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EXISTENCE OF MULTIPLE SOLUTIONS FOR QUASILINEAR
DIAGONAL ELLIPTIC SYSTEMS

MARCO SQUASSINA

ABSTRACT. Nonsmooth-critical-point theory is applied in proving multiplicity
results for the quasilinear symmetric elliptic system

n n N
1
- E Dj(ak; (z, u)Diuy) + 3 E E Dy, aly(z, u)Dyup Djup, = gi(z,u),
ij=1 4,j=1 h=1

fork=1,..,N.

1. INTRODUCTION

Many papers have been published on the study of multiplicity of solutions for
quasilinear elliptic equations via nonsmooth-critical-point theory; see e.g. [2, 3, 4, 7,
8,9, 10, 18, 20]. However, for the vectorial case only a few multiplicity results have
been proven: [20, Theorem 3.2] and recently [4, Theorem 3.2], where systems with
multiple identity coefficients are treated. In this paper, we consider the following
diagonal quasilinear elliptic system, in an open bounded set 2 C R™ with n > 3,

n

(]

n N
- Z D; (afj (z,u)Diui) + = Z D, afj (z, w)DyupDjup, =
i.j=1 ij=1h=1 (1)

for k = 1,.., N, where v : Q@ — RY and v = 0 on 0. To prove the existence of
weak solutions, we look for critical points of the functional f : Hi(Q,RY) — R,

n N
f(u) = %/ﬂ Z Za?j(mau)DiuhDjuh dx —/QG(m,u) dz . (2)

i,j=1 h=1
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This functional is not locally Lipschitz if the coefficients a’ ; depend on u; however,
as pointed out in [2, 7], it is possible to evaluate f,

/ Z Za” z,w)DyupD vy, dz +

1,7=1 h=1

/ZZDCL”QZU vDuhDuhda:—/DGxu -vdx

1,j=1 h=1

for all v € H(Q,RY) N L>(Q,RY). We shall apply the nonsmooth-critical-point
theory developed in [11, 13, 15, 16]. For notation and related results, the reader is
referred to [9]. To prove our main result and to provide some regularity of solutions,
we consider the following assumptions.
(A1) The matrix (af;(-,s)) is measurable in z for every s € RY, and of class C*
in s for a.e. x € Q with

h h

a/ij = aji .

Furthermore, we assume that there exist v > 0 and C' > 0 such that for a.e. x € (,
all s € RV and { € R™NY

Zzawwsihsh>vlél2| i(@s)| < C [Deali(@s)| <O (3)

i,j=1 h=1

and
n N
ZZ Djaly(z, )€} > 0. (4)
i,j=1h=1

(A2) There exists a bounded Lipschitz function ¢ : R — R, such that for a.e.
rze, forall ¢ e R™W, o€ {11} and r,s € RN

n N
50 3 (il 05 exp, () + ) D e, () ) €16 <0,

i,j=1 h=1

where (exp, (1, s)); := o;explo;(¢¥(r;) —1(s;))] for each i =1,.., N.

(5)

(G1) The function G(z,s) is measurable in z for all s € RY and of class C* in
s for a.e. z € Q, with G(x,0) = 0. Moreover for a.e. z €  we will denote with
g(x,-) the gradient of G with respect to s.

(G2) For every £ > 0 there exists a. € L*/("+2)(Q) such that
lg(x, 5)| < ac(x) +els| "2/ 2 (6)

for a.e. z € Q and all s € RV and that there exist ¢ > 2, R > 0 such that for all
s € RY and for a.e. z € Q

|s| > R =0 < ¢G(z,s) <s-g(z,s). (7)
(AG) There exists v € (0,q — 2) such that for all ¢ € R™V, s € RY and a.e. in

n

ZZS Da”xsfh ’yzza”fb‘sffh (8)

i,j=1h=1 i,j=1h=1
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Under these assumptions we will prove the following.
Theorem 1. Assume that for a.e. x € Q and for each s € RV
a?j(ac, —s) = afj (x,8), g(z,—s)=—g(x,s).
Then there exists a sequence (u™) C H}(Q,RYN) of weak solutions to (1) such that
lim f(u™) = +00.
m

The above result is well known for the semilinear scalar problem

— Z Dj(a;j(z)D;u) = g(z,u) in Q
i,j=1
u=0 on 0.

A. Ambrosetti and P. H. Rabinowitz in [1, 19] studied this problem using techniques
of classical critical point theory. The quasilinear scalar problem

n n
1 .
_ Z Dj(a;j(z,u)Du) + 3 Z Dga;j(z,u)D;uDju = g(z,u) in Q
i,j=1 1,5=1

u=0 on 09,

was studied in [7, 8, 9] and in [18] in a more general setting. In this case the

functional
/ Zaz]acuDuDudm—/Gacu

3,j=1

is continuous under appropriate conditions, but it is not locally Lipschitz. Con-
sequently, techniques of nonsmooth-critical-point theory have to be applied. In
the vectorial case, to my knowledge, problem (1) has only been considered in
[20, Theorem 3.2] and recently in [4, Theorem 3.2] for coefficients of the type
afjk(x,s) = 6" a;j(z,s). In [4] a new technical condition is introduced to be
compared with our (5). They assume that there exist K > 0 and an increas-
ing bounded Lipschitz function ¢ : [0,4+o00[— [0, +oo[, with ¥(0) = 0, ¥’ non-
increasing, ¥(t) — K as t — 400 and such that for all £ € R™, for a.e. z € Q and
for all r, s € RV

n

Z Z |Ds aij (2, 8)&&5| < 2™y Z (z,8)&&; - 9)

i,j=1k=1 j=1

The proof itself of [4, Lemma 6.1] shows that condition (9) implies our assumption
(A2). On the other hand, if N > 2, the two conditions look quite similar. However,
condition (AZ2) seems to be preferable, because when N = 1 it reduces to the
inequality

n

Z Dsaij(w, 8)&i&5| < 2¢/(s) D aij(x, )65,

3,j=1 3,j=1

which is not so restrictive in view of (3), while (9) is in this case much stronger.
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2. BOUNDEDNESS OF CONCRETE PALAIS-SMALE SEQUENCES

Definition 2. Let c € R. A sequence (u™) C H}(Q;RY) is said to be a concrete
Palais-Smale sequence at level ¢ ((CPS).—sequence, in short) for f, if f(u™) — ¢,

n N
Z Z D, afj (z,u™) D" Djuyt € H (4 RY)
i,j=1h=1

eventually as m — oo, and

=

n
converges to zero strongly in H~! (Q,RN). We say that f satisfies the concrete

Palais-Smale condition at level ¢ ((CPS). in short), if every (CPS).—sequence for
f admits a strongly convergent subsequence in Hg($; RY).

l\')l»—l

—ZD ”(mu )D;upt)

3,5=1

Z Sk zg um)Diu;anju;zn_gk(x7um)
1h=1

Next we state and prove a vectorial version of Brezis-Browder’s Theorem [6].

Lemma 3. Let T € LL (Q,RY)n H-YQ,RY), v € H}(Q,RY) and n € L}(Q)
withT-v>n. Then T -v € L*(Q) and

(T,v>:/QT-vda:

Proof. Let (v,) € C°(Q, RY) with vj, — v. Define ©,(v) € Hi NL>™ with compact
support in 2 by setting

On(v) = minf|v], [vn[}

o2 + 1
Since
min{[o], [oa]}——e > —~ € L}(),
and

dx,

<T,min{|v|,|vh|}ﬁ> el '”h'}\/m

a variant of Fatou’s Lemma implies [, T -vdx < (T,v), so that T -v € L*(Q).
Finally, since

T v

min o], on |} ———
Vil + 4

Lebesgue’s Theorem yields

< |T-”U|,

(T,v) = / T-vdex,
Q
and the proof is complete. [l
The first step for the (CPS). to hold is the boundedness of (C'PS). sequences.

Lemma 4. Assume (A1), (G1), (G2) and (AG). Then for all ¢ € R each
(CPS). sequence of f is bounded in Hg (2, RY).
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Proof. Let ag € L'(Q2) be such that for a.e. x € ) and all s € RY
qG(z,s) < s-g(x,s) + ap(z).

Now let (u™) be a (CPS). sequence for f and let w™ — 0 in H (0, RY) such
that for all v € C2°(Q,RY),

n N
(w™v) = /ZZa%(m,um)DiuﬁDjvhda:—i—
Q

i,j=1h=1

1 n N
+§/g > Y Diafy(z,u™) - vDyuf Djuy da — /Qg(m,um) v,

i,j=1 h=1

Taking into account the previous Lemma, for every m € N we obtain

—[[w™ -1 @z [u" | g2 (@ rY) <
N

n
E E afj (z,u™)D;up Djup’ de +
Qi=1h=1

1 n N
+§ / Z Z Dsafj(m,um) ~u™Dyup'Djupt de — / glz,u™) - umdx <
Q, Q

i,j=1 h=1

n N
/ Z Z a?j (z,u™)D;up Djupt dzx +
Q

i,j=1 h=1

IN

IN

1 n N
+5/Q 33" Doali (@, u™) - um Dyu Dyl de +
i,j=1h=1

—q/G(az,um)dm—f—/aoda:.
Q Q

Taking into account the expression of f and assumption (AG), we have that for
each m € N,

—lw™ -1 @rm e [ my@ry) <

n N
q
< (E0) [ 30D de DD +
1,j=1 h=1
1 n N
+—/ Z ZDSaZ(az,um) ~u Dyuy Dyuy de + g f (u™) +/ apdz <
2Jo T @
i,j=1h=
q ~ n N
B T

i,j=1h=1

+qf (™) —|—/ ap dx .

Q
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Because of (A1), for each m € N,

vig—2—y)|Du™|? < (¢g—2—7~ /ZZawxu )Dup'Djupt de

i,j=1 h=1

IN

2™ 1+ " iy a5y + 2aF (™) + 2 [ aode.
Q

Since (w™) converges to 0 in H~1(Q,RY), we conclude that (u™) is a bounded
sequence in H}(Q,RY). O

Lemma 5. If condition (6) holds, then the map

HYOQ,RY) — 2/ (42 RY)
u — g(z,u)

is completely continuous.

Proof. This is a direct consequence of [9, Theorem 2.2.7]. O

3. COMPACTNESS OF CONCRETE PALAIS-SMALE SEQUENCES

The next result is crucial for the (C'PS), condition to hold for our elliptic system.

Lemma 6. Assume (A1) and (A2), let (u™) be a bounded sequence in Hg (2, RY),
and set

n N
(w™, /ZZ "™ D;uy Djvp, dx +
i/zz f ) - vD;up' Djuy de

for all v € C°(Q,RN). If (w™) is strongly convergent to some w in H~1(Q,RY),
then (u™) admits a strongly convergent subsequence in Hg (9, RY).

Proof. Since (u™) is bounded, we have u™ — u for some u up to a subsequence.
Each component u}* satisfies (2.5) in [5], so we may suppose that D;u}* — Djuy
a.e. in Q forall k =1,..., N (see also [12]). We first prove that

/ Z Za” (z,u)DiupDjup dx +

i,j=1 h=1

/ZZDawxu -uD;upDjup dr = (w,u). (10)

1,j=1 h=1

Let ¢ be as in assumption (A2) and consider the following test functions

o™ = (o1 explor (P(ur) = P(ui))], .. s on explon (Pun) = P(u))]),
where ¢ € C2°(Q), ¢ > 0 and o; = %1 for all I. Therefore, since we have

Djvi* = (oxDjp + (¢ (ug) Djuy, — ' (up') Dyup)p) explo (¢ (ur) — (up’))],
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we deduce that for all m € N,

N
/ S S a (™) Dy (o Do+ (un) Dyunp) explorn ((aun) ()] s+
i,j=1 h=1
# 20 32 G Dl eplontvlu) = VNP Dy +

"™ D;up Djupt ' (upt) explon (v (un) — Y (up'))]e de =

||t¢13 7itvjz

N
2
1h,l=1
N
22

= (w™,v™).

Let us study the behavior of each term of the previous equality as m — co. First

of all, if v = (019, ...,0Ny), we have that v™ — v implies

lim(w™, v™) = (w, v). (11)
m
Since u™ — u, by Lebesgue’s Theorem we obtain
n N
tim [ 373 aly(o,u™) D (D (one)+
2 i=1h=1
up'))] de = (12)

+v" (un) Djup) explon (¢ (un) — (

n N
/QZ Z aj (z, u) Dyun(Djvn + @' (un) Djup) da .

Finally, note that by assumption (A2) we have

<x umw’(uz*)exp[ah(wuh)—wwz*))])Diu?Dju? < 0.

sy (@, u™) explor (v (ur) — P(u™))]+

||Mz
[\3|Q

Hence, we can apply Fatou’s Lemma to obtain

timsup {5 [ S 5 Dol o) explon(b(aa) — Do Dy (o) dit

i,j=1h,l=1

/ Z Za” z,u™)Dyup Djup ' (up') explon (¢ (un) — w(uzn))]npdm} <

1,j=1 h=1

n N
1
< 5/9 Z Z Dslafj(x,u)DiuhDjuh(algo) dr +
i,j=1

h,i=1

1—
n N
—/ Z Zafj(x,u)DiuhDjuhw’(uh)godfc,
Q.=
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which, together with (11) and (12), yields

n N
/ Z Z a?j (z,u)DsupDjvp, dx +
Q

ij=1h=1
1 n N
+ 3 /Q ijz::l };Dsa?j(ac,u) -vDyupDjup dx > (w,v)

for all test functions v = (o1¢,...,0np) with p € C(Q,RY), ¢ > 0. Since we
may exchange v with —v we get

n N
Z Z a?j (z,u)DiupDjvp, dz +
Qi1 h=1
1 n N
+ 5/ > > Dealy(w,u) - vDjup Djuy, da = (w,v)
Qi j=1h=1
for all test functions v = (019, ...,0Np), and since every function v € C° (2, RN)

can be written as a linear combination of such functions, taking into account Lemma
3, we infer (10). Now, let us prove that

n N n N
limsup/ Z Za?j(x,um)Diuanju?f dz < / Z Z afj(a:,u)DiuhDjuh dz.
™o Sy =1 h=1 Q=1 h=1 (13)

Because of (4), Fatou’s Lemma implies that

n N
/Q Z Z u - Dsa?j(x,u)DiuhDjuh de <

i,j=1h=1
n N
< liminf Z Z u™ - Dsa?j(x, u™)D;up' Djupt de .
mn Qi=1h=1
Combining this fact with (10), we deduce that
n N
lirnysup/Q Z Z a?j (z,u™)D;up' Djupt de =

i,j=1 h=1

' 1 n N
= hmﬂfup [— 5/9 Z Zum . Dsa?j(ac,um)Diu;l”Dju}? dz 4 (W™, u™)| <

i,j=1 h=1

n N
1
S e Dl D Dy o) =
Q.
i,7=1h=1

IN

n N
= / Z Zafj(x,u)DiuhDjuh dz,
Q

i,j=1h=1
so that (13) is proved. Finally, by (3) we have
v|[Du™ — Dul)3 <

n N
< / E E a?j(x,um) (Diup'Djuy — 2D;uy' Djup, + DiupDjuy,) de.
Q.=
1,j=1 h=1



EJDE-1999/14 QUASILINEAR DIAGONAL ELLIPTIC SYSTEMS 9

Hence, by (13) we obtain
limsup ||Du™ — Dulls <0
m

which proves that u™ — u in H (Q,RY). O
We now come to one of the main tools of this paper, the (CPS). condition for

system (1).

Theorem 7. Assume (A1), (A2), (G1), (G2), (AG). Then f satisfies (CPS),

condition for each c € R.

Proof. Let (u™) be a (CPS), sequence for f. Since (u™) is bounded in H{ (€2, RY),
from Lemma 5 we deduce that, up to a subsequence, (g(x,u™)) is strongly conver-
gent in H~1(,RY). Applying Lemma 6, we conclude the present proof. O

4. EXISTENCE OF MULTIPLE SOLUTIONS FOR ELLIPTIC SYSTEMS

We now prove the main result, which is an extension of theorems of [7, 9] and a
generalization of [4, Theorem 3.2] to systems in diagonal form.

Proof of Theorem 1. We want to apply [9, Theorem 2.1.6]. First of all, because of
Theorem 7, f satisfies (CPS), for all ¢ € R. Whence, (c) of [9, Theorem 2.1.6] is
satisfied. Moreover we have

K/ | Dul? da:—/ G(z,u)dx
2 Ja 0

IA

f

IN

(w) <
1nNC/ | Dul? da:—/ G(z,u)dx.
2 0 Q

We want to prove that assumptions (a) and (b) of [9, Theorem 2.1.6] are also
satisfied. Let us observe that, instead of (b) of [9, Theorem 2.1.6], it is enough
to find a sequence (W,,) of finite dimensional subspaces with dim(W,) — +oo
satisfying the inequality of (b) (see also [17, Theorem 1.2]). Let W be a finite
dimensional subspace of Hg(Q;RY) N L>® (2, RY). From (7) we deduce that for all
s € RN with |s| > R

z, R

ekl

aa@zgiﬁr)wvzmumm

where
bo(z) = R™9inf{G(x,s) : |[s| =R} >0
a.e. © € (. Therefore there exists ag € L(£2) such that
Gz, ) 2 bo(@)lsl" — ao() (1)

a.e. ¢ €  and for all s € RY. Since by € L'(f2), we may define a norm || - ||¢ on

W by
1/q
lullg = </ bo|u|? dm) .
Q

Since W is finite dimensional and ¢ > 2, from (14) it follows

lim  f(u) = —o0
lullg—+oo
ueW
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and condition (b) of [9, Theorem 2.1.6] is clearly fulfilled too for a sufficiently large
R > 0. Let now (An,up) be the sequence of eigenvalues and eigenvectors for the
problem

Au=—Xu in )
u=0 ondN.
Let us prove that there exist hg, a« > 0 such that
VYu e VT :||Duls =1 = f(u) >

where V't = span {us € HJ(Q,RY): h > ho}. In fact, given u € V' and ¢ > 0,
we find ,
aV e 02(Q), al? € L2 (Q),

such that ||a§2)||% < e and

9(@,9)| < oV (@) + ) (@) + |73,
If u € VT, it follows that

Z\pul3- [ Ga,u)d
fw) = FIDul- [ G

-2
> WmM—/<@9+ﬁOM+”
Q

elu
n

2n
n—2 ) dm

> _||DU||2 —llazllull2 = erl|al | 22, | Dull2 - ccal| Dull;

> §||DU||2 — Jla®lzllull2 — exell Dulls — e[ Dull3

Then if hg is sufficiently large, from the fact that (\) diverges, for all u € V',

|| Du|l2 = 1 implies
ol laffullz < % -

Hence, for € > 0 small enough, |Du||2 = 1 implies that f(u) > v/6.

Finally, set V'~ = span {uh € HYQ,RN):h < ho} , we have the decomposition

H(QRY =VvTaoV™.

Therefore, since the hypotheses for [9, Theorem 2.1.6] are fulfilled, we can find a
sequence (u™) of weak solution of system (1) such that

lim f(u™) = 400,
m
and the theorem is now proven.
5. REGULARITY OF WEAK SOLUTIONS FOR ELLIPTIC SYSTEMS
Assume conditions (Al) and (G1), and consider the nonlinear elliptic system

/ Z Z F(z,u)DyupD; vkda:—/b(a:,u,Du)-vdx (15)

i,j=1 h,k=1 Q
for all v € H}(Q;RY). For [ = 1,.., N, we choose

bi(z,u, Du) Z Z D,,a" ” (x, w)DiupDjur + gi(z, w)
i,j=1h,k=1
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Assume that there exist ¢ > 0 and g < Z—J_rg such that for all s € RV and a.e. in Q
lg(z, s)| < c(1+]s]7). (16)

Then it follows that for every M > 0, there exists C(M) > 0 such that for a.e.
z € Q, for all £ € R™N and s € RY with |s| < M

[b(z, 5, €)| < e(M) (1+ ) - (17)

A nontrivial regularity theory for quasilinear systems (see, [14, Chapter VI]) yields
the following :

Theorem 8. For every weak solution u € H'(Q,RY) N L>*(Q,RYN) of the system
(1) there exist an open subset Qo C Q and s > 0 such that

Vp € (n, +00) : u € CO'7F (Qg; RY),
HP 5 (Q\Qp) =0.
Proof. For the proof, see [14, Chapter VI]. O
hk

We now consider the particular case when a;*(z, s) = a;(z, 5)6"F  and provide
an almost everywhere regularity result.

Lemma 9. Assume condition (17). Then the weak solutions u € Hg (Q,RY) of the
system

n N
/ Z Z a;j(z, w)D;upD vy dz +
Q

i,j=1 h=1

n N
1
+ 5/ Z ZDsaij(a:,u).vDiuhDjuh dr = / g(z,u) -vder (18)
2, Q

i,j=1h=1
for all v € CX(Q,RYN), belong to L>(,RY).
Proof. By [20, Lemma 3.3], for each (CPS).. sequence (u™) there exist u € H} NL>®

and a subsequence (u™*) with u™* — wu. Then, given a weak solution u, consider
the sequence (u™) such that each element is equal to u and the assertion follows. O

We can finally state a partial regularity result for our system.

Theorem 10. Assume condition (17) and let u € HE(Q,RY) be a weak solution
of the system

N

/ EH: Z aij(x, u)DjupDjvp dz +

Q=1 h=1
1 n N
3 [ 303 Do) oD Dyunde = [ glaw) vz (19)
Qg Q
1,j=1h=1

for all v € C(Q,RY). Then there exist an open subset Qg C Q and s > 0 such
that

Vp € (n,400) : u € C¥1 7% (Qo; RY),
HP 5 (Q\ Q) = 0.

Proof. 1t suffices to combine the previous Lemma with Theorem 8. O
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