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EXISTENCE OF MULTIPLE SOLUTIONS FOR QUASILINEAR

DIAGONAL ELLIPTIC SYSTEMS

MARCO SQUASSINA

Abstract. Nonsmooth-critical-point theory is applied in proving multiplicity
results for the quasilinear symmetric elliptic system

−

n∑
i,j=1

Dj(a
k
ij(x, u)Diuk) +

1

2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u)DiuhDjuh = gk(x, u) ,

for k = 1, ..,N .

1. Introduction

Many papers have been published on the study of multiplicity of solutions for
quasilinear elliptic equations via nonsmooth-critical-point theory; see e.g. [2, 3, 4, 7,
8, 9, 10, 18, 20]. However, for the vectorial case only a few multiplicity results have
been proven: [20, Theorem 3.2] and recently [4, Theorem 3.2], where systems with
multiple identity coefficients are treated. In this paper, we consider the following
diagonal quasilinear elliptic system, in an open bounded set Ω ⊂ Rn with n ≥ 3,

−
n∑
i,j=1

Dj(a
k
ij(x, u)Diuk) +

1

2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u)DiuhDjuh =

= DskG(x, u) in Ω ,

(1)

for k = 1, .., N , where u : Ω → RN and u = 0 on ∂Ω. To prove the existence of
weak solutions, we look for critical points of the functional f : H10 (Ω,R

N )→ R,

f(u) =
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx −

∫
Ω

G(x, u) dx . (2)
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This functional is not locally Lipschitz if the coefficients ahij depend on u; however,

as pointed out in [2, 7], it is possible to evaluate f ′,

f ′(u)(v) =

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjvh dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u) · vDiuhDjuh dx−

∫
Ω

DsG(x, u) · v dx

for all v ∈ H10 (Ω,R
N ) ∩ L∞(Ω,RN ). We shall apply the nonsmooth-critical-point

theory developed in [11, 13, 15, 16]. For notation and related results, the reader is
referred to [9]. To prove our main result and to provide some regularity of solutions,
we consider the following assumptions.

(A1) The matrix
(
ahij(·, s)

)
is measurable in x for every s ∈ RN , and of class C1

in s for a.e. x ∈ Ω with
ahij = a

h
ji .

Furthermore, we assume that there exist ν > 0 and C > 0 such that for a.e. x ∈ Ω,
all s ∈ RN and ξ ∈ RnN

n∑
i,j=1

N∑
h=1

ahij(x, s)ξ
h
i ξ
h
j ≥ ν|ξ|

2,
∣∣ahij(x, s)∣∣ ≤ C, ∣∣Dsahij(x, s)∣∣ ≤ C (3)

and
n∑

i,j=1

N∑
h=1

s ·Dsa
h
ij(x, s)ξ

h
i ξ
h
j ≥ 0. (4)

(A2) There exists a bounded Lipschitz function ψ : R → R, such that for a.e.
x ∈ Ω, for all ξ ∈ RnN , σ ∈ {−1, 1}N and r, s ∈ RN

n∑
i,j=1

N∑
h=1

(
1

2
Dsa

h
ij(x, s) · expσ(r, s) + a

h
ij(x, s)Dsh(expσ(r, s))h

)
ξhi ξ

h
j ≤ 0,

(5)

where (expσ(r, s))i := σi exp[σi(ψ(ri)− ψ(si))] for each i = 1, .., N .

(G1) The function G(x, s) is measurable in x for all s ∈ RN and of class C1 in
s for a.e. x ∈ Ω, with G(x, 0) = 0. Moreover for a.e. x ∈ Ω we will denote with
g(x, ·) the gradient of G with respect to s.

(G2) For every ε > 0 there exists aε ∈ L2n/(n+2)(Ω) such that

|g(x, s)| ≤ aε(x) + ε|s|
(n+2)/(n−2) (6)

for a.e. x ∈ Ω and all s ∈ RN and that there exist q > 2, R > 0 such that for all
s ∈ RN and for a.e. x ∈ Ω

|s| ≥ R =⇒ 0 < qG(x, s) ≤ s · g(x, s). (7)

(AG) There exists γ ∈ (0, q − 2) such that for all ξ ∈ RnN , s ∈ RN and a.e. in Ω

n∑
i,j=1

N∑
h=1

s ·Dsa
h
ij(x, s)ξ

h
i ξ
h
j ≤ γ

n∑
i,j=1

N∑
h=1

ahij(x, s)ξ
h
i ξ
h
j . (8)
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Under these assumptions we will prove the following.

Theorem 1. Assume that for a.e. x ∈ Ω and for each s ∈ RN

ahij(x,−s) = a
h
ij(x, s), g(x,−s) = −g(x, s) .

Then there exists a sequence (um) ⊆ H10 (Ω,R
N ) of weak solutions to (1) such that

lim
m
f(um) = +∞ .

The above result is well known for the semilinear scalar problem

−
n∑
i,j=1

Dj(aij(x)Diu) = g(x, u) in Ω

u = 0 on ∂Ω .

A. Ambrosetti and P. H. Rabinowitz in [1, 19] studied this problem using techniques
of classical critical point theory. The quasilinear scalar problem

−
n∑
i,j=1

Dj(aij(x, u)Diu) +
1

2

n∑
i,j=1

Dsaij(x, u)DiuDju = g(x, u) in Ω

u = 0 on ∂Ω ,

was studied in [7, 8, 9] and in [18] in a more general setting. In this case the
functional

f(u) =
1

2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−

∫
Ω

G(x, u) dx

is continuous under appropriate conditions, but it is not locally Lipschitz. Con-
sequently, techniques of nonsmooth-critical-point theory have to be applied. In
the vectorial case, to my knowledge, problem (1) has only been considered in
[20, Theorem 3.2] and recently in [4, Theorem 3.2] for coefficients of the type
ahkij (x, s) = δhkαij(x, s). In [4] a new technical condition is introduced to be
compared with our (5). They assume that there exist K > 0 and an increas-
ing bounded Lipschitz function ψ : [0,+∞[→ [0,+∞[, with ψ(0) = 0, ψ′ non-
increasing, ψ(t)→ K as t → +∞ and such that for all ξ ∈ Rn, for a.e. x ∈ Ω and
for all r, s ∈ RN

n∑
i,j=1

N∑
k=1

|Dskaij(x, s)ξiξj | ≤ 2e
−4Kψ′(|s|)

n∑
i,j=1

aij(x, s)ξiξj . (9)

The proof itself of [4, Lemma 6.1] shows that condition (9) implies our assumption
(A2). On the other hand, if N ≥ 2, the two conditions look quite similar. However,
condition (A2) seems to be preferable, because when N = 1 it reduces to the
inequality ∣∣∣∣∣∣

n∑
i,j=1

Dsaij(x, s)ξiξj

∣∣∣∣∣∣ ≤ 2ψ′(s)
n∑

i,j=1

aij(x, s)ξiξj ,

which is not so restrictive in view of (3), while (9) is in this case much stronger.
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2. Boundedness of concrete Palais-Smale sequences

Definition 2. Let c ∈ R. A sequence (um) ⊆ H10 (Ω;R
N ) is said to be a concrete

Palais-Smale sequence at level c ((CPS)c−sequence, in short) for f , if f(um)→ c,

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u

m)Diu
m
h Dju

m
h ∈ H

−1(Ω;RN )

eventually as m→∞, and

−
n∑
i,j=1

Dj(a
k
ij(x, u

m)Diu
m
k ) +

1

2

n∑
i,j=1

N∑
h=1

Dska
h
ij(x, u

m)Diu
m
h Dju

m
h − gk(x, u

m)

converges to zero strongly in H−1(Ω;RN ). We say that f satisfies the concrete
Palais-Smale condition at level c ((CPS)c in short), if every (CPS)c−sequence for
f admits a strongly convergent subsequence in H10 (Ω;R

N ).

Next we state and prove a vectorial version of Brezis-Browder’s Theorem [6].

Lemma 3. Let T ∈ L1loc(Ω,R
N ) ∩ H−1(Ω,RN ), v ∈ H10 (Ω,R

N ) and η ∈ L1(Ω)
with T · v ≥ η. Then T · v ∈ L1(Ω) and

〈T, v〉 =

∫
Ω

T · v dx

Proof. Let (vh) ⊆ C∞c (Ω,R
N ) with vh → v. Define Θh(v) ∈ H10 ∩L

∞ with compact
support in Ω by setting

Θh(v) = min{|v|, |vh|}
v√
|v|2 + 1

h

.

Since

min{|v|, |vh|}
T · v√
|v|2 + 1

h

≥ −η− ∈ L1(Ω),

and 〈
T,min{|v|, |vh|}

v√
|v|2 + 1

h

〉
=

∫
Ω

min{|v|, |vh|}
T · v√
|v|2 + 1

h

dx,

a variant of Fatou’s Lemma implies
∫
Ω T · v dx ≤ 〈T, v〉, so that T · v ∈ L1(Ω).

Finally, since ∣∣∣∣∣∣min{|v|, |vh|}
T · v√
|v|2 + 1

h

∣∣∣∣∣∣ ≤ |T · v|,
Lebesgue’s Theorem yields

〈T, v〉 =

∫
Ω

T · v dx,

and the proof is complete.

The first step for the (CPS)c to hold is the boundedness of (CPS)c sequences.

Lemma 4. Assume (A1), (G1), (G2) and (AG). Then for all c ∈ R each
(CPS)c sequence of f is bounded in H

1
0 (Ω,R

N ).
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Proof. Let a0 ∈ L1(Ω) be such that for a.e. x ∈ Ω and all s ∈ RN

qG(x, s) ≤ s · g(x, s) + a0(x).

Now let (um) be a (CPS)c sequence for f and let w
m → 0 in H−1(Ω,RN ) such

that for all v ∈ C∞c (Ω,R
N ),

〈wm, v〉 =

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Djvh dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u

m) · vDiu
m
h Dju

m
h dx−

∫
Ω

g(x, um) · v .

Taking into account the previous Lemma, for every m ∈ N we obtain

−‖wm‖H−1(Ω,RN )‖u
m‖H10 (Ω,RN ) ≤

≤

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u

m) · umDiu
m
h Dju

m
h dx −

∫
Ω

g(x, um) · um dx ≤

≤

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u

m) · umDiu
m
h Dju

m
h dx +

−q

∫
Ω

G(x, um) dx+

∫
Ω

a0 dx .

Taking into account the expression of f and assumption (AG), we have that for
each m ∈ N,

−‖wm‖H−1(Ω,RN )‖u
m‖H10(Ω,RN ) ≤

≤ −
(q
2
− 1
)∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u

m) · umDiu
m
h Dju

m
h dx+ qf(u

m) +

∫
Ω

a0 dx ≤

≤ −
(q
2
− 1−

γ

2

)∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx+

+qf(um) +

∫
Ω

a0 dx .
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Because of (A1), for each m ∈ N,

ν(q − 2− γ)‖Dum‖22 ≤ (q − 2− γ)

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx

≤ 2‖wm‖H−1(Ω,RN )‖u
m‖H10 (Ω,RN ) + 2qf(u

m) + 2

∫
Ω

a0 dx .

Since (wm) converges to 0 in H−1(Ω,RN ), we conclude that (um) is a bounded
sequence in H10 (Ω,R

N ).

Lemma 5. If condition (6) holds, then the map

H10 (Ω,R
N ) −→ L2n/(n+2)(Ω,RN )

u 7−→ g(x, u)

is completely continuous.

Proof. This is a direct consequence of [9, Theorem 2.2.7].

3. Compactness of concrete Palais-Smale sequences

The next result is crucial for the (CPS)c condition to hold for our elliptic system.

Lemma 6. Assume (A1) and (A2), let (um) be a bounded sequence in H10 (Ω,R
N ),

and set

〈wm, v〉 =

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Djvh dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u

m) · vDiu
m
h Dju

m
h dx

for all v ∈ C∞c (Ω,R
N ). If (wm) is strongly convergent to some w in H−1(Ω,RN ),

then (um) admits a strongly convergent subsequence in H10 (Ω,R
N ).

Proof. Since (um) is bounded, we have um ⇀ u for some u up to a subsequence.
Each component umk satisfies (2.5) in [5], so we may suppose that Diu

m
k → Diuk

a.e. in Ω for all k = 1, . . . , N (see also [12]). We first prove that

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx +

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u) · uDiuhDjuh dx = 〈w, u〉. (10)

Let ψ be as in assumption (A2) and consider the following test functions

vm = ϕ(σ1 exp[σ1(ψ(u1)− ψ(u
m
1 ))], . . . , σN exp[σN (ψ(uN )− ψ(u

m
N ))]),

where ϕ ∈ C∞c (Ω), ϕ ≥ 0 and σl = ±1 for all l. Therefore, since we have

Djv
m
k = (σkDjϕ+ (ψ

′(uk)Djuk − ψ
′(umk )Dju

m
k )ϕ) exp[σk(ψ(uk)− ψ(u

m
k ))],
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we deduce that for all m ∈ N,

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h (σhDjϕ+ψ

′(uh)Djuhϕ) exp[σh(ψ(uh)−ψ(u
m
h ))] dx+

+

∫
Ω

n∑
i,j=1

N∑
h,l=1

σl

2
Dsla

h
ij(x, u

m) exp[σl(ψ(ul)− ψ(u
m
l ))]Diu

m
h Dju

m
h ϕdx+

−

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h ψ

′(umh ) exp[σh(ψ(uh)− ψ(u
m
h ))]ϕdx =

= 〈wm, vm〉 .

Let us study the behavior of each term of the previous equality asm→∞. First
of all, if v = (σ1ϕ, . . . , σNϕ), we have that v

m ⇀ v implies

lim
m
〈wm, vm〉 = 〈w, v〉. (11)

Since um ⇀ u, by Lebesgue’s Theorem we obtain

lim
m

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h (Dj(σhϕ)+

+ϕψ′(uh)Djuh) exp[σh(ψ(uh)− ψ(u
m
h ))] dx = (12)

=

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)Diuh(Djvh + ϕψ
′(uh)Djuh) dx .

Finally, note that by assumption (A2) we have

n∑
i,j=1

N∑
h=1

( N∑
l=1

σl

2
Dsla

h
ij(x, u

m) exp[σl(ψ(ul)− ψ(u
m
l ))]+

−ahij(x, u
m)ψ′(umh ) exp[σh(ψ(uh)− ψ(u

m
h ))]
)
Diu

m
h Dju

m
h ≤ 0 .

Hence, we can apply Fatou’s Lemma to obtain

lim sup
m

{1
2

∫
Ω

n∑
i,j=1

N∑
h,l=1

Dsla
h
ij(x, u

m) exp[σl(ψ(ul)− ψ(u
m
l ))]Diu

m
h Dju

m
h (σlϕ) dx+

−

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h ψ

′(umh ) exp[σh(ψ(uh)− ψ(u
m
h ))]ϕdx

}
≤

≤
1

2

∫
Ω

n∑
i,j=1

N∑
h,l=1

Dsla
h
ij(x, u)DiuhDjuh(σlϕ) dx+

−

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuhψ
′(uh)ϕdx ,
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which, together with (11) and (12), yields∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjvh dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u) · vDiuhDjuh dx ≥ 〈w, v〉

for all test functions v = (σ1ϕ, . . . , σNϕ) with ϕ ∈ C∞c (Ω,R
N ), ϕ ≥ 0. Since we

may exchange v with −v we get∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjvh dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsa
h
ij(x, u) · vDiuhDjuh dx = 〈w, v〉

for all test functions v = (σ1ϕ, . . . , σNϕ), and since every function v ∈ C∞c (Ω,R
N )

can be written as a linear combination of such functions, taking into account Lemma
3, we infer (10). Now, let us prove that

lim sup
m

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx ≤

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx.
(13)

Because of (4), Fatou’s Lemma implies that∫
Ω

n∑
i,j=1

N∑
h=1

u ·Dsa
h
ij(x, u)DiuhDjuh dx ≤

≤ lim inf
m

∫
Ω

n∑
i,j=1

N∑
h=1

um ·Dsa
h
ij(x, u

m)Diu
m
h Dju

m
h dx .

Combining this fact with (10), we deduce that

lim sup
m

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m)Diu

m
h Dju

m
h dx =

= lim sup
m

[
−
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

um ·Dsa
h
ij(x, u

m)Diu
m
h Dju

m
h dx+ 〈w

m, um〉
]
≤

≤ −
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

u ·Dsa
h
ij(x, u)DiuhDjuh dx+ 〈w, u〉 =

=

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u)DiuhDjuh dx ,

so that (13) is proved. Finally, by (3) we have

ν‖Dum −Du‖22 ≤

≤

∫
Ω

n∑
i,j=1

N∑
h=1

ahij(x, u
m) (Diu

m
h Dju

m
h − 2Diu

m
h Djuh +DiuhDjuh) dx.
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Hence, by (13) we obtain

lim sup
m

‖Dum −Du‖2 ≤ 0

which proves that um → u in H10 (Ω,R
N ).

We now come to one of the main tools of this paper, the (CPS)c condition for
system (1).

Theorem 7. Assume (A1), (A2), (G1), (G2), (AG). Then f satisfies (CPS)c
condition for each c ∈ R.

Proof. Let (um) be a (CPS)c sequence for f . Since (u
m) is bounded in H10 (Ω,R

N ),
from Lemma 5 we deduce that, up to a subsequence, (g(x, um)) is strongly conver-
gent in H−1(Ω,RN ). Applying Lemma 6, we conclude the present proof.

4. Existence of multiple solutions for elliptic systems

We now prove the main result, which is an extension of theorems of [7, 9] and a
generalization of [4, Theorem 3.2] to systems in diagonal form.

Proof of Theorem 1. We want to apply [9, Theorem 2.1.6]. First of all, because of
Theorem 7, f satisfies (CPS)c for all c ∈ R. Whence, (c) of [9, Theorem 2.1.6] is
satisfied. Moreover we have

ν

2

∫
Ω

|Du|2 dx−

∫
Ω

G(x, u) dx ≤ f(u) ≤

≤
1

2
nNC

∫
Ω

|Du|2 dx−

∫
Ω

G(x, u) dx.

We want to prove that assumptions (a) and (b) of [9, Theorem 2.1.6] are also
satisfied. Let us observe that, instead of (b) of [9, Theorem 2.1.6], it is enough
to find a sequence (Wn) of finite dimensional subspaces with dim(Wn) → +∞
satisfying the inequality of (b) (see also [17, Theorem 1.2]). Let W be a finite
dimensional subspace of H10 (Ω;R

N )∩L∞(Ω,RN ). From (7) we deduce that for all
s ∈ RN with |s| ≥ R

G(x, s) ≥
G
(
x,R s

|s|

)
Rq

|s|q ≥ b0(x)|s|
q,

where

b0(x) = R
−q inf{G(x, s) : |s| = R} > 0

a.e. x ∈ Ω. Therefore there exists a0 ∈ L1(Ω) such that

G(x, s) ≥ b0(x)|s|
q − a0(x) (14)

a.e. x ∈ Ω and for all s ∈ RN . Since b0 ∈ L1(Ω), we may define a norm ‖ · ‖G on
W by

‖u‖G =

(∫
Ω

b0|u|
q dx

)1/q
.

Since W is finite dimensional and q > 2, from (14) it follows

lim
‖u‖G→+∞
u∈W

f(u) = −∞
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and condition (b) of [9, Theorem 2.1.6] is clearly fulfilled too for a sufficiently large
R > 0. Let now (λh, uh) be the sequence of eigenvalues and eigenvectors for the
problem

∆u = −λu in Ω

u = 0 on ∂Ω .

Let us prove that there exist h0, α > 0 such that

∀u ∈ V + : ‖Du‖2 = 1 =⇒ f(u) ≥ α,

where V + = span
{
uh ∈ H10 (Ω,R

N ) : h ≥ h0
}
. In fact, given u ∈ V + and ε > 0,

we find
a(1)ε ∈ C

∞
c (Ω), a

(2)
ε ∈ L

2n
n+2 (Ω),

such that ‖a(2)ε ‖ 2n
n+2
≤ ε and

|g(x, s)| ≤ a(1)ε (x) + a
(2)
ε (x) + ε|s|

n+2
n−2 .

If u ∈ V +, it follows that

f(u) ≥
ν

2
‖Du‖22 −

∫
Ω

G(x, u) dx

≥
ν

2
‖Du‖22 −

∫
Ω

((
a(1)ε + a

(2)
ε

)
|u|+

n− 2

2n
ε|u|

2n
n−2

)
dx

≥
ν

2
‖Du‖22 − ‖a

(1)
ε ‖2‖u‖2 − c1‖a

(2)
ε ‖ 2n

n+2
‖Du‖2 − εc2‖Du‖

2n
n−2

2

≥
ν

2
‖Du‖22 − ‖a

(1)
ε ‖2‖u‖2 − c1ε‖Du‖2 − εc2‖Du‖

2n
n−2

2 .

Then if h0 is sufficiently large, from the fact that (λh) diverges, for all u ∈ V +,
‖Du‖2 = 1 implies

‖a(1)ε ‖2‖u‖2 ≤
ν

6
.

Hence, for ε > 0 small enough, ‖Du‖2 = 1 implies that f(u) ≥ ν/6.

Finally, set V − = span
{
uh ∈ H10 (Ω,R

N ) : h < h0
}
, we have the decomposition

H10 (Ω;R
N ) = V + ⊕ V −.

Therefore, since the hypotheses for [9, Theorem 2.1.6] are fulfilled, we can find a
sequence (um) of weak solution of system (1) such that

lim
m
f(um) = +∞,

and the theorem is now proven.

5. Regularity of weak solutions for elliptic systems

Assume conditions (A1) and (G1), and consider the nonlinear elliptic system∫
Ω

n∑
i,j=1

N∑
h,k=1

ahkij (x, u)DiuhDjvk dx =

∫
Ω

b(x, u,Du) · v dx (15)

for all v ∈ H10 (Ω;R
N ). For l = 1, .., N , we choose

bl(x, u,Du) =


−

n∑
i,j=1

N∑
h,k=1

Dsla
hk
ij (x, u)DiuhDjuk + gl(x, u)


 .
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Assume that there exist c > 0 and q < n+2
n−2 such that for all s ∈ R

N and a.e. in Ω

|g(x, s)| ≤ c (1 + |s|q) . (16)

Then it follows that for every M > 0, there exists C(M) > 0 such that for a.e.
x ∈ Ω, for all ξ ∈ RnN and s ∈ RN with |s| ≤M

|b(x, s, ξ)| ≤ c(M)
(
1 + |ξ|2

)
. (17)

A nontrivial regularity theory for quasilinear systems (see, [14, Chapter VI]) yields
the following :

Theorem 8. For every weak solution u ∈ H1(Ω,RN ) ∩ L∞(Ω,RN ) of the system
(1) there exist an open subset Ω0 ⊆ Ω and s > 0 such that

∀p ∈ (n,+∞) : u ∈ C0,1−
n
p (Ω0;R

N ),

Hn−s(Ω\Ω0) = 0 .

Proof. For the proof, see [14, Chapter VI].

We now consider the particular case when ahkij (x, s) = αij(x, s)δ
hk, and provide

an almost everywhere regularity result.

Lemma 9. Assume condition (17). Then the weak solutions u ∈ H10 (Ω,R
N ) of the

system∫
Ω

n∑
i,j=1

N∑
h=1

aij(x, u)DiuhDjvh dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsaij(x, u) · vDiuhDjuh dx =

∫
Ω

g(x, u) · v dx (18)

for all v ∈ C∞c (Ω,R
N ), belong to L∞(Ω,RN ).

Proof. By [20, Lemma 3.3], for each (CPS)c sequence (u
m) there exist u ∈ H10∩L

∞

and a subsequence (umk) with umk ⇀ u. Then, given a weak solution u, consider
the sequence (um) such that each element is equal to u and the assertion follows.

We can finally state a partial regularity result for our system.

Theorem 10. Assume condition (17) and let u ∈ H10 (Ω,R
N ) be a weak solution

of the system∫
Ω

n∑
i,j=1

N∑
h=1

aij(x, u)DiuhDjvh dx+

+
1

2

∫
Ω

n∑
i,j=1

N∑
h=1

Dsaij(x, u) · vDiuhDjuh dx =

∫
Ω

g(x, u) · v dx (19)

for all v ∈ C∞c (Ω,R
N ). Then there exist an open subset Ω0 ⊆ Ω and s > 0 such

that

∀p ∈ (n,+∞) : u ∈ C0,1−
n
p (Ω0;R

N ),

Hn−s(Ω\Ω0) = 0.

Proof. It suffices to combine the previous Lemma with Theorem 8.
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