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ABSTRACT 

 

SCALE EFFECTS ON THE REMOTE ESTIMATION OF EVAPOTRANSPIRATION 

 

 

 

 

by 

Jiao Wang, B.S., M.S. 

Texas State University-San Marcos 

May 2012 

SUPPERVISING PROFESSOR: NATHAN ALLEN CURRIT 

 

Consideration of spatio-temporal scale in geographic research is often mentioned, 

but scale effects on geographic modeling are poorly understood. The goal of this research 

is to explore and test the critical role of geographic relationships as they are represented 

across multiple spatial scales of analysis and to develop a general methodology for 

studying scaling relationships. Specifically, this dissertation uses remotely sensed data to 
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investigate scale dependencies of mass and energy fluxes in the hydrologic cycle by 

developing a methodology to analyze the scaling relationships of evapotranspiration 

(ET). This research seeks to answer three categories of questions: (1) What effects do 

different aggregation techniques have on ET estimation as resolution decreases? How 

does landscape heterogeneity impact the aggregation process? (2) As major inputs to ET 

models, do the Normalized Difference Vegetation Index (NDVI) and surface temperature 

have consistent impacts on estimated ET across scales? Which input has a stronger 

correlation with ET estimation and does that correlation remain across scales of analysis? 

(3) How does the spatial autocorrelation of ET vary with scale? Does a relationship exist 

between the variance of spatial autocorrelation and spatial resolution?  

Three analyses were performed to answer these research questions, including a 

comparison of aggregation techniques, an assessment of the primary indicators of ET, 

and the spatial autocorrelation of ET estimates. First, two aggregation techniques are used 

to aggregate ET from 30 meters to coarser resolutions. Findings indicate that the two 

aggregation techniques used produce statistically different ET estimates at resolutions 

finer than 960m. A pixel-by-pixel comparison of paired ET estimates at each scale 

reveals that landscape heterogeneity has an important impact on ET estimation accuracy. 

Most large pixel-by-pixel differences occur in non-vegetated areas and their boundaries 

with other land cover classes. Second, a correlation analysis was conducted on ET and its 

primary indicators across scales. Findings indicate that surface temperature is more 
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correlated to ET than NDVI at resolutions finer than 240m. At resolution coarser than 

240m, the correlations of ET with NDVI, surface temperature become inconsistent. When 

scale changes, the landscape heterogeneity alters the influence of ET drivers. Third, a 

geostatistical analysis was performed to study the spatial autocorrelation of ET across 

scales. Range and partial sill were used to study the spatial autocorrelation of ET. 

Findings indicate that spatial resolution determines the spatial autocorrelation we 

observe. When the resolution is finer than a threshold, ranges are identifiable. Finer 

resolution can better present the variance of landscape than coarser resolution. However, 

the finest resolution may not be the best resolution to reflect the spatial variability. The 

resolution with highest partial sill should be used to best represent the landscape’s spatial 

variability.  

This research provides a way to study the scaling relationship impacted by the 

heterogeneity of landscape from three aspects, including the aggregating techniques, 

correlation of phenomenon and its major indicators, and spatial autocorrelation. As a 

whole, findings in this study improve our understanding of ET modeling and estimation 

using remotely sensed data. More importantly, this research elucidates general scale 

considerations that must be assessed prior to geographic modeling because they influence 

how we represent cause-effect relationships and the modeling of spatial patterns and 

processes. 
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CHAPTER I 

INTRODUCTION 

1.1 Scale Issue 

Scale is “the spatial, temporal, quantitative, or analytical dimensions used to 

measure and study any phenomenon” (Gibson et al. 2000). Scale has been an important 

element that appears in all kinds of studies in natural and social science. Researchers 

usually consider the concept of scale in their research: e.g. local, regional, or global 

scales for a climate change study (e.g. Blunier and Brook 2001); micro or macro scales 

for an ecological study of microbial communities (e.g. Balser et al. 2006); community, 

city, state, or national scales for a social scientist’s study on migration (e.g. Levitt 1998); 

and daily, monthly, seasonal, or annual scales for a hydrological study on stream flow 

(e.g. Hughes 2004). Scale considerations are ubiquitous in scientific studies.  

Caution should be taken when studying a phenomenon at any particular scale. 

There are four major steps to an ordinary research process: (1) identify or define the 

phenomenon/problem, (2) collect data, (3) build a model, and (4) validate the 

simulation/results. Whether the results explain the phenomenon depends on many things 

and one of them is the scale at which patterns and processes are measured and modeled. 
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Research has shown that, for the same phenomenon, unique patterns may become evident 

when modeled at different scales.  

Scale, then, is a two-fold concept. On one hand is the scale of the phenomenon 

itself – the scale at which it occurs. On the other hand is the scale at which the 

phenomenon is studied, including data sampling and model building. The ideal study 

would allow for a model to reflect and explain the phenomenon. However, in most cases 

it is either time/space consuming to clone the reality with every single aspect and detail. 

If the scale of occurrence and the scale of the data and model match, it will be easier for 

us to identify the phenomenon and its causal factors. If we select disjointed scales, it will 

be more difficult for us to fully understand the phenomenon or even not be able to see it, 

not to mention study it. Moreover, usually it is not necessary to create an identical 

reflection of the natural or social problems. If we treat the scale issue well in both data 

and modeling parts, we will still be able to have a general understanding about the 

problem by gathering appropriate data and building a model that includes major factors 

and their functions (Figure 1.1). 
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Figure 1.1 The scale at which a phenomenon is represented impacts a model’s 
explanatory power. 

One “scale matters” example is the founding event in epidemiology: John Snow 

located the source of a cholera outbreak near a public water pump in England, in 1854 

(Snow 1855). The spatial scale or extent he selected in the search of the source of 

outbreak played an important role in his effort of detecting the threat to public health. 

There are two factors in his identification of the source: location and extent. If he had not 

looked into a study area that included the water pump, but only drew his study area in 

other neighborhoods, it would not be possible for him to identify the cause of the cholera 

outbreak. In contrast, if he had selected the water pump neighborhood, but not a large 

enough surrounding region, he would not have been able to distinguish places with high 

fatality. His success in identifying the source of the outbreak was due to the successful 

identification of a scale of analysis. This example shows the importance of spatial scale 

http://en.wikipedia.org/wiki/Epidemiology�
http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak�
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or extent for the identification of a phenomenon and its causal factors. Often, however, 

patterns and processes are embedded within one another which leads to multiple and 

complex causal relationships. Complex multi-scale systems often exhibit emergent 

properties, where certain patterns and processes manifest themselves only at certain 

scales. Moreover, patterns and processes that occur at one scale may change at finer or 

coarser scales of analysis. This type of change across scales is called a non-linearity 

(Jarvis 1995). Thus from the spatial perspective of scale, location and size are essential 

factors to be considered as the beginning step of study. 

1.2 Scale Effect 

The significance of scale effects has been studied by many scholars (e.g. Bian 

1997; Easterling and Polsky 2004; Evans et al. 2003; Gibson et al. 2000; Herod and 

Wright 2003; Nelson et al. 2007; Walsh et al. 1999; Wu 2004). One aspect of scale 

effects is scale dependency, which refers to the degree a pattern varies as a function of 

scale (Wu 2004). For example, when viewed on a global scale (e.g., from Space) the 

Amazon may appear to be a homogeneous mass of forest. As the viewing distance 

decreases, however, the heterogeneity of the forest will become apparent. Clusters of 

trees will become visible; patterns of deforestation and road networks will come into 

view. At even smaller viewing distances, tree crowns will become apparent and patterns 

of undergrowth will be visible. In short, the level of homogeneity is dependent on the 

scale of analysis. Similarly, the ocean may appear to be a homogeneous mass of blue 

when viewed from Space. Even when viewed at a closer distance, the ocean may still 

appear to be a mass of blue. Not until decreasing the viewing distance even more will the 

heterogeneity of the ocean become apparent. The differences in pattern that become 
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apparent as the scale of analysis changes in the Amazon and ocean examples are due to 

different patterns of scale dependence. That is, scale dependence is unique to a particular 

phenomenon. Scale determines what we see and then impacts how we explain what we 

see. 

Scale issues become more complex as scale changes. The magnitude of the 

impact from some factors might decrease or increase across scales. One factor may have 

a dominant impact at a particular scale, but weaker at other scales. For example, 

researchers found that grassland disturbance was from livestock grazing and hay harvest 

at a large scale and from tracked vehicles at a small scale (Limb et al. 2009).  

Turner et al. (1990) pointed out that there are two ways that the local and regional 

scales relate to global scales. Systemic changes are about fundamental changes in the 

system triggered by local actions, while cumulative changes are the accumulation of local 

changes (Wilbanks 2006). These two types of changes indicate that when scale changes 

the way all factors interact may change as well. We will have to adjust the parameters in 

the model we create or even have to create a new model if the relationship varies too 

greatly. Any of these would impact our investigation and understanding of the 

phenomenon we observe. This is an issue rooted from whether drivers can be passed on 

unchangeably from one scale to another as in a linear process, and whether the collective 

working relationship stays the same or not at various scales as in a non-linear process. 

1.3 Scale in GIScience 

Scale must be a fundamental consideration when geographers describe and 

explain spatial patterns and processes (Gibson et al. 2000). The traditional geographical 
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scale (i.e. 1:100,000) represents the map ratio relative to the real world. The paper map 

has a fixed scale and extent, and provides limited information. The development of 

geographic information science (GIS) brought paper maps into the digital era, which 

made it possible for a map to have unlimited scales of display and extent.  

Major sources of GIS data are remotely sensed imagery. The spatial resolution is 

fixed for a particular type of imagery, such as 1km and 500m for MODIS, 30m for 

LANDSAT 7, and 8m for SPOT 6. These resolutions keep us from studying a 

phenomenon at finer scales than the resolution, which may result in failure to identify 

some patterns. On the other hand, we have to aggregate data to study a phenomenon that 

occurs at a coarser scale than the spatial resolution. Aggregation techniques have to be 

used, which leads to concerns such as the impacts of aggregation techniques, and how to 

choose the aggregation technique.  

There are issues in the aggregation process when we deal with scales. One 

example is called the Modifiable Areal Unit Problem (MAUP), first recognized by 

Gehlke and Biehl in 1934 and later explicitly explained by Openshaw in 1984. Figure 1.2 

shows an example of two ways to aggregate four neighboring units: aggregation across 

rows and aggregation across columns. When data are aggregated, the shape of the 

aggregated areas has an impact on the resulting values, which leads to different statistical 

patterns for each aggregation unit. Patterns are not maintained across different levels of 

aggregation. Census aggregation is a common example of the MAUP. Statistical 

relationships and spatial patterns vary across block, block group and tract levels of 

aggregation.   
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Figure 1.2 Illustration of the modifiable areal unit problem. 

It is not possible to go through all scales, thus the chosen scale(s) will need to be 

appropriate for the research problem. Besides, in many cases, geographers have to use 

“available scale” for data and models. There may be a scale mismatch between data, 

models, methods and actual patterns and processes. Multi-scale observation and modeling 

is helpful or sometimes necessary if we want to fully understand a phenomenon.  

1.4  Research Purpose 

While many of the patterns we observe in complex systems are scale dependent, 

the selection of a particular scale to study cause and effect will frequently lead to 

misinterpretation or an incomplete understanding of a process or pattern. It is, therefore, 

insufficient to simply search for the single scale that provides the greatest explanatory 

value, especially when the causal relationship is measured with a coarse indicator of 
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statistical agreement (i.e. R2). Instead, we need to analyze how and why the observed 

process or pattern changes with scale. A thorough understanding of process and pattern in 

complex systems requires the identification and examination of relationships that derive 

from cross-scale interactions and scale dependency.  

As of yet there is no general theory of scaling relationships, even though there 

have been a number of studies about scale. The purpose of this research is not to, yet 

again, find the most appropriate scale for a particular analysis, but instead to examine 

how causal relationships vary with scale. It is my contention that we discover more about 

the causal relationship as we understand how cause and effect vary across spatial and 

temporal scales than we do by merely finding an appropriate scale. Essentially, there is 

meaning in the pattern of cross-scale variation that must be elucidated in order to fully 

understand a complex causal relationship. The questions I propose are: Can we develop a 

means of analyzing scaling relationships that exist in a complex system? What factors do 

we need to study in the scaling relationship? How do we evaluate roles of factors in the 

causal relationship? What insight will we gain by an understanding scaling relationships 

in a complex system?
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CHAPTER II 

CONCEPTUAL FRAMEWORK 

Many environmental change assessments are undertaken at international, national, 

state and local levels (National Research Council 2007). The significance of multiple, 

interacting scales within processes of global environmental change has been the focus of 

many of these studies (McDaniels et al. 2005). A significant component of these studies 

has been land-use and land-cover change because of its potential to accelerate ecosystem 

change (Solecki 2001). It is, therefore, important to monitor and model the land surface 

and vegetation processes at various scales (Verstraeten et al. 2008) when assessing water 

and carbon dynamics of terrestrial ecosystems. For example, understanding land surface 

fluxes at various scales is critical for weather and climate modeling (Courault et al. 

2005). One of the most important issues related to scale in all sciences is “how scale and 

resolution affect the identification of patterns” (Gibson et al. 2000). Models developed to 

monitor land-atmosphere interactions are based on an assumption of homogeneity of the 

land and atmospheric surfaces. They do not, however, account for variation in vegetation 

and soil at spatial scales smaller than the grid cell in the model (Bonan et al. 1993). The 

assumption of homogeneity is rarely met in reality, suggesting that a primary focus of 

current research should be the exploration of scale and the behaviors of water, carbon and 

energy fluxes across scales (Brunsell et al. 2008). 
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2.1 Evapotranspiration and its Measurements 

Evaporation, the process by which liquid water changes to water vapor and is 

transferred to the atmosphere, occurs from many surfaces (e.g. lakes, rivers, oceans, soils 

and wet vegetation) (Allen et al. 2007). Energy is required to cause evaporation and is 

normally provided by direct solar radiation. Transpiration is the process by which water 

from plant tissues is transferred into the atmosphere (Allen et al. 2007). 

Evapotranspiration (ET) is the collective sum of evaporation and transpiration and is one 

of the most difficult hydrologic parameters to estimate. 

Estimation of regional water cycling requires an understanding of the spatial 

characteristics of ET and its relationship to Earth surface characteristics (Brunsell et al. 

2008). However, not much work has been done to assess how the spatial variability of the 

Earth surface data (e.g. radiometric temperature and vegetation indices) observed at 

different scales (i.e. pixel resolutions) translate into spatial variability in modeled fluxes 

(Brunsell and Gillies 2003). There is a critical need for research to understand the role of 

landscape heterogeneity and the resulting influence on the scaling behavior of surface 

fluxes monitored by satellite sensors across scales (McCabe and Wood 2006).  

 ET estimations can be implemented at various scales ranging from the leaf level 

to the plant, field and landscape levels (Verstraeten et al. 2008), and using various 

approaches including the water budget, direct measurement, energy balance and 

empirical methods (Ahmad et al. 2005). Water budget methods use a hydrologic model to 

track the water loss in the soil-vegetation system. Direct measurement uses instruments to 

measure ET at a specific location (e.g. lysimeters, scintillometers, and the eddy 
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covariance technique). The energy balance method monitors ET via the energy exchange. 

When using the energy balance method for ET estimation, ET is calculated as a residual 

of three components including net radiation, soil heat flux and sensible heat flux (Allen et 

al. 2007). 

Eddy covariance flux measurement towers can be used to estimate ET at the plot 

scale, but have the limitation of only sampling the local environment. Flux towers are not 

designed to estimate fluxes at large spatial scales where heterogeneity of the fluxes is 

strong over the land surface and the land and vegetation properties are diverse (Gentine et 

al. 2007; Santos et al. 2008). Their use is limited to specific sites partly because the 

operation and maintenance is labor intensive and time consuming (Allen et al. 2007; 

Gentine et al. 2007). Thus, flux towers are not appropriate for routine measurements at a 

regional scale. On the other hand, flux tower measurements often provide validation 

information for models and quantitative information about the physical reality of the 

environment (Verstraeten et al. 2008). 

Remote sensing techniques exist for estimating ET under various topographic and 

land cover conditions (Price 1990). Remotely sensed data are available at different 

spatial, temporal and spectral resolutions (Li et al. 2008). Many studies have estimated 

ET using different sensors, including LANDSAT (Bastiaanssen et al. 2005), ASTER 

(French et al. 2002), AVHRR (Seguin et al. 1991) and MODIS (Nishida et al. 2003). 

However, in many circumstances, the spatial resolution of remotely sensed data cannot 

capture individual features (e.g., buildings, streets, trees), and pixels are comprised of 

multiple land-cover types (Small 2004). The mixed pixel problem hinders the ability to 

discriminate individual field conditions that lead to errors in the ET estimation. This 



12 
 

 

impact is stronger when there is significant sub-pixel variability in land cover, roughness, 

and soil moisture (Kustas et al. 2004; Moran et al. 1997).  

The spatial variation of the surface monitored by remotely sensed data has a large 

impact on the spatial variation or the modeling and representation of the spatial variation 

in ET (Kustas et al. 1994). The role of data resolution has been examined by some 

scholars (Hong et al. 2009; Kustas et al. 2004; McCabe and Wood 2006). Kustas et al. 

(2004) compared histograms of ET estimations at 60m, 120m, 240m and 960m using a 

two-source energy balance model to examine if any of these scales can provide enough 

spatial detail to differentiate ET from individual corn and soybean fields. They 

recommended a pixel resolution of 250-500m to sample individual fields and discrete 

land surface types which is partly due to the size of individual fields in the study area 

(102 by 102 m in dimension). While their research supports this recommendation for an 

agricultural region with large field sizes (Kustas et al. 2004), 250-500m resolution cannot 

accurately represent surface heterogeneity when vegetation landscape patterns are smaller 

than 250m. Li et al. (2008) suggest a pixel resolution on the order of 10m is necessary to 

discriminate spatial patterns of latent heat flux for a heterogeneous landscape; however, 

they suggest a 100m pixel resolution still works in areas with large vegetation patches. In 

reality, the resolution of imagery required to accurately estimate a flux varies by 

ecosystem type and the spatial arrangement of ecosystem components. It is, therefore, 

insufficient to merely find the supposed best resolution of imagery for a particular region 

(higher resolution imagery always provides improved flux estimate results, but is usually 

too cumbersome for regional analyses, as well as often too expensive and infrequently 

available). Instead, it is important to understand scaling behavior as the level of data 
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aggregation (i.e., resolution) increases and decreases. In order to get an accurate 

estimation of the regional distribution of ET when scale changes, it is crucial to manage 

scale issues properly between different resolutions (Hong et al. 2009).  

Remote sensing techniques are the best tools to quantify “the spatial distribution 

of vegetation, surface temperature and moisture” (Brunsell et al. 2008). Brown and 

Rosenberg (1973) first used remotely sensed surface temperature to predict ET for a 

sugar beet field. More recently, remotely sensed data have been used extensively for ET 

estimation with various spatial, temporal and spectral resolutions (e.g. Anderson et al. 

2007; Bastiaanssen 1998; Carlson et al. 1995; Kustas and Norman 1996; Nishada et al. 

2003; Yang et al. 2010). High spatial resolution satellite imagery with a low temporal 

resolution, like LANDSAT and ASTER imagery have been used to estimate ET at the 

field scale (French et al. 2002; Moran et al. 1996). However, their repeat cycle is not at a 

daily frequency (8 days for ASTER, 16 days for Landsat). These methods, therefore, are 

not well suited for routine ET estimation (Lenz and Baise 2007). AVHRR and MODIS 

imagery provides more frequent data that can be used for routine ET estimation, but the 

spatial resolution is between 1 and 5 km (Mecikalski et al. 1999; Seguin et al. 1991). 

Coarse resolution (e.g., large pixels) data are not suitable for monitoring ET of individual 

vegetation patches (Kustas et al. 2003).  

Remote sensing techniques do not measure surface fluxes directly, instead the 

techniques measure state variables (e.g. land cover, surface temperature, surface albedo, 

and emissivity) that have impacts on the fluxes (Tang et al. 2010). Large scale ET 

estimates, such as simulation models or remote sensing algorithms, often use the 

relationship between the state variables and fluxes (Bastiaanssen et al. 2005; Santos et al. 
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2008). Satellite-based remote sensing techniques can be used to monitor a number of 

sampled fields simultaneously and estimate representative mean ET values for a large 

area (Tasumi and Allen 2007). Remote sensing data covers large areas inexpensively and 

efficiently (Allen et al. 2005), and observes the patchiness of landscapes, which is not 

easy to measure in the field over large areas (McCabe and Wood 2006). Moreover, 

remote sensing data can provide spatially and temporally explicit information by 

measuring the reflected or emitted electromagnetic radiation, which allows regular 

monitoring of ET at regional or continental scales (Gentine et al. 2007; Li and Islam 

1999; Sandholt et al. 2002; Verhoef and Bach 2003). By combining multi-spectral 

information from satellite imagery, different surface variables and parameters (e.g. 

vegetation fraction, LAI, albedo and emissivity) that are necessary to estimate ET can be 

extracted (Courault et al. 2005; Sanchez et al. 2008). 

There are several surface energy balance models developed to estimate ET at a 

regional level using satellite imagery, such as the Two-Source Energy Balance Model 

(Norman et al. 1995), Surface Energy Balance Algorithm for Land (SEBAL) 

(Bastiaanssen et al. 1998), Surface Energy Balance System (Su 2002), and Mapping 

Evapo-Transpiration at high Resolution with Internalized Calibration (Allen et al. 2007). 

Overviews of ET estimation models using remotely sensed data are given by Gowda et 

al. (2008). Among these models, SEBAL is popular as “an intermediate approach using 

both empirical relationships and physical parameterizations” (Courault et al. 2005). It is a 

physically based model that calculates ET as the residual of an energy balance for each 

pixel of multispectral satellite image. It has been used to estimate energy partitioning at 

the regional scale using raw satellite data and a minimum amount of in-situ data 
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(Verstraeten et al. 2008). It requires incoming radiation, the normalized difference 

vegetation index, surface temperature, and surface albedo and provides parameters for the 

energy balance fluxes such as sensible heat and soil heat (Bastiaanssen et al. 2005). These 

parameters can be derived from the visible, near infrared and mid-infrared bands and 

thermal infrared band from satellite imagery. Actual ET rather than potential ET is 

calculated in this model (Allen et al. 2005). This model has been evaluated across various 

areas including the United States, and countries in Africa, Europe and Asia (Bastiaanssen 

et al. 1998, 2005; Lagouarde et al. 2002; Tasumi et al. 2005). Model error is often 

reported to be around ±15% for daily ET estimated using SEBAL against ground based 

measurements (Bastiaanssen et al. 2005). In the southwestern USA, an error of ±10% is 

usually achieved (Hendrickx and Hong 2005; Hong et al. 2009; Morse et al. 2000). 

Besides ET, SEBAL has been used to map biomass growth, water productivity and soil 

moisture (e.g. Alexandridis et al. 2009; Zwart and Bastiaanssen 2007). 

2.2 Scale Dependency 

Scale must be a fundamental consideration when geographers describe and 

explain spatial patterns and processes (Gibson et al. 2000), and is an especially important 

component of GIS analysis (Miller et al. 2007). As an important concept dealing with 

heterogeneity, scale dependency has been recognized in geography for decades (e.g. Bian 

and Walsh 1993; Meentemeyer and Box 1987; O’Neill et al. 1996; Turner et al. 2001; 

Wu 2004). These studies have improved our understanding on the scale effects in pattern 

analysis (Wu 2004). However, most of them merely report that scale effects exist, 

without studying their general patterns as landscapes change. In fact, Wu (2004) states 

that a general theory of scaling relations is yet to be developed.  
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It has been found that the effects of heterogeneity in vegetation on ET are 

significant when the resolution is high (Kustas et al. 2003). As spatial resolution 

decreases, the ability to determine flux variation decreases. More studies are needed on 

the spatial effects of ET modeling over heterogeneous landscapes (McCabe and Wood 

2006).  

It is necessary to understand the interaction between surface spatial variability in 

vegetation, the composite surface radiometric temperature and the resultant fluxes 

(Brunsell and Gillies 2003) when computing large-scale estimations of the surface energy 

balance. The processes governing the mass, energy, and momentum exchange across the 

land-atmosphere interface are nonlinear, because of the interdependence of the dominant 

variables and parameters (Brunsell and Gillies 2003). For example, the average value of a 

flux is not necessarily a function of the average value of the controlling variables and 

parameters (Brunsell et al. 2003). Moreover, the variability between fields is nonlinear, 

which results in poor aggregation values for mixed pixels unless sub-pixel information 

about cropping fraction is available (Kustas et al. 2004). Therefore, knowledge of the 

spatial distribution of the controlling variables is not adequate; rather it is more important 

to monitor how these distributions are altered when scale changes (Brunsell et al. 2003). 

When the spatial resolution of remote sensing data encompasses several land cover 

classes, the flux estimation can produce significant errors (Kustas and Norman 2000; 

Moran et al. 1997).  

Upscaling (aggregation) of remotely sensed data is used in this dissertation to 

investigate scale dependencies (Hong et al. 2009). Hay et al. (1997) described upscaling 

as “resampling techniques designed to transform an image collected at a high spatial 
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resolution to a lower spatial resolution representation of the same image.” During this 

process, the original raster data are downsized to fewer pixels with the same spatial 

extent (Hong et al. 2009). The statistical and spatial characteristics are modified in the 

aggregation process (Bian 1997). The spatial autocorrelation at coarser resolutions may 

be reduced since the total number of pixels is smaller (Bian 1997). Some studies show 

that when the spatial resolution is coarser, the data accuracy is higher (Carmel 2004; Van 

Rompaey et al. 1999). This higher accuracy occurs when the coarser resolution more 

closely matches the scale at which the pattern or process of interest occurs. Nevertheless, 

some information is lost in the spatial resolution downgrading process (Carmel et al. 

2001).  

Average-based methods have been used widely in the aggregation of input 

parameters in hydrologic models at the regional scale (Maayar and Chen 2006). Hong et 

al. (2009) find that simple averaging produces the most consistent and reasonable results. 

They also found that the standard deviation decreased when the aggregation level 

increased, which leads to the need to check the sensitivity of the results to input 

parameters before the aggregation method is applied (Hong et al. 2009). 

2.3 Research Questions 

Given the importance of energy flux in the hydrological cycle, there is a need to 

understand the interaction between surface spatial variability and the resultant fluxes, and 

how they vary with scale (Brunsell and Gillies 2003). There is, however, little 

understanding about the scale effect of ET. This paper addresses this research gap by 

studying the scaling relationships of land surface-atmosphere interaction and the 
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influence of landscape heterogeneity on ET. The primary purpose of this research is to 

explore how spatial heterogeneities in landscape influence surface flux exchanges with 

the atmosphere and to account for the scale dependency of ET estimation. Specifically, 

the study will seek answers to the following questions:  

1. What effects do different aggregation techniques have on ET estimation as 

resolution decreases? How does landscape heterogeneity impact the aggregation 

process?  

2. As major inputs to ET models, do the Normalized Difference Vegetation Index 

(NDVI) and surface temperature have consistent impacts on ET estimation across 

scales? Which input has a stronger correlation with ET estimation and does that 

correlation remain across scales of analysis?  

3. How does the spatial autocorrelation of ET vary with scale? Does a relationship 

exist between the variance of spatial autocorrelation and spatial resolution? 

The remainder of this thesis is organized as follows: Chapter Three introduces the 

study area, data and model used to estimate ET, and explains the methodology used to 

analyze the spatial pattern of ET. In the first part of Chapter Four, ET estimated from 

remotely sensed data are compared with measurements from eddy covariance towers. In 

the remainder of Chapter four, ET results from two aggregation techniques are 

compared, the correlations of NDVI and surface temperature with ET across scales, as 

well as the variogram analysis results are also presented. The last chapter summarizes 

and concludes the findings. 
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CHAPTER III 

DATA AND METHODOLOGY 

3.1 Site Description 

The study site is at Freeman Ranch area. Freeman Ranch is used for ecological 

and agricultural research by Texas State University-San Marcos. It lies in Hays County, 

central Texas (Figure 3.1), with an area of 1,700 ha (29°56’N, 98°W). The climate is 

humid sub-tropical with mean annual temperature of 19°C (Dixon 2000). The summer 

highs are normally above 32°C and winter lows are near 4°C. An annual average 

precipitation of 86 cm is relatively evenly distributed over all months of the year (Dixon 

2000). Elevation ranges from 204 to 287 meters above sea level, increasing from 

southeast to northwest (Carson 2000). 
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Figure 3.1 Location of the study area. 

Major soil types identified are the Rumple-Comfort association and 

Comfort-Rock outcrop complex, which are both shallow soils developed over 

erosion-resistant limestone, covering more than 90% of the study area (Barnes et al. 

2000). A detailed description of soil in this area is published by Carson (2000). Freeman 

Ranch has a great diversity of flora, encompassing more than 200 plant species. Plateau 

Live Oak (Quercus virginiana var. fusiformis) and Ashe juniper (Juniperus ashei) 

savannas are found in the uplands while closed-canopy woodlands grow in lowlands and 

intermittent drainages (Barnes et al. 2000). Woody plants (tree or shrub) cover 

approximately 48% of the landscape (Barnes et al. 2000), the most common of which is 

Ashe juniper. Herbaceous (usually grass-dominated) plants cover approximately 48% of 

the landscape, with the remaining 2% being non-vegetated surfaces such as roads, 

exposed rock, caliche outcrops, or buildings (Barnes et al. 2000). Two native perennial 

grass species are most common in these savannas: Texas wintergrass (Nassella 

leucotricha) and Texas grama (Bouteloua rigidiseta) (Barnes et al. 2000). Herbaceous 

http://gato-docs.its.txstate.edu/freeman-ranch/Research/Vegetation-of-Freeman-Ranch/Vegetation%20of%20Freeman%20Ranch.pdf�
http://gato-docs.its.txstate.edu/freeman-ranch/Research/Vegetation-of-Freeman-Ranch/Vegetation%20of%20Freeman%20Ranch.pdf�
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and woody cover types are found on all soils and terrains across the Freeman Ranch. 

However, woody plants are dominant on the shallow, rocky Comfort-Rock soils, whereas 

grasslands dominate the deeper Rumple-Comfort soils (Barnes et al. 2000). 

3.2 Data Description 

The purpose of this study is to identify a scaling relationship of ET derived from 

mainly remotely sensed data and ancillary data (Table 3.1). ET will be first calculated in 

the SEBAL model using remotely sensed data, elevation data, and ancillary 

meteorological data from a weather station. Then, ET estimations from the first step will 

be validated by eddy covariance measurements from AmeriFlux towers. Additionally, 

land cover information will be used in the spatial distribution analysis of ET. 

Table 3.1 Data and their roles in this study 

Data Role  Source 

LANDSAT 7 ET estimation LANDSAT Program by USGS 

DEM ET estimation 
(elevation corrected 
temperature) 

National Elevation Dataset by USGS 

Meteorology ET estimation Weather station 

Eddy 
covariance ET 
measurements 

ET Validation Ameriflux towers 

Remote sensing data used in this study are from LANDSAT 7 satellite imagery.   

LANDSAT 7 was launched in 1999 and has eight bands with spectral range from 0.45 to 

12.5 µm and a temporal resolution of 16 days. Its bands include a thermal infrared with 

60 meter spatial resolution, six visible bands with 30 meter spatial resolution and a 
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panchromatic band with 15 meter spatial resolution. The thermal band is re-sampled to 30 

meter by USGS after February 25, 2010 (Roy et al. 2010). The image scene size is 183 

kilometers by 170 kilometers. The local equatorial time of satellite overpass is 10:55 am. 

A thorough introduction of this satellite can be found in the LANDSAT 7 Science Data 

Users Handbook (Irish 2000).  

DEM data are from the National Elevation Dataset by USGS, and used to 

calculate elevation corrected temperature for ET estimation. Meteorological data needed 

in the model such as wind speed, relative humidity, daily minimum temperature and 

maximum air temperature, are collected by a weather station approximately eight 

kilometers to the southwest and obtained from the National Climatic Data Center 

website.  

Validation data are from AmeriFlux eddy covariance sites located at Freeman 

Ranch. The AmeriFlux network was established in 1996 and provides regional and global 

micrometeorological observations used to study the impacts of climate and land-use 

change. Measurements at these sites are made using a three-dimensional sonic 

anemometer-thermometer and a fast response infrared gas analyzer, and include CO2, 

water and energy fluxes. Eddy covariance methods are applied to calculate latent heat 

flux or ET. Goulden et al. (1996) did a rigorous evaluation of the precision and accuracy 

of eddy covariance technique, stating that this technique is effective for hourly, daily, 

monthly, and annual measurement with a precision of ±5%. Goulden et al. (1996) 

suggested that the eddy covariance technique is particularly well suited for testing remote 

sensing algorithms.   



23 
 

 
 

Three micro-meteorological towers at Freeman Ranch are located at grassland, 

savanna and juniper-oak woodland sites (as shown in Figure 3.1). Data are collected at 

half hour intervals and provide valuable measurements to verify SEBAL estimations for 

three land cover classes.   

3.3 Methodology 

This dissertation aims to study the scaling relationship of land surface-atmosphere 

interactions and the influence of landscape heterogeneity on ET across scales. The 

methodology consists of three parts, each corresponding to the research questions posed 

in previous chapters. First, I calculate ET at multiple spatial resolutions by (1) 

aggregating fine resolution ET estimates to coarser resolutions, and (2) aggregating raw 

LANDSAT images from a fine resolution to coarse resolutions and estimating ET with 

the aggregated raw data. Second, I analyze the correlation of ET with NDVI and surface 

temperature at each unique resolution. Third, I perform a semivariogram analysis to 

quantify the spatial autocorrelation of ET at various spatial resolutions and across 

multiple resolutions simultaneously.  

3.3.1 Evapotranspiration Calculation from Remotely Sensed Data 

3.3.1.1 Data Preprocessing  

In this study, nine cloud free image scenes are used to estimate ET and validate 

SEBAL model performance. These images are calibrated and converted into surface 

reflectance and temperature in order to derive parameters for ET estimation in the 
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SEBAL model (i.e. surface albedo, NDVI, emissivity, surface temperature, net radiation, 

soil heat flux and sensible heat flux).  

Image digital numbers (DN) are converted to radiance values, and then to 

top-of-atmosphere reflectance using the following two formulas.   

Lλ = gain × DN + bias        (1) 

where Lλis radiance and the gain and bias values are band specific rescaling factors 

(Table 3.3, from Chander et al. 2009). The images are acquired in low or high gain state. 

This state of high or low depends on the brightness of the surface. Low-gain is used for 

brighter surface, while high-gain for darker surface (Chander et al. 2009).  

Table 3.2 LANDSAT 7 parameters  

Band 
Gain : (Wm-2 sr-1 m-1)/DN  Bias (Low) : (Wm-2 sr-1 μm-1) 𝐸𝑆𝑈𝑁𝜆:(W

m-2 μm-1) Low High Low High 

1 1.180709 0.778740 -7.38 -6.98 1997 

2 1.209843 0.798819 -7.61 -7.20 1812 

3 0.942520 0.621654 -5.94 -5.62 1533 

4 0.969691 0.639764 -6.07 -5.74 1039 

5 0.191220 0.126220 -1.19 -1.13 230.8 

6 0.067087 0.037205 -0.07 3.16 n/a 

7 0.066496 0.043898 -0.42 -0.39 84.90 

Radiance is then converted to top of atmosphere reflectance (ρλ), which removes 

variations due to differences in the solar zenith angle and Earth-Sun distance at different 

dates (Chander et al. 2009).  
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ρλ = πLλds
2

ESUNλ cos θs
         (2) 

where 𝜌𝜆 is the planetary top-of-atmosphere (TOA) reflectance, ds is the Earth-Sun 

distance, ESUNλ  is mean solar exoatmospheric spectral irradiance (Wm-2 μm-1) unique to 

each band, and 𝜃𝑠 is the solar zenith angle. A detailed description of the equations and 

explanations from DN to reflectance is available at Chander et al. (2009). 

3.3.1.2 Evapotranspiration Calculation 

SEBAL calculates ET as the residual of the surface energy balance equation 

(Bastiaanssen 1998) 

λET = 𝑅𝑛 − 𝐺 − 𝐻         (3) 

where λET is the latent heat flux, Rn is the net incoming radiant energy, G is the soil heat 

flux transferred into the ground, and H is the sensible heat flux induced by the 

temperature difference between surface and the overlying air. Each of these parameters is 

expressed in Wm-2. The latent heat of vaporization of water (λ) is expressed in Jkg-1.   

Rn is computed from the TOA reflectance from band 1-5 and 7, as well as surface 

temperature from thermal band. G is estimated from Rn, surface temperature, and 

vegetation indices. H is estimated from surface temperature, surface roughness, relative 

humidity and wind speed (Allen et al. 2005). Parameters are calculated for each pixel 

using remotely sensed data at the instant corresponding to satellite overpass (Allen et al. 

2005). A general schematic of the ET estimation process is illustrated in Figure 3.2. 

Equations for each parameter are listed and explained in the following paragraphs.  
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Figure 3.2 Schematic of the ET estimation process 

Parameters (i.e., Rn, G, H) in the energy balance equation are calculated as 

indicated in the following formulas. 

𝑅𝑛 = (1 − 𝛼)𝑅𝑠 + 𝜀𝑎𝜎 𝑇𝑎4 −  𝜀𝑠𝜎 𝑇𝑠4      (4) 

𝛼 = 0.356ρ1 +  0.130ρ3 + 0.373ρ4 + 0.085ρ5 +  0.072ρ7 −  0.0018 (5) 

𝑅𝑠 =  𝐺𝑠𝑐 cos𝜃𝑠 𝑑𝑠𝑟𝑡𝑠𝑤          (6) 

𝑑𝑠𝑟 =  1 − 0.033 cos{[2π(𝐷𝑂𝑌)/365]}     (7) 

ε𝑎 = 1.08(−𝑙𝑛𝜏𝑠𝑤)0.265         (8) 

τsw =  0.75 + 2 × 10−5𝑧       (9) 

𝑇𝑠 =  𝑇𝑏
𝜀𝑠0.25          (10) 
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𝑇𝑏 = 𝐾2
𝑙𝑛�𝐾1𝐿λ

+1�
         (11) 

ε𝑠 = 1.0094 + 0.047 × ln(𝑁𝐷𝑉𝐼)      (12) 

𝑁𝐷𝑉𝐼 = (ρ4 − ρ3)/(ρ4 + ρ3)       (13) 

𝐺 = �𝑇𝑠−273.16
α

�0.0038α + 0.0074α2�(1− 0.98𝑁𝐷𝑉𝐼4)�× 𝑅𝑛  (14) 

H =  ρ𝑎𝑖𝑟𝐶𝑝
𝑑𝑇
𝑟𝑎ℎ

         (15) 

dT = �𝑑𝑇𝑑𝑟𝑦−𝑑𝑇𝑤𝑒𝑡
𝑇𝑠𝑑𝑟𝑦−𝑇𝑠𝑤𝑒𝑡

� × 𝑇𝑠 − (𝑑𝑇𝑑𝑟𝑦−𝑑𝑇𝑤𝑒𝑡
𝑇𝑠𝑑𝑟𝑦−𝑇𝑠𝑤𝑒𝑡

) × 𝑇𝑠𝑤𝑒𝑡    (16) 

𝑟𝑎ℎ =
𝑙𝑛(𝑍2𝑍1)

𝑢∗𝑘
            (17) 

𝑢∗ = 𝑢(𝑧)𝑘

ln (𝑧−𝑑0𝑧𝑚
)
         (18) 

𝑑0=0.65h          (19) 

𝑍𝑚= 0.1h          (20) 

where Rs is the incoming short-wave solar radiation, α is surface albedo, τsw(-) is one way 

atmospheric transmissivity, ρi (i=1,3,4,5,7) is the reflectance of each band from 

LANDSAT 7, 𝑇𝑏 is the brightness temperature (K), NDVI is the normalized difference 

vegetation index. 𝑟𝑎ℎ is the aerodynamic resistances between two surface heights of 

surface and air temperature, 𝑍𝑚 is the roughness length, 𝑢(𝑧) is the wind speed (m/s) 
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at the height of z, h is the height for plant, 𝑑0 is the zero displacement height, k is the 

von Karman constant (typically the value 0.41 is used), Z1 is a height above the zero 

displacement distance height of plant canopy (set to 0.001), Z2 is the reference height 

above the plant canopy, which is set to 2m, u* is the friction velocity, ρ𝑎𝑖𝑟 is air density 

as a function of atmospheric pressure (mol m-3), 𝐶𝑝 is the heat of air at constant pressure 

with the value of 29.3 J mol-1 c -1, dT is the near surface temperature difference (K), 𝐺𝑠𝑐  

is the solar constant (1367 Wm-2), and 𝑑𝑠𝑟 is inverse squared relative distance between 

the Earth and the Sun, DOY is day of the year, ε𝑎 is the air emissivity, 𝜎 is the 

Stefan-Boltzmanh constant with the value of 5.67 × 108 Wm-2 K-4, 𝑇𝑎 is air temperature, 

𝑇𝑠 is the remotely sensed radiometric surface temperature, K1 and K2 are calibration 

coefficients with value of 666.09 and 1282.71 (Wm-2sr-1μm-1) respectively, ε𝑠 is surface 

emissivity. 

H is estimated as a function of the wind speed, estimated surface roughness for 

momentum transport, and the near surface temperature difference between two heights 

(0.1 m and 2 m) (Hong et al. 2009; Tasumi et al. 2005). One wet pixel and one dry pixel 

are chosen in order to calculate H. The wet pixel is usually picked from a well irrigated 

area where the surface temperature is approximately to the air temperature. The dry pixel 

is picked from a dry area where λET is assumed to be zero. The selection of wet and dry 

pixel is aided with the spatial distribution of surface temperature measured by the thermal 

band of LANDSAT 7 (Bastiaanssen 1998). H is considered zero at the wet pixel and the 

difference between net radiation and soil heat flux at the dry pixel. At the dry pixel, dT is 

a function of the sensible heat flux. At the wet pixel, dT is assumed to be zero. dT is 

computed with assumption of a linear relationship for the rest pixels of the image (Kite 
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and Droogers 2000). Values at these two pixels are used for an internal calibration to 

reduce biases of other parameters used in SEBAL (e.g. albedo, net radiation, surface 

temperature) (Hong et al. 2009). Since there is no irrigated area in the study area, the wet 

pixel is instead selected in forested areas that have the lowest temperatures. Specifically, 

pixels with lower surface temperatures are identified. Then, many wet pixel candidates 

are selected from among the filtered pixels that occur in forests. These pixels were 

iteratively tested as the wet pixel to examine the impact of different wet pixels on ET 

estimation. Negligible differences in ET resulted from these tests and it was determined 

that any of the lowest temperature pixels occurring in forests were adequate 

representations of the wet pixel required by SEBAL. 

Instantaneous ET at the time of satellite overpass will be calculated from the 

equations above. Longer temporal aggregations of ET (e.g., daily, monthly or annual ET) 

are more meaningful for metrological and hydrological studies. In this study, daily ET is 

used for the identification of scaling relationships. Daily ET is computed by the 

daily-averaged net radiation flux, the soil heat flux and the instantaneous evaporative 

fraction (EF), with the assumption that EF is equal to the daily mean value when the 

satellite is passing over (Bastiaanssen 1998; Farah et al. 2004; Gentine et al. 2007). The 

soil heat flux is assumed to be zero at the daily scale (Kustas et al. 1993). Daily ET 

(ET24) can be calculated as (Bastiaanssen et al. 2005): 

𝐸𝑇24 =  86,400103𝐸𝐹𝑅𝑛24
𝜆𝜌𝑤

        (21) 

EF= 𝜆ET / (Rn -G)        (22) 
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𝑅𝑛24 = (1 − α)𝑅𝑠24 + 𝐿24       (23) 

Rn24  is the daily-averaged net radiation (Wm-2), which is obtained from a 

meteorological station and then interpolated using the distributed albedo values. 𝜌𝑤 is 

the density of water (kgm-3). EF is instantaneous evaporative fraction. Rs24 is the daily 

average incoming solar radiation. L24 is the daily average net long-wave radiation.  

3.3.2 Aggregation Process 

ET will be first calculated at the 30m resolution of original data. Then all input 

data for ET calculation and output ET calculated at 30m will be (re)scaled to the 

following resolutions: 60m, 120m, 240m, 480m and 960m. The finest resolution is 

equivalent to the resolution of the LANDSAT 7 spectral bands (~ 30m) and the coarsest 

one is similar to the MODIS thermal band (~ 1000m). The scaled values will be the mean 

value of all pixels falling within an n by n window of the finer resolution data (Hong et 

al. 2009). Resolutions between these two endpoints will be used to evaluate the 

aggregation effects at different scales. 

In the aggregation process, two methods can be followed: run the model first and 

then aggregate the output or aggregate the input data first and then run the model 

(Addiscott 1993; Heuvelink and Pebesma 1999). These two methods are shown in Figure 

3.3. These two methods would yield same results if the model is linear (Addiscott 1993).  



31 
 

 
 

Figure 3.3 Two methods of aggregation: input up-scaling and output up-scaling. 
 

ET will be estimated at resolutions of interest using the two methods mentioned 

above. In the first method, all parameters (e.g. vegetation indices, surface temperature, 

and albedo) will be aggregated from 30m to coarser resolutions before SEBAL is applied. 

Then ET will be calculated from the aggregated data at various resolutions. In the second 

method, ET will be calculated first at 30m resolution using SEBAL and then aggregated 

to coarser resolutions. It would make no difference if the combined impact of all factors 

on ET is linear. However, current literature finds that ET does not scale linearly due to all 

the factors impacting it, leading to uncertainties associated with its calculation. Ferguson 

et al. (2010) identified three important sources of uncertainty in ET estimation, which are 

vegetation parameterization, surface temperature and the source of net radiation data. To 

analyze this uncertainty caused by ET driving forces, ET derived from the first method 

will be compared with ET derived from the second method. It is expected that results 
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from this comparison will highlight the impact of these factors on ET estimation at 

multiple scales.  

ET results from two methods will be compared in the following aspects: basic 

descriptive statistics, histograms, pixel by pixel differences and spatial pattern. Basic 

statistics and histograms will be used to compare ET distributions derived from the two 

methods, and pixel by pixel difference will reveal the spatial locations of differences. 

Two landscape metrics will be calculated to compare spatial patterns that derive from the 

different methods of aggregation: Number of Patches (NP) and Patch Ratio (PR). NP 

calculates the number of patches in the landscape (McGarigal et al. 2012). PR the ratio of 

the number of patches (NP) divided by the total number of pixels. Since these metrics only 

work with categorized data, ET will be recoded into the following categories (Table 3.3). 

 
Table 3.3 ET recoding rule 

Original ET (mm/day) Recoded ET (mm/day) 

0-1 1 

1-2 2 

2-3 3 

3-4 4 

4-5 5 

5-6 6 
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3.3.3 Correlation Analysis across Scales 

 To determine if NDVI and surface temperature have consistent correlations with 

ET estimations across scales, ET will be separately regressed on NDVI and surface 

temperature at each resolution (30m, 60m, 120m, 240m, 480m, and 960m) and the 

coefficients of determination will be compared.  

3.3.4 Geostatistical Analysis 

As mentioned earlier, some patterns exist or are visible only at certain scales, and 

spatial resolution plays an important role in the identified pattern. To study the impact of 

the spatial resolution of remotely sensed data on the spatial autocorrelation of ET, a 

geostatistical analysis will be performed. A semivariogram is a geostatistical function that 

describes the degree to which nearby locations have similar values, and is diagnostic of 

scene structure (Woodcock et al. 1988). It has been widely used in digital processing to 

study spatial structures (Atkinson and Lewis 2000; Curran 1988; Warren et al. 1990). The 

definition of an experimental semivariogram is “half of the average squared difference 

between values separated by a given lag, which is a vector in both distance and direction” 

(Atkinson and Lewis 2000). It is calculated as 

2γ (𝑑) = 1
𝑛(𝑑)

∑ (𝑍𝑖 − 𝑍𝑗)2𝑑𝑖𝑗=𝑑       (20) 

where γ is the conventional symbol for the semivariogram, d stands for distance, Zi 

represents the value of the parameter at point i, and γ (d) is a function of distance d, 

determined by “the average sum of squared differences in attribute values for all pairs of 

control points that are a distance d apart” (Lightowlers et al. 2008). The number of pairs 
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of points at separation d is n(d) (O’Sullivan and Unwin 2002). When the distance d 

increases, semivariance is inclined to increase from zero to the value of the global 

variance for the image, and then remains constant afterward (O’Sullivan and Unwin 

2002). Since semivariance is half of the variance, they are both interchangeable in this 

dissertation. 

Models are created to fit the empirical semivariogram, common ones including 

periodic, linear, circular, spherical, Gaussian, exponential and so on (Cressie 1991). For 

example, the periodic shape of the semivariogram displays a repeating pattern where the 

semivariance of pixels from greater distances is smaller than the semivariance of pixels 

from near distances, an example of which is rows in crop lands. Another model is the 

linear model, which rises constantly and does not have a range (Levesque and King 

1999).  

The graph shown in Figure 3.4 is from a spherical model, which is typical of an 

image having pixels totally independent beyond the range (Levesque and King 1999). 

The nugget is the variance at the distance of zero. The range, also called lag, describes 

the distance at which the semivariogram becomes even and constant (Lenz and Baise 

2007). This distance is impacted by the size of objects in the image. The sill is the 

constant semivariance value beyond the range (O’Sullivan and Unwin 2002). The 

difference between sill and nugget is called partial sill, which represents the variance of a 

spatially autocorrelated process without any nugget effect. Semivariogram analysis will 

be performed on ET at resolutions from 30m to 960m. By examining the nugget, range 

and partial sill values of each variogram across scales, the semivariance is expected to 

relate to the spatial resolution.  
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Figure 3.4 Typical fitted variogram, with key features-the sill, nugget and range. 

The heterogeneity of landscape has an impact on the variance of a spatially 

autocorrelated process. A heterogeneous landscape has more than one land cover classes. 

Neighboring pixels that belong to the same land cover class form a patch. When the pixel 

size or spatial resolution is smaller than the patch size, many pixels are pure. According 

to the law of geography: “Everything is related to everything else, but near things are 

more related than distant things” (Tobler 1970), the variance is small. When the 

resolution becomes coarser, the number of pure pixels decreases while the number of 

mixed pixels increases. The variance value is bigger. When the resolution coarsens to a 

certain extent, there are many mixed pixels, or to an extreme, all pixels are mixed. The 

variance value becomes random, and hard to predict. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

This dissertation addresses questions of scale by studying land 

surface-atmosphere interactions and the influence of landscape heterogeneity on ET 

across scales. When the spatial resolutions change from finer to coarser, what impact 

does landscape heterogeneity have on the pattern of ET? To answer this question, the 

research is conducted from three aspects: the effect of aggregation techniques, the 

correlation between ET and its indicators across scales, and the relationship between 

spatial autocorrelation and spatial resolution.  

This chapter is organized as follows. Section 4.1 validates the ET estimations 

from remotely sensed data with the field measurements from eddy towers. Section 4.2 

studies the temporal and spatial relationship of ET with several factors including length 

of day, land cover, surface temperature and vegetation indices at the finest scale-30m.  

Section 4.3 compares two ET aggregation techniques across scales. Section 4.4 studies 

the correlation between surface temperature, NDVI and ET across scales. Section 4.5 

studies the spatial autocorrelation by conducting the semivariogram analysis at various 

resolutions.
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4.1 Validation of Evapotranspiration calculated from Remotely Sensed Data 

Remote sensing based ET estimates at 30 meter resolution were compared with 

eddy covariance ET measurements for 9 dates, ranging from March to December, to 

ensure the reliability of the remote sensing estimates (Table 4.1, Figure 4.1). The specific 

dates cover seven months in the year 2005 excluding January, February, May, July and 

August. All of these images were taken at 10:55 am local time. Images for the missing 

months all have more than 70% cloud cover making it impossible to get reliable ET 

estimates from those images. The absolute maximum ET estimate amongst all images 

occurred on June 14 and the absolute minimum ET estimate amongst all images occurred 

on September 18. The highest mean value was on June 14 and lowest mean value on 

December 23. Unit of ET estimations in this dissertation is mm/day. 

Table 4.1 Statistics of ET on nine dates  

Date DOY ET min ET max ET mean 

03/10/05 69 0.10 5.21 2.80 

04/11/05 101 0.04 6.77 4.16 

04/27/05 117 0.81 7.69 5.07 

06/14/05 165 1.65 8.88 5.67 

09/18/05 261 0.01 5.98 3.87 

10/20/05 293 0.23 3.96 2.59 

11/05/05 309 0.02 3.39 1.92 

11/21/05 325 0.20 2.94 1.89 

12/23/05 357 0.13 3.08 1.70 
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Figure 4.1 Daily ET maps from nine dates. 

Validation data are from three eddy covariance towers located at Freeman Ranch, 

Texas. Before comparing ET from remotely sensed data and the eddy covariance 

measurement tower, the footprint of eddy tower measurements must be determined. The 

extent of the effective footprint of flux depends on wind direction, wind speed, surface 

roughness and atmospheric stability (Schmid 2002). Eddy covariance tower measures ET 

every half hour, and the footprint for that measurement can change during the day with 

variable winds and directions (Hong 2008). The range of flux can go from ten to a 

hundred meters (Sun et al. 2011). When used for the validation of ET from remote 
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sensing imagery, the commonly used footprint for daily measurements from eddy 

covariance measurement towers is usually set at one pixel size on the LANDSAT 7 

imagery (30m×30m)(Li et al., 2008). Measurements are taken at half hour intervals at 

these sites. The measurements taken at closest to the LANDSAT overpass time were 

selected, which is at 11:00am. Table 4.2 shows daily ET estimates from LANDSAT 7 (as 

SEBAL) and eddy covariance measurements (as flux tower).  

Table 4.2 Daily ET from LANDSAT 7 and eddy covariance towers 

Date DOY Grassland Woodland Savanna 

Flux 
tower 

SEBAL Flux 
tower 

SEBAL Flux 
tower 

SEBAL 

3/10 69 2.7 1.9 2.9 3.2 2.4 1.6 

4/11 101 3.0 2.7 3.2 4.6 3.1 2.3 

4/27 117 3.6 4.0 3.1 5.7 3.1 4.1 

6/14 165 4.0 4.5 4.2 5.7 4.7 5.1 

9/18 261 3.8 2.9 3.7 3.8 3.4 3.6 

10/20 293 1.5 1.8 1.4 2.9 1.7 1.4 

11/5 309 0.7 1.1 1.1 2.2 1.4 0.9 

11/21 325 1.0 1.4 0.7 2.0 0.9 0.9 

12/23 357 0.2 1.2 0.2 1.9 0.4 0.8 

ET measured with the eddy covariance technique were regressed on 

satellite-based ET estimates. Regression results reveal that ET from remotely sensed data 

has a high R2 at each of the three sites. The R2 values for each site are 0.81(grassland), 

0.76 (woodland) and 0.86 (savanna) (Figure 4.2).  
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Figure 4.2 Regressions of ET at three sites. 

The overall regression at three sites is shown in Figure 4.3 with an R2 of 0.67. The 

overall R2 is smaller than individual R2 at three sites. This finding suggests that validation 

of ET calculated from SEBAL should be performed based on individual land cover class, 

instead of grouping all locations together.   
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Figure 4.3 ET validations at three sites. 

ET values from nine dates are plotted to evaluate the temporal performance of  

the SEBAL model (Figure 4.4). In general, flux tower measurements reflect the temporal 

trend of SEBAL estimates at all three sites.    

 

Figure 4.4 Validation of ET values for nine dates at three sites. 
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ET at the grassland site increased from Day 69, and peaked on Day165, dropped 

to the lowest value on Day 309, increased again on Day 325, and dropped to the lowest 

value on Day 357. At the grassland site, SEBAL underestimated ET on Day 69, 101 and 

261. At the woodland site, ET estimated by SEBAL peaked on Day 117, and was almost 

the same value on day 165, when flux tower got to its peak. After Day 165, ET from both 

methods begins to drop and the lowest value was on Day 357. SEBAL overestimated ET 

for all the dates studied at this site. ET at the savanna site increased from Day 69, and 

peaked on Day165. The lowest value was on Day 357. SEBAL overestimated ET on Day 

117, 165, 261, and 357. 

Although ET estimates from remotely sensed data do not perfectly match eddy 

covariance measurements, the trends have a high degree of similarity. The high R2 shows 

that ET estimates from remotely sensed data are sufficiently accurate to justify their use 

in this study, since 76%-87% of the variation in ET measurements from eddy covariance 

towers are reflected by ET estimates from remote sensed data.   

4.2 Spatio-temporal Patterns of Evapotranspiration 

ET varies spatially and temporally due to variations of external drivers (e.g. 

climate, soil moisture) and internal drivers (e.g. vegetation) heterogeneity (Foley et al. 

2003; Verstraeten et al. 2008; Wear and Greis 2002). In this subsection, ET is compared 

with several factors including length of day, surface temperature, land cover, and NDVI 

for the purpose of exploring their temporal and spatial relationships with ET. Soil 

moisture is not included in this study because of its strong correlation with ground and 
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surface temperature, due to the energy exchange via latent heat and sensible heat 

(Goward et al. 1985).  

4.2.1 Temporal Pattern of Evapotranspiration 

No significant change of land cover classes occurred in 2005. Thus, land cover 

data are not used to study the temporal trend of ET. Instead, parameters including surface 

temperature (T), NDVI, and length of day vary daily and seasonally, and were calculated 

to study their temporal relationships with ET (Table 4.3).  

Table 4.3 Statistics of ET, NDVI, surface temperature, and length of day 

DOY 
Mean ET 
(mm/day)  

Mean 
NDVI 

Mean T 
(°C) 

Length of day 
(hrs) 

69 2.79 0.41 22.39 11.83 

101 4.16 0.47 26.52 12.80 

117 5.07 0.46 29.02 13.23 

165 5.67 0.49 28.14 14.07 

261 3.87 0.49 30.02 12.25 

293 2.59 0.46 26.8 11.32 

309 1.92 0.43 25.02 10.88 

325 1.89 0.43 18.91 10.52 

357 1.70 0.39 16.53 10.23 

Figure 4.5 plots the length of day, mean surface temperature (T), and mean 

NDVI, with mean ET value on 9 dates in the year 2005. Comparing these three graphs, 

the temporal trend of ET corresponds best with length of day. They both increase from 
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day 69 to day 165 and then decrease all the way to day 357. Length of day is an indicator 

of the radiation from the Sun, which is the energy source for the ET process. Seasonally 

speaking, ET and length of day (solar radiation) increase from spring to summer, and 

drop from summer to fall and winter. This also corresponds with patterns of vegetation 

phenology, while part of ET is from leaf transpiration. When fall comes, leaves begin to 

senesce and most vegetation becomes dormant.  

 

Figure 4.5 The length of day, mean surface temperature, mean NDVI and mean ET 
values on nine dates in the year 2005. 

The general temporal trends of ET, mean surface temperature and NDVI are 

similar. They go up from the beginning of the year to the middle of the year and then 

drop to the end of the year. However, their peak dates are different. ET has the highest 
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value on day 165, while the highest mean surface temperature is on day 261, the highest 

mean NDVI on day 165 and 261.  

The relationship between temporal trends identified visually is echoed in the 

coefficient of determination. R2 between mean ET and the length of day, mean surface 

temperature, and mean NDVI were 0.97, 0.57, and 0.61 respectively. R2 for length of day 

and ET was much more than R2 for surface temperature and NDVI. This result reveals 

that the length of day has the strongest temporal relationship with ET, because the energy 

source of ET is solar radiation. There might be a several days lag between ET, NDVI, 

and temperature. However, the time range is at least 16 days in this study which is not 

sufficient to validate this assumption.  

4.2.2 Spatial Pattern of Evapotranspiration 

Remotely sensed data reflect the character of the type, amount and condition of 

vegetation (Jackson and Huete 1991). Vegetation index, derived from multiple bands by 

mathematical manipulations, measures biomass or vegetative vigor (Jackson and Huete 

1991), including NDVI, EVI, NDWI and so on. NDVI is the most popular one used by 

scholars, as an indicator of photosynthetic activity of plants, vegetation cover, and 

biomass production (Gamon 1995; Karaburun 2010; Sellers 1985). The spatial 

distribution of surface temperature, vegetation indices, and land cover are analyzed to 

find their relationships with ET beginning at the finest resolution (30m) and other 

resolution aggregates. This analysis is done to answer the second research question: Do 

the ET-NDVI and ET-Temperature relationships vary with scale? ET from September 18, 

2005 was selected to study the spatial scale effects. It was chosen because all pixels have 

positive values and the LANDSAT 7 dataset is complete. Daily ET at Freeman Ranch on 
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September 18, 2005 ranged from 0.01 to 5.98 mm/day (Figure 4.6). The mean, median, 

mode values are 3.87 mm/day, 3.92 mm/day, 4.23 mm/day with the standard deviation as 

0.85.  

 

Figure 4.6 Spatial distribution of ET. 

The spatial distribution of surface temperature for the study site is displayed in 

Figure 4.7. The highest and lowest surface temperatures were 36.3°C and 27.3°C 

respectively, with the mean and mode values both as 30.0°C, the median as 30.3°C. The 

standard deviation is 1.27. The west and east parts of the study site had higher 
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temperatures than the central part. The land cover map shows that west and east are 

mainly grassland and shrub, while the central part is mostly forest. In general, the 

distribution of surface temperature corresponds with that of ET, while the higher the 

surface temperature, the lower the ET and vice versa. 

 

Figure 4.7 Spatial distribution of surface temperature. 

The spatial distribution of NDVI is displayed in Figure 4.8. The Value of NDVI 

ranges from 0.14 to 0.69, with the mean, median, and mode values of 0.49, 0.50 and 0.55, 

respectively. The standard deviation was 0.07. In general, the distribution of NDVI 
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corresponds with that of ET, while the higher the NDVI value, the higher the ET and vice 

versa.  

 

Figure 4.8 Spatial distribution of NDVI. 

 A supervised classification using the maximum likelihood method was performed 

to create the land cover map, with classes including: forest, shrub/scrub, 

grassland/herbaceous and non-vegetated surfaces. Non-vegetated surfaces include bare 

soil and built-up areas. Training samples for classification were derived using the 2006 

NLCD (National Land Cover Database) product and 1 meter resolution NAIP (National 

Agriculture Imagery Program) imagery as reference map. A sample of sixty points were 
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randomly sampled to assess the classification accuracy (Table 4.4). The Overall 

Classification Accuracy is 80.00%. Land cover map of Freeman Ranch and map of ET 

are displayed in Figure 4.9. Forest, shrub, and grassland in total take up 94.45% of land at 

Freeman Ranch (Table 4.5).  

Table 4.4 Accuracy of land cover classification results 

Class name Reference 
totals 

Classified 
totals 

Number 
correct 

Producers 
accuracy 

Users 
accuracy 

Forest 21 24 20 95.24% 83.33% 

Shrub/scrub 13 10 8 61.54% 80.00% 

Grass/ herbaceous 17 16 13 76.47% 81.25% 

Non-vegetated         9 10 7 77.78% 70.00% 

 

 

 

 

 

 

 

 

Figure 4.9 Land cover and ET. 
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Table 4.5 Percentage of each land cover 

ID Land cover Count Percentage 

1 Forest 22728 42.19% 

2 Shrub/scrub 18222 33.82% 

3 Grassland/ herbaceous 9919 18.41% 

4 Non-vegetated surfaces 3006 5.58% 

Landscape metrics were computed for the entire land cover. There were 2513 

patches in total, covering one to more than six thousand pixels. The mean patch sizes for 

forest, shrub, grass and non-vegetated surfaces were 51, 14, 19, and 8 pixels. The mean 

patch size for the entire area was about 22 pixels.  

Comparing land cover and ET maps, the spatial pattern of ET matches that of the 

land cover. This matching pattern was most apparent at forest areas, where ET exhibited 

a pattern nearly identical to the shape of the forest. The spatial patterns of ET at the other 

three land cover classes do not display a strong coincidence with land cover classes. ET 

at each land cover class is summarized in Figure 4.10. ET from non-vegetated surfaces 

was lowest, 2.61 mm/day, followed by grassland/herbaceous, and the highest ET was 

from forest, 4.53mm/day. Forest has the lowest temperature and highest NDVI whereas 

non-vegetated surfaces have the highest temperature and lowest NDVI. For a particular 

land cover class, high ET would come with high NDVI and low surface temperature.   
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Figure 4.10 Mean daily ET, surface temperature and NDVI by land cover class. 

 

4.3 Scaling Relationship of Evapotranspiration 

This section explores the spatial scaling relationship of ET across scales including 

pixel resolutions at 60m, 120m, 240m, 480m and 960m. The purpose is to answer the 

questions stated in earlier: What effects do different aggregation techniques have in ET 

estimation as resolution is decreased? How does landscape heterogeneity impact the 

aggregation process? As major inputs to ET models, do the NDVI and surface 

temperature have consistent correlation with ET estimation across scales? Which input 

has a stronger correlation with ET estimation and does that correlation remain across 

scales of analysis? How does the spatial autocorrelation of ET vary with scale? Is there a 

relationship existing between the variance of spatial autocorrelation and the spatial 

resolution? 
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4.3.1 Evapotranspiration Calculated from Two Aggregation Techniques 

Two types of ET maps are created using different aggregation techniques. The 

first technique is to average SEBAL-derived ET estimates from 30 meters to coarser 

resolutions. These results are called output up-scaling ET. The second technique is to 

average LANDSAT 7 reflectance bands from 30 meters to coarser resolutions and then 

calculate ET from the aggregated images using SEBAL. These results are called input 

up-scaling ET. The comparisons between two aggregating approaches will reveal if the 

model predictions are impacted by the change in data aggregation methods. Figure 4.11 

presents ET maps created by two aggregation methods, at spatial resolutions of 60m, 

120m, 240m, 480m and 960m. Basic statistics are listed in Table 4.6. 
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Figure 4.11 Two maps of ET at from 60m to 960m resolutions. 
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Table 4.6 Basic statistics of two ET maps on September 18, 2005 

 
Input up-scaling ET (mm/day) 

 
60m 120m 240m 480m 960m 

Min 0.2 0.83 0.94 0.91 1.89 
Max 6.88 5.73 5.31 5.83 5.03 
Mean 4.31 4.03 3.5 4.06 3.81 
Std 1.03 0.77 0.8 0.86 0.68 

  

 
Output up-scaling ET (mm/day) 

 
60m 120m 240m 480m 960m 

Min 0.3 0.85 1.52 2.39 2.78 
Max 5.89 5.67 5.51 5.12 5.11 
Mean 3.87 3.87 3.86 3.84 3.88 
Std 0.83 0.79 0.71 0.61 0.54 

In general, input up-scaling method keeps extreme ET values while output 

up-scaling method has more homogenous ET distribution. The coarser the resolution, the 

more homogenous ET becomes for both aggregation methods. The standard deviation 

values of input up-scaling ET are higher than that of output up-scaling ET, except for 

120m, when the latter is slightly higher than the former.  

To compare if ET calculated from two methods are significantly different, paired 

samples t-test was conducted on 60% of pixels from each of the two ET datasets from 

60m to 960m resolutions (Table 4.7). The null hypothesis is that the mean value of ET 

from input up-scaling equals the mean of ET from output up-scaling. 
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Table 4.7 Paired samples t-test of two ET datasets 

Resolutions  

(m) 

Paired Samples Correlations Paired Samples Test 

N Correlation Sig. t df Sig.(2-tailed) 

60 8031 0.979 0.000 139.581 8030 0.000 

120 2070 0.962 0.000 34.537 2069 0.000 

240 487 0.919 0.000 -25.878 486 0.000 

480 138 0.797 0.000 4.015 137 0.000 

960 29 0.632 0.000 -0.533 28 0.599 

 

Two ET are highly correlated at all scales, the finer the resolution, the higher the 

correlation is. The signification values from 60m to 480m are 0, smaller than 0.05, thus 

the null hypothesis is rejected. Mean value of ET from input up-scaling is significantly 

different from the mean of ET from output up-scaling. However, at 960m, the significant 

value is bigger than 0.05, which indicates there is not a statistically significant difference 

between two ET datasets. 

A pixel by pixel comparison of these two maps was performed to examine the 

differences between the two ET maps in further details (Figure 4.12). The relative 

difference was calculated as ET from input up-scaling minus ET from output up-scaling 

at corresponding resolutions to examine where the values differ and to aid in explaining 

why they differ. Three breaking points were chosen to divide the differences: -25%, 0, 

and 25%.  
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Figure 4.12 Pixel by pixel comparison across scales. 

At 60m resolution, about 93% of all pixels are within 0-25% change category. 

The second biggest category is -25%-0, taking about 6.5%. The two biggest categories 

add up to 99.5%. A closer look was taken on the relative difference map with the land 

cover map as reference. Those pixels falling into <-25% and >25% category are mostly 

on the boundary of areas of different land cover classes, particularly the mixed area of 

grass and non-vegetated surfaces. 

When the resolution is 120m, the difference map shows that most of them, about 

92% of all pixels fall into the category of 0-25%. Actually, 91.6% of them are within 1% 

difference. The second biggest category is -25%-0, taking about 7%. The results show 

that at 120 meters although the resolution becomes coarser, the relative differences 
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between these two products are smaller, and most of them underestimate ET by 0-2%. 

While taking a closer look at the relative difference map, those pixels falling into <-5% 

category are on the boundary of areas of different land cover classes and some on the 

non-vegetated surfaces while ET is low.  

When the resolution is 240m, the difference map displays that most of them, 

about 69% of all pixels fall into the category of 0-25%. The second biggest category is 

-25%-0, taking about 19%. When the resolution is 480m, the difference map displays that 

about 30% fall into the category of -25%-0, and 69% in the category of 0-25% (actually 

0-3%). When the resolution is 960m, the difference map displays that 51% fall into the 

category of -25%-0, and 45% in the category of 0-25% (actually 0-7%).  

These findings indicate that when using two aggregation techniques to estimate 

ET, most (between 88.0% -99.5%) of relative difference at each pixel are within ±25% 

from resolution at 60m to 960m. Comparing with land cover map, boundaries of mixed 

neighboring areas (e.g. grass and non-vegetated surfaces) and non non-vegetated surfaces 

are where most of bigger differences (>25% and <-25%) occur.  

ET by land cover classes are further summarized to compare ET estimated using 

two aggregation techniques (Figure 4.13). The orders of ET from high to low are the 

same. However, the mean ET from input up-scaling values for all land cover classes are 

higher than those of mean ET from output up-scaling. The difference is highest in forest 

areas, followed by shrub, grass and non-vegetated areas. At 960m, no pixels are classified 

as non-vegetated areas.  
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Figure 4.13 ET by land cover class across scales. 

A one-way ANOVA test was performed to compare the means of ET from each 

land cover class at resolutions from 30m to 960m (Table 4.8). This test confirms that ET 

values are significantly different for each land cover class at all resolutions (i.e., all 

significance values are less than 0.05).  

Table 4.8 One way ANOVA test of mean ET for each land cover class 

 
Input up-scaling Output up-scaling 

resolution (m) F value Sig.  F value Sig.  
30 13672.56 0 13672.56 0 
60 6014.323 0 4785.55 0 

120 1064.795 0 1382.592 0 
240 117.974 0 207.507 0 
480 10.474 0 37.461 0 
960 8.053 0.001 8.982 0 

 

To study if aggregation techniques alter spatial patterns, three metrics have been 

chosen to compare two ET maps across scales including Number of Patches (NP), and 

Patch Ratio (PR). Table 4.9 shows the metrics of recoded ET maps across scales. At 60 
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meters, ET from input up-scaling has 70% more patches than that of ET from output 

up-scaling. When resolutions become coarser, this pattern remains. However, at 960 

meters, the numbers of patches for ET from input up-scaling and ET from output 

up-scaling are very close. When resolutions become coarser, both PR values for ET from 

input up-scaling and ET from output up-scaling increase, with the PR from ET from input 

up-scaling always bigger than that for ET from output up-scaling. This finding indicates 

that the entire area is less fragmentized with increasing pixel size. When the resolution is 

960m, two ET products have similar number of patches.   

Table 4.9 Metrics of recoded ET 

 

 

 

 

The first research question is about the role of aggregation technique in a 

non-linear model for ET estimation. To evaluate the ET differences from aggregation 

techniques, comparisons between ET estimates using two aggregation techniques are 

studied from three perspectives: correlation, pixel by pixel difference, and statistics by 

land cover class. Findings are 1) the correlation between ET estimated by two 

aggregation techniques is high, and decreased with coarser resolutions 2) there is a 

significant difference between two ET datasets at resolutions finer than 960m 3) pixel by 

pixel differences are mostly within ±25% 4) ET statistics for each land cover are in the 

 
Input up-scaling Output up-scaling 

resolution (m) NP PR NP PR 
30 678 1% 678 1% 
60 686 5% 402 3% 
120 230 7% 184 5% 
240 83 10% 51 6% 
480 37 18% 17 8% 
960 10 19% 9 17% 

http://dict.cn/fragmentized�
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same order and land cover dependent 5) the spatial patterns of ET are dependent on the 

aggregation techniques. 

A non-linear process influenced by multiple factors, ET estimation contains three 

sources of uncertainty: choice of vegetation parameterization, surface temperature and 

the source of net radiation data (Ferguson et al. 2010). The study in this dissertation 

discovered the combined influence of multiple inputs on ET is close to linear. The finer 

the resolution is, the closer it is to linear. Moreover, the statistical summary for each land 

cover class from non-linear estimation are in the same order as from linear estimation. 

When the spatial resolutions become coarser, the landscape heterogeneity causes 

uncertainty in ET estimation. The boundaries along mixed land cover classes are where 

stronger non-linear impact exists. Thus, in a homogenous area, ET can be calculated 

using the linear aggregation from finer to coarser scales, whereas at a heterogeneous area, 

the non-linear impact cannot be ignored. If the study focus is about the spatial pattern of 

ET, the non-linear aggregation method is suggested for both homogenous and 

heterogeneous areas.  

4.3.2 The Relationship between Evapotranspiration and its Indicators across 
Scales 

The second research question is about the scale dependency between ET and its 

indicators, surface temperature and NDVI. To identify a scale dependency, linear 

regressions was performed on ET, based on the two aggregation methods, for NDVI and 

surface temperature (Figure 4.14-Figure 4.19). Their R2 are listed in Table 4.10. 
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Figure 4.14 Linear regressions at 30m. 

 

Figure 4.15 Linear regressions at 60m.  
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Figure 4.16 Linear regressions at 120m. 

  

 

 

 

 

 

 

 

Figure 4.17 Linear regressions at 240m. 
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Figure 4.18 Linear regressions at 480m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.19 Linear regressions at 960m. 
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Table 4.10 R2 for ET from output up-scaling and ET from input up-scaling 
 

Resolution 

(m) 

Input up-scaling 

 

Output up-scaling 

NDVI T 

 

NDVI T 

30 0.61 0.98 

 

0.61 0.98 

60 0.61 0.98 

 

0.56 0.94 

120 0.61 0.89 

 

0.52 0.86 

240 0.44 0.59 

 

0.58 0.42 

480 0.67 0.29 

 

0.30 0.50 

960 0.56 0.41 

 

0.10 0.43 

(P-value < 0.05) 

The trends of R2 (Figure 4.20) show that ET estimations from both aggregation 

methods have stronger correlation with surface temperature than NDVI at resolutions 

finer than 120m, while the correlations decrease with decreasing resolutions. At 

resolutions coarser than 120m, correlation patterns of the drivers of ET are inconsistent. 

With coarsening resolutions, individual pixels are likely to cover heterogeneous 

landscape. The correlations of ET with surface temperature and NDVI change with scale 

due to the change of landscape heterogeneity. The correlation values are dependent on 

aggregation methods, while at finer resolutions, the differences are smaller than those at 

coarser resolutions. 
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Figure 4.20 R2 for ET, NDVI and surface temperature across scales. 

4.3.3 Spatial Autocorrelation Analysis 

The third research question in this dissertation focuses on the role that spatial 

resolution plays in the spatial pattern of ET. In this part, geostatistical analysis was 

performed on ET estimated at various spatial resolutions. The purpose was to identify the 

relationship between the spatial autocorrelation of ET and the resolution. Semivariograms 

were analyzed for ET on day 261 at resolutions from 30m to 960m (Figure 4.21-4.22 and 

Table 4.11). There are several models for fitting the semivariograms, including 

linear,spherical, Gaussian, exponential, and power models. In this study, all models 

available were tested and the models with lowest root-mean-square error were chosen to 

best fit the semivariograms.  
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When resolution was finer than 480m, ranges were approximately equal for ET 

from input up-scaling and ET from output up-scaling. Figure 4.22 shows that at 480m 

and 960m, it was difficult to identify the range for spatial autocorrelation of the study site 

since there is not a constant sill identifiable.  

 

Figure 4.21 Semivariogram analysis of ET at 30m. 

 

 

Distance, h  10-3

g  10

0 0.19 0.38 0.56 0.75 0.94 1.13 1.31 1.5

1.23

2.47

3.7

4.94

6.17
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Figure 4.22 Semivariogram analysis of ET across scales from 60m to 960m. 
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Table 4.11 Parameters for the semivariogram analysis 

Input up-scaling Output up-scaling 
Resolution 

(m) Nugget Partial sill Range Nugget Partial sill Range 

30 0.01 0.55 650 0.01 0.55 650 

60 0.10 0.66 650 0.05 0.48 650 

120 0.17 0.35 1400 0.08 0.46 1300 

240 0.29 0.26 1500 0.13 0.25 1500 

480 0.57 N/A N/A 0.07 N/A N/A 

960 0.35 N/A N/A 0.09 N/A N/A 

 

Range represents the distance within which pixels are spatially autocorrelated, 

where locations beyond are not. When the resolution is finer than 480m, both ET from 

input up-scaling and ET from output up-scaling have obvious ranges. The variance 

increases with distance and becomes constant when the distance is on the order of 

650-1400m. When the resolution is coarser than 240m, there is not a range identifiable 

for spatial autocorrelation. At 480m, the variance among closer pixels are similar to the 

variance among further pixels At 960m, the variance among close pixels are bigger than 

the variance among further pixels.  

The range identified with the 30m resolution data indicates that ET beyond 650m 

is spatially uncorrelated. To accurately model ET, therefore, the resolution should be 

smaller than this range value (i.e., 650m). However, what resolution can best present the 

spatial variability is still unknown. The partial sill is used as an indicator, since it 

represents the variance of a spatially autocorrelated process without any nugget effect. 

The partial sill values are plotted in Figure 4.23.  
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Figure 4.23 Partial sill values across scales. 

In general, partial sill values are higher at finer resolutions. The maximum 

variance of ET from output up-scaling occurred at 30m. However, the maximum variance 

of ET from input up-scaling occurred at 60m. This finding reveals that the finest 

resolution does not necessarily best represent the spatial variability in the dataset. As 

stated earlier, ET is dependent on the land cover classes. To accurately represent the 

spatial variance of ET, the landscape heterogeneity should be considered. Some factors 

including patch size, patch shape and the distribution of patches can be used to quantify 

the landscape composition. The ideal resolution should have the highest partial sill value 

in the semivariogram analysis. This finding has three indications: 1) fine resolution can 

better present the variance of landscape than coarse resolution 2) the finest resolution 
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may not be the best resolution to reflect the spatial variability 3) the best resolution is 

impacted by the aggregation method.  

The implications of findings in this subsection are the spatial resolution plays an 

important role in the study of spatial pattern. The selection of spatial resolution would 

lead to different levels of aggregation, as a result altering the spatial pattern. The value 

difference in neighboring pixels are close to zero at finer resolutions, and increase with 

coarsening resolution, then becomes smaller again due to the averaging inherent in the 

aggregation process. For a particular study area, a range exists when the resolution is 

finer than a particular threshold. At resolutions finer than a threshold (e.g. 480m in this 

study), the range of spatial autocorrelation is identifiable. When resolutions are coarser 

than the threshold, the range of spatial autocorrelation disappears. The choice of 

resolution not only impacts the identification of range but also the spatial variability that 

can be measured in the entire study area. Not simply the finest resolution is the best, 

partial sill should be used to evaluate if a resolution can accurately represent the spatial 

variability.  

4.4 Discussions 

The SEBAL model needs two pixels to represent very dry and very wet 

conditions. These two pixels serve as the extreme values in ET estimation. In this study, 

since there is no irrigation in the study area, the wet pixel is instead selected in forested 

areas that have the lowest temperatures – these will be the wettest pixels. Many low 

temperature, forested pixels were iteratively tested as the wet pixel to examine the impact 

of different wet pixels on ET estimation. Findings show that there are negligible 

differences in ET estimation that resulted from different wet pixels. Thus, although the 
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selection of wet and dry pixels is subjective, as long as the selection meets the criteria 

(e.g. low temperature and forest in this study), ET estimation is reliable. 

Uncertainty in the eddy covariance measurements made at the three sites at 

Freeman Ranch presents challenges for validating remotely sensed estimates of ET.  

Without additional processing, the uncertainty associated with eddy covariance 

measurements is about 20% due to non-closure of the energy balance (Farahani et al. 

2007; Twine et al. 2000; Wilson et al. 2002). The field data in this study have been 

processed to close the energy balance (Moore and Heilman 2011), but there is still a 

small mismatch between ET estimated from remotely sensed data and measurements 

from eddy covariance towers. Part of the difference is attributable to the timing of 

satellite overpass.  The satellite passes over the study site at 10:55 am local time, 5 

minutes before the eddy covariance towers and the weather station make measurements. 

Although it is only a 5 minute delay, the parameters from the weather station (e.g., wind 

speed and air pressure) may change during this short period, which in turn will have an 

impact on the ET calculated using the SEBAL model. It is expected, however, that these 

differences are minimal.   

The footprint of an eddy covariance tower is dependent on sensor height and local 

surface roughness, and changes continuously as climate parameters change. Li et al. 

(2008) compared satellite-based surface energy balance models and tower-based flux 

measurements over heterogeneous landscapes and found a good agreement at the 30 m 

and 120 m resolutions. However, due to the influence of wind direction and local surface 

roughness, the footprint of a flux tower may be an irregular shape which leads to a 

mismatch between the actual flux tower footprint and the square shaped pixel of satellite 
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imagery. This means that the footprint of the flux tower and the pixel size do not match 

and that the difference in sizes varies over time. The differences in size could potentially 

contribute to greater ET estimation error when using satellite imagery. I do not, however, 

consider this error to be large in this case because ET values estimated by SEBAL at the 

pixel level are highly correlated with ET measured by the flux towers. The temporal 

trends of ET estimated by SEBAL also parallel those of ET measured by the flux tower. 

Although SEBAL is a reliable ET estimator, some factors should to be considered 

to improve its estimation accuracy. In SEBAL, weather variables (i.e. wind speed, air 

temperature and air pressure) are assumed to be uniform across the entire study area, 

when in reality the effects of surface heterogeneity on weather occur at a much smaller 

scale (e.g., a 5-10 km area) (Wieringa 1986). In reality, there might be some variations 

for each parameter that could be modeled by placing more measurement instruments in 

the study area and then interpolating spatially varying weather surfaces.   

Other biophysical factors specific to the study site should be considered to 

increase SEBAL accuracy. For instance, the SEBAL model overestimated ET for all nine 

dates at the woodland site. Literature indicates that the soil depth at the woodland site is 

the shallowest (0.2 m overlying fractured indurated limestone) among the three sites, 

while the soil depth for savanna site is about 1.6m and 0.5m at the grassland site (Moore 

and Heilman 2011). Water storage capacity is limited by the depth of soil, which in turn 

confines water available for the ET process. Moore et al. (2009) found lower latent and 

higher sensible heat in shallow soil systems than what would occur in deeper soil 

systems. Although soil depth has an impact on the ET process, the SEBAL model does 

not use soil depth directly as an input parameter. Results at the woodland site reveal that 
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without taking the soil depth into account, SEBAL seems to overestimate ET where the 

soil is shallow. More work is needed to study the soil depth impact on ET estimation 

using SEBAL. Although the SEBAL model overestimated ET for all nine dates at the 

woodland site, the date selected for spatial scaling analysis has the closest ET value to the 

flux tower measurement (i.e. 3.7 vs. 3.8 mm/day), which is within the acceptable 10% 

error range described by Hendrickx and Hong (2005). Further spatial analysis based on 

this ET estimation from SEBAL is reasonable and the conclusions are valid. 

Comparisons of ET estimated from the two aggregation methods reveal that ET 

from input up-scaling keeps extreme values better than ET from output up-scaling. Both 

aggregation methods use a low pass filter that simply averages the pixel values from 

higher resolutions.  Equal weight is given to each high resolution pixel used to calculate 

a coarser resolution average.  Such an equal weighting scheme reduces the spatial 

variability of input parameters and/or ET estimates and reduces the influence of 

landscape heterogeneity on the ET process. The input up-scaling method, however, 

minimizes aggregation errors and reflects the heterogeneity of the input parameters (e.g. 

NDVI, surface temperature) better than the output up-scaling method and, therefore, 

allows for a wider range of calculated ET estimates. The output up-scaling method only 

aggregates ET without considering its drivers and their spatial patterns, thus reducing 

spatial heterogeneity in the aggregation process. Weighted, or non-linear, aggregation 

methods should be evaluated in future to determine their ability to maintain extreme 

values resulting from landscape heterogeneity.   

The equation used for ET estimation in SEBAL does not change across scales – 

SEBAL assumes homogenous coverage for each pixel. Theoretically, therefore, the 
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correlation between ET and its drivers (i.e., NDVI or surface temperature) should stay the 

same regardless of the scale of analysis. The correlation analysis at different scales, 

however, shows a non-uniform relationship between ET and its drivers. This is 

attributable to the increase in sub-pixel landscape heterogeneity that occurs as more 

pixels are aggregated to coarser resolutions. For example, results indicate that from 30m 

to 120m resolution, surface temperature always has a higher correlation with ET than 

with NDVI. At resolutions coarser than 120m the relationships between ET estimation 

and its drivers unexpectedly switches order – NDVI has a higher correlation with ET than 

surface temperature. An alternative explanation of the results is that surface temperature 

has its greatest influence on ET at finer scales and NDVI has its greatest influence at 

coarser scales.   

Semivariogram analysis is used to model spatial autocorrelation, and has been 

used to provide an estimate of the minimum resolution at which to represent land cover 

types (Atkinson and Lewis 2000). Kustas et al. (2004) suggested the range value 

indicates the resolution at which to model land cover since, they argue, the range 

corresponds to the land cover patch size. Resolutions greater than the range value will 

contain mixed land cover types. My study, however, shows that the range value 

consistently increases as the resolution becomes coarser. Since the size of actual land 

cover patches does not increase simply because the pixel resolution becomes coarser, I 

argue that the range value is not the best indicator of patch size. I argue, instead, that the 

partial sill is a better indicator of the most appropriate patch size, and is therefore 

indicative of the resolution at which ET should be modeled. The nugget is a measure of 

differences between pixel values that are immediately adjacent, and when the nugget is 
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large the resolution closely matches the land cover patch size. It would appear the nugget 

could be used to indicate the most appropriate resolution at which to model ET, except 

that it is not possible to compare nugget values for different aggregation techniques 

without being able to first standardize them. Standardization is necessary because the 

each dataset has different sill values (i.e., the total range of modeled semivariance). The 

partial sill is the difference between the total range of variance and the nugget and can be 

used as a standardized measure for comparing different resolutions of imagery. I argue 

that the resolution that produces the highest partial sill is the most appropriate resolution 

for modeling the spatial variability of ET. 



 
 

76 
 

CHAPTER V 

CONCLUSION AND FUTURE WORK 

This study exemplifies how remotely sensed data can provide a way to investigate 

the scale dependency of mass and energy fluxes in the hydrologic cycle. In this 

dissertation, a means was developed to analyze the scaling relationships that exist in a 

complex system. Factors impacting the scaling relationship include aggregation 

techniques, drivers or indicators of the phenomenon, and the spatial resolution used in the 

study. Scale changes lead to the change of spatial pattern, the correlation between input 

and output as well as the spatial autocorrelation. The objectives of this research were to 

1) identify aggregation effects in the upscaling process, 2) examine correlations of NDVI 

and surface temperature with ET estimations across scales, and 3) investigate the impact 

of spatial resolution of remotely sensed data on the observance of the spatial 

autocorrelation of ET. 

To answer three research questions, ET estimated from remotely sensed data in 

the SEBAL model were compared with ET measured by the eddy covariance technique at 

three tower sites at Freeman Ranch, Texas. ET was measured between March and 

December of 2005 at grassland, woodland, and savanna sites. R2 values between ET from 

SEBAL and in-situ were 0.81 at grassland, 0.87 at savanna, and 0.76 at woodland. ET 

from SEBAL overestimated ET at the woodland site. Temporal comparisons also show 
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that ET values from LANDSAT 7 at three sites have the same trends as those from eddy 

towers. ET values were highest in June at all three sites. The lowest values appeared in 

December. The validation shows ET from SEBAL is reliable for further ET study.   

Next, the temporal pattern of ET was analyzed with NDVI, surface temperature, 

and length of day. ET is found to highly relate to the length of day with an R2 of 0.97, 

which indicates that length of day is the major temporal indicator of ET. The spatial 

pattern of ET was studied by comparing the patterns of surface temperature, NDVI, and 

land cover at resolution of 30m. Surface temperature was found to have a strongly 

negative relationship with ET (i.e. an R2 of 0.98), while NDVI had a positive but less 

strong relationship with ET (i.e. an R2 of 0.61). Land cover and ET have very similar 

spatial patterns.  

In achieving the first objective, two aggregation techniques are used to aggregate 

ET from finest resolution (i.e. 30m) to coarser (i.e. 60m, 120m, 240m, 480m and 960m). 

One is to scale up ET by averaging ET calculated at 30m. The other one is to average the 

input data from 30m and then calculate ET in SEBAL. ET results are called ET from 

output up-scaling using the first approach and ET from input up-scaling using the second 

approach. Statistics, pixel by pixel difference and spatial patterns of two ET results were 

compared to see the differences created by two aggregation techniques. In general, ET 

from input up-scaling had a wider range than ET from output up-scaling and maintained 

extreme values during the aggregation process while ET from output up-scaling 

moderates out the extreme values. In addition to differences in minimum, maximum, 

mean and range values, paired sample t-tests showed that when the resolutions are finer 

than 960m, ET from input up-scaling is significantly different from ET from output 
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up-scaling. Linear regression shows that the correlation between ET from input 

up-scaling and ET from output up-scaling decreases with coarsening resolutions. Pixel by 

pixel comparison of two ET results reveals that differences vary with scales, while most 

of the differences are within ±25%. The spatial patterns of ET from input up-scaling and 

ET from output up-scaling show that although having different number of patches, both 

ET distributions become more homogenous when the scale is coarser. Both aggregation 

techniques show that ET is significantly different among different land cover classes. 

The second objective of the study was to study the scale dependency of ET 

estimation on NDVI and surface temperature across scales. Linear regression shows that 

surface temperature is more correlated to ET than NDVI when resolutions are finer than 

240m. Both surface temperature and NDVI have decreasing correlation with ET when the 

resolution decreases. When resolution is coarser than 240m, the correlations become 

inconsistent. The landscape heterogeneity plays a role in the relationships between ET 

and its external and internal indicators. The impact of heterogeneity can alter the 

correlation of ET and the inputs for ET estimations across scales. The correlation is also 

dependent on aggregation methods. 

The third objective was to study the relationship between the spatial resolutions of 

remotely sensed data and the spatial autocorrelation of ET. Semivariogram analysis was 

conducted on ET across scales. Range and partial sill were used to study the spatial 

autocorrelation of ET. When the resolution is finer than a threshold (i.e. 480m in this 

study), ranges are identifiable (i.e. on the order of 650-1400m in this study). When the 

resolution is coarser, it becomes difficult to find a range. Finer resolution can better 

represent the variance of the landscape than coarse resolution. However, the finest 



79 
 

 

resolution may not be the best resolution to reflect the spatial variability. In this study, ET 

from output aggregation has the highest variance at 30m resolution, while ET from input 

up-scaling has the highest variance at 60m resolution. The resolution having the highest 

partial sill value can best present the landscape’s spatial variability. We should be 

cautious to draw conclusions about no spatial autocorrelation since it is possible that the 

resolution is too coarse to reflect the heterogeneity of the landscape. 

Although a lot of efforts have been devoted to research in scale issue, there is no 

general method for scaling relationship. This is partly due to a lack of understanding for 

processes and patterns in complex systems that are scale dependent. This research 

provides a way to study the scaling relationship in the following steps. First, it is essential 

to have a general understanding of the phenomenon and the drivers. In this particular 

study, ET and the major inputs for ET estimation including NDVI and surface 

temperature are calculated. ET is found to have the highest correlation with surface 

temperature. The spatial pattern of ET is dependent on the distribution of land cover 

classes. Next, the landscape heterogeneity should be considered. When scale changes, the 

landscape heterogeneity may change. As a result, the correlation between ET and its 

input parameters can be altered. The landscape heterogeneity also determines the spatial 

autocorrelation, which can be evaluated by conducting a geostatistical analysis. Finest 

resolution can be used to identify a range for spatial autocorrelation. However, finest 

resolution may not be the best one to represent the maximum spatial variability. Partial 

sill reveals the variance of the landscape. Resolution with highest partial sill should be 

the one to use for best representation of landscape variance. Third, for a non-linear 



80 
 

 

process, input up-scaling aggregation method keeps the extreme values better than output 

up-scaling aggregation method. 

Taken as a whole, the findings indicate that input up-scaling is the best method of 

data aggregation because it (1) maintains extreme values, (2) produces ET estimates that 

are more highly correlated with its drivers, and (3) produces ET estimates with the largest 

partial sill value. Each of these reasons suggests that landscape heterogeneity is key to 

studying the scaling relationship of a non-linear biophysical process. In order to capture a 

biophysical process accurately, we must consider the impacts of each spatially 

heterogeneous input parameter. Simply aggregating estimated results from the finest 

resolution without taking into account each input parameter’s spatial pattern leads to the 

loss of spatial details. Landscape heterogeneity also impacts the relationship between 

causes and effects when scale varies. We must be cautious when we study 

scale-dependent cause and effect relationships. Relationship captured at finer resolutions 

may not exist at coarser resolutions because of changes in landscape heterogeneity. The 

scale-dependency of landscape heterogeneity also determines the spatial variability of the 

biophysical phenomenon.  

Future work can be conducted with the following topics. This study reveals that 

the correlations between ET and NDVI, surface temperature become inconsistent at 

resolutions coarser than 120m. How the heterogeneity of landscape impacts the 

correlations between ET and its input needs further investigation. In this study, the range 

for spatial autocorrelation exists only when resolutions are finer than 480m. The range 

values are on the order of 650-800m. The relationship between the range value and 

spatial resolution can be a topic for further study. Resolution bearing the maximum 
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variance is not the finest resolution for spatial variability representation. How the 

landscape heterogeneity impacts the relationship between the spatial resolution and 

spatial variance remains uncertain. 
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