ————vy(s)ds =: (Uy)(t).
o) = [ G vtedds = U)o
Thus problem (3.3 is transformed into problem (1.6]), where Au := WoU (u), with
A continuous, compact and, obviously, causal.

Take any sequence (&,) converging to 0. Then applying the results above, we ob-
tain the existence of a sequence of solutions y,, of (3.1)) satisfying (D§ ™y, )(t) ’t:O =
b and converging in the L]-sense to a solution of equation y = Ay. We set

Ty :=Uy, and z:=Uy.
Then, evidently, x,, satisfies the problem (3.3]) and
2 W(t) = y(t) = (Ay)(t) = W (Uy)(t) = Wa(t),
for a.a. t € [0,7] and 20)(0) =0, j = 0,1,...,k — 1. Finally, we observe that

I i S W SIS D Rl W
Tn —x||Z, = sup —————[yn(s) —y(s)]ds < —|yn —yll7-
teo,r] o (B—=1)! X T (k-1 !

The right-hand side tends to zero. The proof is complete. [

4. AUXILIARY LEMMAS

Before giving the proof of Theorem [3.2] we need some auxiliary facts concerning

the series
oo

ZM s> 0. (4.1)

2 e (ja)

Lemma 4.1. The series (4.1) converges absolutely and uniformly on compact sub-
sets of [0,400) to a function k(s;e), s> 0, which is continuous and positive.

Proof. Define the sets
Qr:={j€Z:a<ja<l}, Qr={j€Z:k<ja<k+1}, k=23,...

Obviously, for k > 2 the set @y has at most p := [é] + 1 elements. Absolutely, the
series can be written as

e ja—1 ja—1

; TGy - M kz:?)j;):k eT(ja)’

where

is an LT function, for any T > 0.
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Now, by using the fact that (s+1)* > 1 > € and the monotonicity of the function
I on the interval [2, +00), we obtain

s_|_1JOt1 e 1 (ﬂ)y

Z STGa) S A(s)+§} Zk STl T

Jj=1

00 ((sfﬁ-l))k—l
:A(s)+u(s+1)2ﬁ

O )

The right-hand side defines an L{ function, for any T' > 0. Obviously, this proves
the first part of the lemma.

It remains to show that the function k(-;¢) is positive. Indeed, by the previous
arguments, we can apply the Lebesgue Dominated Convergence Theorem and get,
for fixed 6 € [0,¢], that

jl _ e\ja—1
/ kseds—/kt—sads—/ (t=s) ds
EJI‘ya

e (D0 (1)”]"‘
_; IT(jo+1) jzlfff(ycwrl)

(4.2)
© e Jtie
_ Ea(i_(t - % _ Ea(%ta).
By using , relation gives
/ ]ejlrt]_as)m 1ds = /O+oo(e_(t_9)s — e )dF,(s) > 0.

From the propertles of E, which we mentioned in Subsection [2:2] it follows that
the quantity E, (= ~) is positive and less than 1 and it tends to zero monotonically
when t tends to +oo The latter implies that

lim E,(—z)=0, (4.3)

r——+00
namely,

7t05
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lim B (=) = 0. (4.5)

t——+oo e

Obviously, (4.4) implies that

¢
0< / k(s;e)ds < 1.
0

Finally, since the function

t%/otk(s;s)dlea(za), >0 (4.6)
is increasing, its derivative, namely the function k(t;¢), is positive. ([l
Lemma 4.2. The following propertiesﬁ hold:

lim t k(s;e)ds =1, (4.7

e—0 Jo

uniformly for t in intervals of the form [r,T), for all r € (0,T] and

t

lim [ k(s;e)ds=0, (4.8)
e—0 Js

or allt € (0,7 and 0 € (0,t). For each u € 1t holds
for all (0, 7] and 6§ € (0,t). F h LT it hold

t
gLIré | k(t — s;e)u(s)ds = u(t). (4.9)
Proof. Property is easily implied from and , while follows from
and the fact that f; k(s;e)ds = Eq(=2) — Eo(£).
Next, let u € LT and 7 > 0. Extend u from [0,T] to R by setting u(s) = 0, if
s ¢ [0,7] and a(s) = u(s), s € [0,T]. Then @ is an element of L;(R, X) and, so
it satisfies lims_q [|a(- — s) — a(-)|¥ =0, (see. e.g. [6, Thm 1.4.2 p. 298]). This
means that there is an sg > 0 such that

a(-—s) —a()|T <n 0<s<so.

Take any ¢ € (0, sg]. By (4.7)), there is some 5 > 0, such that for all £ € (0,&s] it
holds

t
’/ k(t—s;e)ds — 1) <m, t€[5,T).
0
Hence, we have
t
|| / Kt — s;2)u(t)ds — u(d)], < nllu@llx, € [6,T),

or

||/0 [k(s;e)u(s) — %u(t)]ds”x <nlu®)|x, telsT]. (4.10)

2These properties are enough to characterize the function k as an approximate identity of the
convolution, which resembles to the well known Dirac sequences in the convolutions theory.



10 G. L. KARAKOSTAS, I. K. PURNARAS EJDE-2016/01

Taking into account Lemma [4.1] (i.e. that k is positive), we observe that

/ I / [kt — ss2)uts)ds — 0] g

= [ [ st = ) - Jatas]

/||/ (s:c) t—s)dS—/Otk(s;s)ﬁ(t)ds]Hth

w0 (st - Ja)as] o (@11
/ || / K )[at — 5) — a(t))ds] e + 1 /STu(t)Hth

S/(S /0k(SEE)Hﬂ(t*S)fﬂ(t)Hdedt

T ot
+/ / k(s;e)|lu(t —s) —a(t)| x dsdt-i—ﬁ”quT.
§ §

We estimate the right-hand side of relation (4.11)). We have
T 5
/ / k(s: )|t — ) — a(t) | x ds dt
s Jo
5 T
:/ k(s;&:)/ lla(t — s) — a(t)|| x dt ds
0 s
s
< [ hlat —s) ) fds
s
§n/ k(s;e)ds.
0

T t
/ /k(s;e)Ha(t—s)—a(t)||dedt
) )
T T
:/ k(s; 6)/ la(t —s) —u(t)||x dtds
// (s e)([lat - 9)l|x + a(t)1x) dt ds
< 2flull? /5 K(s:)ds.

Hence, (4.6) becomes

T t 1
/5 ||/O [k(t = s32)uls) = u(t)]ds| e
g T
S77/0 k(s;e)ds+2llull?/6 k(s; €)ds +nlul{ .

Also
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Now, in view of (4.7) and (4.8) as e tends to 0, the right-hand side tends to n(1 +
lul|T). Since § is arbitrary and small, we obtain

T t
1
/0 || /0 [k(t — s;e)u(s) — Eu(t)]dsHth < (1 + [Jul/F).
The fact that 7 is arbitrary completes the proof of relation (4.9). ([

5. PROOF OF THEOREM

To simplify notation, we set
—b, t€(0,T]

and observe that ¢ is an element of LT for all T > 0. Also, consider the operator

(B = s

Then relation takes the form
y(t) = o(t) — (Ley)(t) + (L Ay)(t)

t
/ (t —s)* tu(s)ds, we L.
0

which, by iteration, for each n =1,2,..., gives
n—1 . . n ) ]
y(t) = > (1 (L)) + (1) (LEy) () + > (1) (LD Ay)(t).  (5.1)
§=0 j=1

Let u € LT. We observe that

1 t
1@ _ 7/ _ 2a-1 _
(L20(0) = pga [ ¢ =9 u(s)ds
By induction we obtain
() 1 ' a1
J = — Jo— | —
(L) (t) ejf(ja)/o(t s) u(s)ds, j=1,2,....

Then we have

L9 u||T = T||; t(t_s)jaflu(s)dsu dt
€ 1 0 il X

(Ja) Jo
T 1 t ) L
< | —— [ (t—s) dtd
< | Srga [ @ o)y ars
Tie
< em—— . -~ T.
< FTGas e
Since by definition
X rie T

ZO: ST(ja+1) Ea();

where E, is the Mittag-Leffler function, it follows that both series in (5.1]) converge,
yet
lim LYW = 0.
J
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So the right side of (5.1) converges to

o0

> (1LY )t Z DI HLY Au)(t) =: Su(t)

=0

and, therefore, we obtain

Su(t) = o(t) = Y (=171 (LY (Au— ) (t)dt

j=1

3 i—1 ! t — )L (Au(s) — ¢(s))ds
=31 Sto | P ) = o) .
N U PN

-/ > gy Aule) - o

where

The interchange of integration and summation is permitted because of Lemma
From (5.2) and the fact that k is positive, we obtain

T
ISu— |T = / 1Su(t) — o(0)]| xdt

T t
< / / Kt — 5:2) | Au(s) — 6(s)|1x dsdt

-/ ' / "kt — s:9)[ Au(s) — 6(s)]x dtd (53)
-/ = 2 (FEE) ) - ol
< [ Au— ¢l

We claim that, for any R > 0, there exists 7 € (0, T], such that in the space L7,
it holds

S(B(¢,R)) € B(, R).
By (5.3)), to show this fact, it is sufficient to prove that there is a 7 € (0,77, such
that in the space L7, it holds

A(B(¢,R)) € B(¢, R). (5.4)

Let B(¢, R) be the closed ball {u € LT : |lu— ¢||T < R}. Fix any ¢ € (0, &].
Since the set A(B(¢, R)) has compact closure, there is a finite (-dense subset of it,
say, Auy, Aus, ..., Au, € A(B(¢p, R)). Also, we can find 7 € (0,T] such that

| Au; — Il = / 1(Au))(t) — (D)llxdt < ¢, F=1,2....k.
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Take any u € B(¢, R). Then Au € A(B(¢, R)) and, thus, ||Au — Au;||] < ¢, for
some j. Hence,

[Au = @[T < [[Au — Aw|T + [|Auj — d[lT <20 < R.
Therefore ([5.4)) is true.

Because of the previous facts, the fixed point Theorem applies and we con-
clude that there is y. € B([0, 7], R), such that

oo

ye(t) = (Sy)(t) = > _(-1)/(LY¢ +Z /NI Ay (t), € [0,7],

7=0
or, by (5.2] ,
0= [ M= sie) Ay ()~ o(s)ds. 1€ 0.7

Next, we take any sequence ¢, tending to 0, and denote by y, the solution y., .
Hence we have

t
= [ kit sz (Ana(s) - o(s)ds, telor (59

0
By the relative compactness of the set A((B(¢, R)), we can assume that the se-

quence (Ayy,) converges to some y € L]. Then, for almost all ¢ € [0, 7], from (5.5)
we obtain

yn(t) —y(t) = /0 k(t — sien)(Ayn(s) — ¢(s))ds — (y(t) — ¢(1))

and, therefore, it follows that

o=l = [ ([ k=520 [Amns) = o0e)]ds) = ((t) = 6(0)

/ / ;20| Ayn(5) — y(s) | x ds dt

/ || / — s;en)(y(s) — ¢(s))ds — (y(t) — ¢(t))Hth

For the first integral on the right side we have

/ / (s;en || (Ayn)(t —s) —y(t — ||dedt

- / / K(s: en)|| (Ayn) (t — 8) — y(t — )||, dt s
< [ ke [ Au)E = 5) = ule =) de s
- / K(s:en) / 1(Aya)(€) — w(©)|]  déds

0 0

g/ k(s;en)ds||Ayn —yl|7,
0

which tends to 0. Also, the sequence

/ " / K(t — s60) (y(s) — 6(s))ds — (y(t) — 6(1))]|
0 0



14

G. L. KARAKOSTAS, I. K. PURNARAS EJDE-2016/01

tends to 0, because of (4.9). Hence, we have limy,, = y and, by the continuity of
A, it follows that y = lim Ay,, = Ay. The proof is complete.
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