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Abstract

Proteins that lack tertiary stability under normal conditions, known as intrinsically disordered, 

exhibit a wide range of biological activities. Molecular descriptions for the biology of intrinsically 

disordered proteins (IDPs) consequently rely on disordered structural models, which in turn 

require experiments that assess the origins to structural features observed. For example, while 

hydrodynamic size is mostly insensitive to sequence composition in chemically denatured 

proteins, IDPs show strong sequence-specific effects in the hydrodynamic radius (Rh) when 

measured under normal conditions. To investigate sequence-modulation of IDP Rh, disordered 

ensembles generated by a Hard Sphere Collision model modified with a structure-based 

parameterization of the solution energetics were used to parse the contributions of net charge, 

main chain dihedral angle bias, and excluded volume on hydrodynamic size. Ensembles for 

polypeptides 10 to 35 residues in length were then used to establish power-law scaling 

relationships for comparison to experimental Rh from 26 IDPs. Results showed the expected 

outcomes of increased hydrodynamic size from increases in excluded volume and net charge, and 

compaction from chain-solvent interactions. Chain bias representing intrinsic preferences for α 
helix and polyproline II (PPII), however, modulated Rh with intricate dependence on the simulated 

propensities. PPII propensities at levels expected in IDPs correlated with heightened Rh sensitivity 

to even weak α helix propensities, indicating bias for common (φ, ψ) are important determinants 

of hydrodynamic size. Moreover, data show that IDP Rh can be predicted from sequence with 

good accuracy from a small set of physicochemical properties, namely intrinsic conformational 

propensities and net charge.
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INTRODUCTION

Structural characterizations of intrinsically disordered proteins (IDPs) provide key molecular 

details from which to understand the broad range of biological tasks that have been 

associated with this protein class.1-4 Identified by a persistent lack of tertiary stability, 
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intrinsic disorder is common in eukaryotic proteins and protein domains.1 Functionally, 

IDPs have roles regulating gene expression,5,6 cellular communication,7-9 and subcellular 

spatial organization,10-12 as well as mechanical duties like maintaining curvature in the cell 

bilayer.13 Molecular descriptions of IDP biology and its associated human disorders6,9,14 

thus depend on an accurate accounting of the features and properties of disordered protein 

structures.

Hydrodynamic size, as represented by the radius of gyration, Rg, or the hydrodynamic 

radius, Rh, has been widely used for quantifying protein structures15-17 and other 

polymers.18-20 Rh measured under normal conditions and from published reports for 

IDPs21-39 and folded proteins16,40,41 are provided in Figure 1. When comparing sets of Rh 

(or Rg), logarithmic plots of Rh and N, the number of subunits in a polymer (e.g., the 

number of amino acids in a protein), are useful since the y-axis intercept and slope in the 

dataset trend provide a pre-factor (Ro) and exponent (v) for a power-law scaling relationship 

that can be used to numerically approximate Rh from N; Rh ~ Ro·Nv. More importantly, v, 

sometimes referred to as the Flory exponent, provides information on the nature of the 

molecular interactions governing the observed Rh.42,43 For v less than 0.5, polymers are 

considered to be in ‘poor’ solvents where chain-chain intramolecular interactions dominate 

relative to chain-solvent intermolecular interactions. For example, a log-log plot of Rh and N 
for the folded proteins in Figure 1 (see inset) yields v = 0.3, indicating that the 

hydrodynamic dimensions of folded proteins are established mostly from intramolecular 

chain-chain contacts (e.g., hydrogen bonds, ionic pairs, packing interactions) that form 

owing to folding and the accompanying burial of atomic surfaces. If folded proteins are 

transferred to solutions with high concentrations of urea or guanidine hydrochloride, causing 

denaturation of native folds, v increases to ~ 0.6.15,16 Polymers are considered to be in 

‘good’ solvents where chain-solvent interactions dominate relative to chain-chain 

interactions when v is greater than 0.5.42,43 The observed v for chemically-denatured 

proteins thus predicts well-solvated structures with few stable tertiary contacts and minimal 

burial of atomic surfaces.

When comparing Rh from IDPs under normal conditions to the expected hydrodynamic size 

of a protein in a poor solvent, given by the power-law scaling relationship for folded proteins 

(see Figure 1), it is not surprising that IDP Rh are noticeably larger relative to folded proteins 

of similar N. IDP structures are mostly lacking in stable, tertiary contacts1-4 that are 

hallmarks of folded and globular proteins and, accordingly, should exhibit larger v and 

concomitant larger Rh. Likewise, since normal aqueous solutions are poor solvents for 

polypeptides relative to concentrated urea or guanidine hydrochloride solutions, as 

demonstrated with solubility studies44-46 and fluorescence correlation spectroscopy 

experiments,47 it may not be surprising that IDPs exhibit Rh that are usually, but not always, 

smaller than the trend for chemically-denatured proteins. From the reference of folded and 

chemically-denatured proteins, Rh that have been observed for IDPs are reasonable.

In contrast to chemically denatured proteins, which yield Rh and Rg that are mostly 

insensitive to details of amino acid sequence,15,16 IDPs with similar N often show large 

differences in Rh. For example, Rh ranges from ~ 24-32 Å for IDPs with N ~ 90 in the 

dataset of Figure 1. The molecular origins for these differences in Rh could be owing to 
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coulombic interactions between charged side chains, since the spacing48 and sequential 

patterns49 of charged groups in disordered structures are known to influence Rh. Biases in 

main chain dihedral angles, such as propensities for (φ, ψ) associated with type II 

polyproline helix (PPII), are also thought to modulate Rh in disordered structures.21,48 

Overall, these data indicate that certain sequence details are capable of modulating the 

structural features of disordered proteins under normal conditions. Identifying the influential 

physical properties and determining their relative strengths (i.e., energetics) and additivities 

are thus prerequisites for a quantitative description of IDP structures.

Here, we investigate the effects of net charge, main chain dihedral angle bias, and excluded 

volume on the hydrodynamic dimensions of IDPs as reported by Rh. The term ‘excluded 
volume’ is used to represent the exclusion of chain conformations from steric restrictions 

associated with atomic volumes. Computer simulation of disordered structures using a Hard 

Sphere Collision (HSC) model developed by Richards50 and modified to approximate chain-

solvent interactions using the solvent accessible surface area (SASA) parameterization of 

Hilser and Freire51 provided a theoretical construct from which to parse and combine these 

structural effectors. Simulations were used to generated large conformational ensembles of 

disordered polypeptides ranging in size from 10 to 35 residues that were then used to 

establish power-law scaling relationships for comparison to the set of IDP Rh in Figure 1. 

Since prior experiments and calculations have shown that the hydrodynamic sizes of 

disordered ensembles are indeed sensitive to sequence details associated with net charge and 

intrinsic PPII propensities,21,48,49,52-54 experimental Rh from IDPs with net charge and chain 

bias for PPII that are statistically elevated relative to dataset norms were verified using 

dynamic light scattering (DLS) and analytical size exclusion chromatography (SEC) 

techniques. These verifications of experimental Rh were performed to control for data that 

could be strongly influential in our comparative study.

The results indicated that excluded volume effects owing to sequence differences were 

generally minor for establishing hydrodynamic size differences among IDPs. Net charge 

effects on Rh were mostly consistent across the IDP dataset, whereby increases in net charge 

correlated with increased Rh, showing agreement with previous reports.52-54 The IDP with 

the highest net charge, prothymosin-α, however, trended separately from the other IDPs in 

the dataset when assessing apparent Rh sensitivity to net charge. An important structural 

parameter for establishing Rh in disordered ensembles seemed to be main chain dihedral 

angle bias. Rh sensitivity to chain bias for α helix was detected in both a sequence analysis 

of the IDP dataset and computer generated ensembles simulated with the HSC model. Of 

note, the effects on Rh from α helix propensities, which caused compaction, were stronger 

when combined with PPII propensities. Overall, the results indicate a key role provided by 

intrinsic chain bias for determining the hydrodynamic size and show that, at least under 

normal conditions, IDP Rh can be described accurately from sequence-based estimates of 

intrinsic conformational propensities and net charge.
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MATERIALS AND METHODS

Computer Generation of Disordered Structures

Conformers for polypeptide chains restricted to the 20 normal amino acids were generated 

by a random search of conformational space using the HSC model.40,50 A detailed 

description of the computer algorithm is available elsewhere.55 Briefly, this model uses van 

der Waals atomic radii56,57 as the only scoring function to eliminate grossly improbable 

conformations. The procedure to generate a random conformer starts with a unit peptide and 

all other atoms for a chain are determined by the rotational matrix.58 Backbone atoms are 

generated from the dihedral angles φ, ψ, and ω and the standard bond angles and bond 

lengths.59 To sample conformational space efficiently, (φ, ψ) are restricted to the allowed 

Ramachandran regions.60 For peptide bond dihedral angles (ω), non-PRO amino acids were 

given 100% trans form (180°) and PRO sampled the cis form (0°) at a rate of 10% if the 

preceding amino acid was non-PRO, and at a rate of 6% if the preceding amino acid was 

PRO.61 The dihedral angle ω was given a Gaussian fluctuation of ± 5° around the value of 

180° or 0°. Of the two possible positions of the Cβ atom, the one corresponding to L-amino 

acid residues was used throughout the studies. The positions of all other side chain atoms 

were determined from random sampling of rotamer libraries.62 To calculate state 

distributions typical of protein ensembles, a structure-based energy function parameterized 

to solvent-accessible surface areas was used to population-weight the generated 

structures.63-71

Expression and purification of recombinant protein

Genes coding for Hdm2-ABD and prothymosin-α, each including an N-terminal histidine 

tag and thrombin cleavage site, were cloned into plasmid expression vectors by DNA 2.0 

(Menlo Park, California). Hdm2-ABD and prothymosin-α were individually expressed, 

isolated from bacterial lysate, and affinity tag removed using the expression and purification 

protocols described elsewhere for recombinant human p53(1-93).72 The same expression 

and purification protocols were used for recombinant wild type human p53(1-93) and the 

PRO− and ALA−PRO− variants.21 Recombinant PGR was provided as a gift from Andrew 

Herr (Cincinnati Children’s Hospital, Cincinnati, Ohio, USA). Rh for each IDP was 

measured by techniques based on dynamic light scattering (DLS) and size exclusion 

chromatography (SEC), described below. SEC methods require a linear relationship between 

KD (distribution coefficient) and Rh for the tested range, which was demonstrated using the 

folded proteins Staphylococcal nuclease, bovine erythrocyte carbonic anhydrase, chicken 

egg albumin, and horse heart myoglobin. Nuclease was expressed and isolated using the 

protocols described elsewhere.73 Carbonic anhydrase, albumin, and myoglobin were 

purchased from Sigma-Aldrich (St. Louis, MO) and further processed by ion exchange 

chromatography and extensive dialysis to remove residual contaminants.

DLS measured Rh

Dynamic light scattering readings used noninvasive backscatter optics and were measured 

using a Zetasizer Nano ZS with Peltier temperature control from Malvern Instruments 

(Worcestershire, UK). All measurements were performed at 25 °C and used 1-cm path-

length quartz cuvettes, as described elsewhere.21,40 Samples contained 600 μL of ~ 0.5 
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mg/mL protein and were filtered immediately prior to use by 0.2-μm PVDF syringe-driven 

filters. Rh reported for each protein was the average of at least 5 measurements.

SEC measured Rh

Size exclusion chromatography (SEC) experiments used Sephadex G-75 (GE Healthcare, 

Piscataway, NJ) equilibrated in 10 mM sodium phosphate, 100 mM sodium chloride, pH 7, 

following previously described protocols.21,40 Elution volumes (Ve) for each protein were 

determined from chromatograms measured using a Bio-Rad BioLogic LP System equipped 

with a UV absorbance monitor (Hercules, CA). Each sample was 100 µL and contained 0.5–

1 mg/mL protein in 10 mM sodium phosphate, 100 mM sodium chloride, pH 7 with 3 

mg/mL blue dextran and 0.3 mg/mL 2,4-dinitrophenyl-L-aspartate added as indicator dyes 

for determining the void (Vo) and total (Vt) column volumes, respectively. For PGR and 

prothymosin-α, which lack PHE residues and have low absorbance at 280 nm, 250 µL 

samples containing 3-4 mg/mL of protein were used. KD for each protein was determined as 

KD = (Ve - Vo)/(Vt - Vo). KD reported for each protein was the average of at least 3 room-

temperature (~ 22 °C) measurements.

RESULTS

Composition of experimental Rh dataset

The hydrodynamic dimensions of disordered proteins under normal conditions are known to 

depend on sequence, specifically proline54 and alanine content,21 chain length,54 chain bias 

for PPII,48 net charge,52-54 and charge distributions where mixing of positive and negative 

charged residues show compaction relative to linear stretches of like charges.48,49 IDPs in 

the experimental dataset, which numbered 26, were selected to provide sequence-based 

variations associated with these known modulators of Rh. N ranged from 40 to 260 and net 

charge from 1 to 43, where low net charge was from mixing positive and negative groups 

(e.g., SNAP25 and securin) or from relatively few charged residues (e.g., ShB-C). The 

dataset includes IDPs known to aggregate under certain conditions (e.g., CFTR-R74 and α-

synuclein75) or form dimers (e.g., sml139), as well as IDPs that have high monomeric 

solubility (e.g., p53 TAD22 and prothymosin-α24). Sequence content among dataset IDPs 

was generally diverse (see Fig. S1 in Supporting Information) with, for example, the 

fractional number of PRO residues (i.e., (# PRO residues)/N) ranging from 0 to 0.29, ALA 

from 0 to 0.24, SER from 0.02 to 0.20, and GLU from 0.03 to 0.31. The identity, sequence, 

and experimentally determined Rh for each IDP is provided in Table S1 of the Supporting 

Information. Rh measured for proteins containing histidine affinity tags were avoided since 

these affinity tags are known to compact Rh.54 Folded proteins destabilized by mutation 

(e.g., CTL9-I98A76) were not included to limit the investigation to IDP sequences.

As mentioned above, numerous studies have demonstrated that increases in net charge 

correlate with increases in Rh for IDPs.52-54 For each IDP in Table S1, net charge was 

estimated from sequence as the absolute value in the number of GLU and ASP residues 

minus the number of LYS and ARG residues. This sequence-estimated net charge was 

normalized to IDP size,
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(1)

using N and the Flory exponent for IDPs54 to calculate a net charge density. Figure 2A 

shows that net charge density calculated for 23 of 26 IDPs were within 1 standard deviation 

of the dataset average, 1.2 ± 0.9. Outlier IDPs are indicated in the figure and, of the 3, 

sequences from Hdm2-ABD and prothymosin-α gave net charge density values that were 

significantly above the dataset norm. Based on these data, charge effects on structure may be 

pronounced in Hdm2-ABD and prothymosin-α relative to the cumulative effects of charge 

on structure in the other dataset IDPs. Accordingly, experimental Rh from Hdm2-ABD and 

prothymosin-α may hold greater influence for assessing the effects on Rh owing to net 

charge. To verify Rh for these two IDPs, recombinant Hdm2-ABD and prothymosin-α were 

expressed, isolated from bacterial lysate, and Rh measured using DLS and SEC techniques. 

Results from these experiments are shown in Figure 2C and demonstrate that Rh for Hdm2-

ABD and prothymosin-α were found to be 31.7 Å and 33.6 Å, respectively. Our 

measurements for prothymosin-α gave Rh that were practically identical to the literature 

reported value of 33.7 Å.24 The literature reported value for Hdm2-ABD was 25.7 Å,78 

which was lower than our measurements. Changing solution conditions to match the prior 

report (10 mM sodium phosphate, 10 mM sodium chloride, pH 6) did not correct the 

discrepancy, yielding 34.2 Å for Rh for Hdm2-ABD when determined from SEC-measured 

KD. We assume the increase in Rh for our second measurement was from decreased solution 

ionic strength, which could increase net electrostatic repulsion in Hdm2-ABD from its high 

net charge.

IDP Rh have also been observed to trend with intrinsic propensities for PPII helix.21,48 To 

estimate chain bias for (φ, ψ) representative of PPII structure for each dataset IDP, 

experimental propensities for the 20 common amino acids from Elam and colleagues79 were 

used. Figure 2B shows the chain averaged propensity, fPPII,chain, determined for each IDP 

sequence by summing the experimental propensities across a sequence and dividing by N. 

For the dataset, the average fPPII,chain was 0.38 ± 0.06. The 135-residue intrinsically 

disordered Proline/Glycine-rich Region (PGR) of the cell surface protein Aap from 

Staphylococcus epidermidis80 was included in the IDP dataset specifically because its 

sequence yields a value for fPPII,chain that is much higher than average. Figure 2C shows that 

Rh measured for recombinant PGR using DLS and SEC methods gave an average of 37.7 Å. 

Other IDPs with calculated fPPII,chain that were substantially outside the dataset norm were 

p53(1-93) and the PRO− and ALA−PRO− variants of p53(1-93). Since experimental Rh from 

these IDPs could hold greater influence for testing the effects on Rh owing to chain bias for 

PPII, experimental Rh were verified using DLS and SEC. Results from these experiments are 

given in Figure 2C and demonstrate that Rh for wild type p53(1-93), PRO− p53(1-93), and 

ALA−PRO− p53(1-93) were 32.3 Å, 27.5 Å, and 27.4 Å, respectively, each of which were 

practically identical to the literature reported values.21
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Rh calculated from simulated ensembles

Conformers for polypeptide sequences were generated using the HSC model,40,50 which 

builds structures from the standard bond angles and bond lengths,59 a random sampling of 

backbone dihedral angles and side chain rotamer libraries,62 and discards those containing 

contact violations based on van der Waals atomic radii.56,57 Each structure generated for a 

conformational ensemble is independent of previously generated structures. Figure 3A 

demonstrates typical HSC simulation output, using 15-residue poly-GLY, poly-ALA, and 

poly-PRO sequences as examples. Although any number of structural metrics could be 

presented, L/2 is used to represent an approximate Rh. L was calculated as the maximum 

Cα-Cα distance in a generated structure and <L> is the population-weighted average for an 

ensemble. The inset to Figure 2C shows that L/2 is a reasonable estimate for experimental 

Rh when the structure of a protein is known.

If the generated structures are given equal statistical weight, symmetric distributions are 

obtained for L/2 in ensemble populations. Relatively few conformers for an ensemble 

exhibit highly extended or highly compacted structures and most are structurally in-between 

these two extremes. To approximate the effects of chain-solvent interactions on an ensemble, 

a structure-based energy function that has been parameterized to SASA51 and tested 

extensively63-71 was used to estimate the solution energetics of each generated conformer. 

This SASA-based energy function does not include terms accounting for the energetics of 

common intramolecular forces such as intra-chain hydrogen bonds and charge-charge 

interactions, which could be added separately.48 The energy function calculates a Gibbs free 

energy for each structure (ΔGi) and sets probabilities by the Boltzmann distribution,

(2)

where Pi is the probability of structure i, Ki is the statistical weight from the relative Gibbs 

free energy (Ki = e−ΔGi/RT, where R is the gas constant and T is absolute temperature), and 

the summation is over all structures in an ensemble. Ensemble populations for poly-GLY, 

poly-ALA, and poly-PRO favor compacted structures with application of the SASA-based 

energy function (see Fig. 3A), phenomenologically similar to the hydrophobic collapse 

expected of polypeptides in water.47 Energy-weighted distributions tend to show a positive 

skew, with the population-weighted value,

(3)

slightly higher than the distribution mode. To calculate Rh from a simulated ensemble for 

polypeptide sequences using this model, conformers were generated until <L> converged to 

a statistically stable value (Fig. 3A inset). <L> was considered stable if its value changed by 

less than 1% over a 10-fold increase in the number of conformers generated. For the 

computational results reported here, Rh was calculated from simulated ensembles as <L>/2 

using equation 3.
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Estimating excluded volume effects on Rh

Computer simulations using the HSC model to compute <L> were intractable for poly-ALA 

with N > 75,40 and prohibit direct simulation of full sequences from each IDP in the dataset. 

Polypeptide sequences containing large, bulky side chains (e.g., PHE, TRP, PRO) also 

exhibit less efficient conformer sampling from generating steric conflicts at higher rates. To 

manage these computational limitations associated with polypeptide length, Rh (i.e., <L>/2) 

calculated from ensembles for short sequences were extrapolated to larger N. For example, 

simulation results for poly-ALA, poly-GLY, and poly-PRO are shown in Figure 3B and 

compared to IDP Rh from the experimental dataset. Rh for poly-GLY and poly-PRO were 

calculated from ensembles using N = 10, 15, 20, 25, and 35. Log-log plots of Rh and N were 

constructed to obtain the pre-factor (Ro) and exponent (v) for the poly-GLY and poly-PRO 

curves shown in the figure. For poly-ALA, the trend of Rh with N determined previously40 

was used.

Comparing Rh from simulated ensembles for poly-ALA, poly-PRO, and poly-GLY 

demonstrates the limits of sequence-based excluded volume effects on IDP Rh in this model. 

Removing a heavy atom (Cβ) attached to the main chain at each residue position results in 

decreases in Rh at all N, as shown by poly-GLY relative to poly-ALA. In contrast, attaching 

an additional heavy atom (Cδ) directly to the main chain at each residue position increases 

Rh, as shown by poly-PRO relative to poly-ALA.

To estimate excluded volume effects on Rh owing to sequence differences among IDPs, 25-

residue polypeptide fragments were selected from the IDP dataset using the following 

protocol. First, IDPs with the two highest and two lowest net charge density values (Fig. 2A) 

were selected. These were Hdm2-ABD, prothymosin-α, ShB-C, and securin. Next, IDPs 

with the two highest and two lowest fPPII,chain values (Fig. 2B) were selected. These were 

PGR, p53(1-93), PRO− p53(1-93), and ALA−PRO− p53(1-93). Finally, the two IDPs with 

fPPII,chain closest to the dataset average (Fos-AD and HIF1-α-530) and the two IDPs with net 

charge density closest to the dataset average (Fos-AD and tau-K45) were selected. The goal 

from the selection process was to obtain IDP sequences at the extremes and at the averages 

for physical properties known to modulate Rh. From each of these 11 different IDPs, 25 

residue fragments from the N-terminus, C-terminus, and center of each sequence were 

extracted, producing 33 25-residue sequences that were simulated using the HSC model to 

compute Rh. A table is provided in Supporting Information listing the fragment sequences 

and Rh that were computed from simulation (Table S2). This table also provides net charge 

density and fPPII,chain determined for each fragment for comparison to the parent sequences. 

Since the SASA-based energy function does not include terms for main chain dihedral angle 

bias or charge effects on structure, the variance in Rh for these fragments should provide a 

rough estimate of the extent of Rh differences among typical IDPs owing to sequence-based 

excluded volume effects on hydrodynamic size.

Figure 3C shows that Rh for the 25-residue fragments ranged from 12.1 Å to 9.9 Å in the 

simulations, and averaged 11.4 ± 0.5 Å. For comparison, Rh for poly-ALA and N = 25 

should be ~ 11.1 Å, estimated from HSC simulations performed using identical methods.40 

Rh trended with GLY content (Fig. 3D) and fragments that reported the smallest and second 

smallest Rh had 80% and 40% GLY composition, respectively. Fragments producing the 
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largest Rh in these simulations were those containing sequentially adjacent PRO residues 

and with higher compositions of branched (LEU, ILE, VAL) and aromatic (PHE, TRP, TYR) 

side chains (see Fig. S2). Each of the 4 fragments containing sequentially adjacent PRO 

residues were among the fragments with largest Rh, although no obvious correlation was 

observed when comparing Rh to fractional PRO composition (Fig. S2). Using the 25-residue 

fragment from the C-terminal end of p53(1-93) to showcase these effects, point substitution 

to ALA at PRO positions adjacent to and preceding another PRO residue generally produced 

larger reductions in Rh when compared to ALA substitutions at positions containing 

branched or aromatic residues (Fig. 3E). Also, no obvious correlation was observed when 

comparing Rh in these simulations to net charge or number of charged groups in a sequence 

(Fig. S2); a result that should be expected considering the energy function that was used. 

Overall, these data seemed to indicate that Rh generally follows the hydrodynamic 

dimensions of poly-ALA when only excluded volume effects on the chain are considered, 

with the exception of high fractional GLY composition (Fig. 3D) or the occurrence of 

sequentially adjacent PRO residues (Fig. S2). To demonstrate this, if the pre-factor (Ro) or 

exponent (v) for the poly-ALA scaling relationship is changed such that the poly-ALA curve 

agrees with the fragment average (11.4 Å) at N = 25, the red lines in Figures 3B and 3C are 

obtained (dashed line = pre-factor changed; stippled line = exponent changed). These results 

are consistent with reports that excluded volume effects on the structural dimensions of 

random polypeptide chains are sensitive mostly to the addition or subtraction of heavy atoms 

covalently attached to the main chain, i.e., PRO and GLY substitution effects.85,86 Repeating 

these simulations for IDP fragments with N = 20 gave quantitatively similar results (Fig. 

3C). It should be noted that there are only 14 instances of adjacent PRO residues out of 2958 

total residue positions in the IDP dataset, when redundancy is removed owing to multiple 

variants of the N-terminal region of p53 and overlap in the Mlph(147-240) and 

Mlph(147-403) sequences. This indicates that adjacent PRO residues are not uncommon but 

also not over-represented among IDPs. Likewise, GLY content ranged from 0.01 (multiple 

IDPs) to 0.15 (PGR) in the natural IDP sequences of the dataset, with redundancy removed. 

For fractional GLY composition from 0 to 0.15, little to no correlation with Rh was apparent 

among the IDP fragments that were simulated (Fig. 3D).

Effects of main chain bias for PPII on Rh

An issue with HSC-based simulations, as used above, is that energetic minima associated 

with main chain dihedral angles are not accounted for, though conformational bias for 

certain (φ, ψ) have been detected in experimental studies with disordered peptides79,87-89 

and surveys of protein structures.86,90-92 To demonstrate this issue, the blue line in Figure 

3B represents Rh for poly-PRO when the propensity for PPII at each residue position was 

modeled as 95% in simulated ensembles.40 Poly-PRO peptides are known to adopt PPII 

under normal conditions.93 Comparison of Rh for poly-PRO from PPII-biased and non-

biased ensembles shows that main chain dihedral angle preferences can affect Rh 

substantially in these simulations.

The effects of PPII propensities on Rh calculated from HSC-simulated ensembles have been 

investigated systematically, whereby propensities for PPII were modeled by applying a 

sampling bias to the main chain dihedral angles (φ, ψ).40,48 For example, a 20% sampling 
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bias for PPII at residue position i was equivalent to 20% of (φ, ψ) at position i located in the 

region of (−75±10, 145±10) and 80% distributed randomly in the allowed Ramachandran 

areas outside of (−75±10, 145±10). Following the van der Waals check, the propensity, 

fPPII,i, is calculated as the sum of the probabilities, given by equation 2, for structures with 

(φ, ψ) in the region (−75±10, 145±10) at position i. Since conformers containing contact 

violations are discarded and ensemble populations are weighted toward compacted 

structures (see Fig. 3A), fPPII,i does not necessarily match the applied sampling bias.40

For poly-ALA, Rh was observed in simulations to depend on the chain-averaged PPII 

propensity by,

(4)

where Rh is in Å and fPPII,chain is the sum of fPPII,i over all residue positions and divided by 

N.48 Accordingly, fPPII,chain from a simulation is calculated in a manner analogous to its use 

in Figure 2B with intrinsic PPII propensities applied to an IDP sequence. The structural 

relationship between Rh, N, and fPPII,chain described by equation 4 was independent of 

position-specific patterns of PPII bias and was capable of predicting IDP Rh with good 

agreement to the experimental value.48 Figure 4A shows Rh predicted from sequence for 

each dataset IDP and compared to experimental Rh when using the intrinsic PPII 

propensities of Elam and colleagues.79 Good agreement (coefficient of determination, R2 = 

0.83) and a small average error (± 2.7 Å) were observed. It is important to recognize that 

equation 4 was derived solely from conformational ensembles simulated with the HSC 

model and the agreement between predicted and experimental Rh represents a key test.

The error in predicting Rh for IDPs by equation 4 has been compared to the net charge.48 

Since this error indeed correlated with net charge, as expected,52-54 a simple search for other 

amino acid properties that could influence IDP Rh was conducted. To do this, the prediction 

error was normalized for IDP size by,

(5)

The error determined for each dataset IDP was then compared to 544 different amino acid 

scales available from the Amino Acid Index database.94 To test for bias from sequence 

composition, the prediction error was also compared to the fractional composition of each 

amino acid type in each IDP. The fractional composition of each IDP sequence is provided 

in Figure S1, demonstrating substantial dataset variation. When comparing prediction error 

in the dataset to the various amino acid scales, the observed correlations were mostly weak 

(average R2 = 0.09 ± 0.1; Figure 4B). A few exceptions, however, gave R2 ≥ 0.5, but none 

exceeded the correlation observed for the net charge density (R2 = 0.58).

Additional charge-based metrics commonly used to classify IDP sequences, net charge per 

residue and κ,49 were also tested for correlation with the error. Since net charge per residue 

is determined from sequence almost identically to the net charge density, i.e., as the net 
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charge divided by N rather than N0.5, a similar error correlation was observed (R2 = 0.57; 

Figure S3). For κ, which is a measure of the mixing of positive and negative charges in a 

sequence, correlation with the error was small and weaker than average (R2 = 0.05; Figure 

S3). Generally, κ is used to compare sequences with similar charge composition.49 κ ranges 

from 0 to 1, with values near 0 indicating that residues with opposite charge are well-mixed 

in a sequence. Values close to 1 are from sequences with segregated charge types, allowing 

for long-range attraction between oppositely charged regions of a disordered protein. The 

low correlation to the prediction error for κ here likely represents the diverse compositions 

and weak charge segregation among the IDP sequences in the dataset (dataset average = 

0.211 ± 0.086 with minimum and maximum of 0.058 and 0.423, respectively). Values for net 

charge density, net charge per residue, and κ are provided in Table S3 for each IDP 

sequence.

Table I lists the ten highest ranking amino acid scales95-101 in terms of R2, each 3 standard 

deviations or more above the average. Net charge per residue was omitted from this list 

because of its high similarity to the net charge density. It is interesting to note that the list is 

dominated by physicochemical properties associated with charge (e.g., net charge density, 

ASP fractional composition, amino acid net charge) and main chain conformational bias 

(e.g., beta-structure-coil equilibrium, frequency as first residue in a turn, positional 

frequency in an α helix). Showing only slightly lower correlations were partial specific 

volume102 and apparent partial specific volume103 with R2 of 0.36 and 0.37, respectively. 

These results emphasize that while the HSC model seems to perform well for generating 

statistical ensembles of disordered polypeptide structures, the absence of specific terms in 

the energy function accounting for the effects of charge, non-ALA excluded volumes (i.e., 

when using poly-ALA derived relationships like equation 4), and preferences for certain 

main chain dihedral angles are serious limitations. Since the prediction error correlated best 

with the net charge density, the effects of net charge on IDP Rh were investigated in more 

detail. Contributions from other physicochemical properties to IDP Rh are also discussed 

below.

Effects of net charge on Rh

The trend in the prediction error with net charge density was generally consistent across the 

IDP dataset (Fig. 4C). This could be considered surprising. While some studies have shown 

that IDP Rh are sensitive to net charge,52-54 results from other studies indicate that 

describing charge effects on Rh via the net charge could prove inaccurate since changes in 

the spacing between48 and the sequential patterns of charged groups49 are capable of 

producing large changes in Rh in the absence of net charge changes.

To compare Rh sensitivity to net charge among the dataset IDPs, Rh predicted by equation 4 

was corrected for apparent net charge effects using the observed linear error trend. From 

equations 1, 4, and 5, the trend-corrected Rh is,
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(6)

where 0.25 and 0.31 are from the slope and intercept, respectively, of the trend in Figure 4C, 

Q is the net charge from sequence (Table S1), and fPPII,chain is the sequence sum, divided by 

N, of the experimental PPII propensities79 (Fig. 2B and Table S1). The goal is to identify 

charge patterns in the IDP dataset that influence Rh atypically by identifying IDPs that 

deviate from the dataset trend according to equation 6. Specifically, if Rh depends on the net 

charge strongly for an IDP, and if that dependence differs from the other dataset IDPs, 

removal of such an IDP from the training set should produce discernible changes in equation 

6 that could be used to identify atypical structural behavior and/or sequence patterns.

Figure 5A shows Rh predicted from sequence using equation 6 and compared to 

experimental Rh for each dataset IDP. Good agreement was observed, yielding an increased 

R2 of 0.93 and a decreased average error of ± 1.7 Å, relative to the correlation and average 

error obtained when predicting Rh from sequence without the net charge correction (see Fig. 

4A). Next, each IDP was removed from the dataset, individually, and Rh from sequence 

recalculated for the remaining IDPs. First, using equation 4 to regenerate the error trend with 

net charge density. The trend slope and trend intercept showed small variations with the 

removal of individual dataset IDPs (Fig. 5A inset), with the exception of removing 

prothymosin-α (highlighted red in Figs. 5A and B). As such, removing an IDP from the 

dataset produced commensurate changes in equation 6. Rh was then recalculated from 

sequence by equation 6, using new slope and intercept values, for the dataset IDPs. Figure 

5B shows that the correlation between predicted and experimental Rh changed only slightly 

(± 0.02) when removing an individual IDP from the dataset, relative to the correlation 

obtained with the full dataset (R2 = 0.93). Rh predicted by equation 6 also changed by 1% or 

less for most of the IDPs when one was removed from the training set and then equation 6, 

re-calculated, was applied to the missing IDP. Again, the exception was prothymosin-α that 

reported a 6.3% change. These results indicate that hydrodynamic size for IDPs can be well-

estimated from sequence using equation 6, however, its use should be circumspect owing to 

apparent differences in Rh sensitivity to net charge among IDPs.

The fractional composition of charged residues in prothymosin-α is very high (fractional 

composition = 0.57; from 53 GLU and ASP, 10 LYS and ARG, out of 110 total residues) 

when compared to the other dataset IDPs (average = 0.25 ± 0.05). Considering that net 

charge density is at the dataset maximum for prothymosin-α (Fig. 2A), it could be argued 

that charge effects on structure, in sum, should be pronounced in prothymosin-α more so 

than typical. Thus, it may be counter-intuitive to observe that the magnitude of the slope 

representing Rh sensitivity to Q increased by ~ 25% when prothymosin-α was removed from 

the training set (Fig. 5A inset). Specifically, these data indicate that the effects of net charge 

on Rh were weaker in prothymosin-α, on a per-charge basis, than for the other IDPs. Since 

prothymosin-α was a lone outlier in this analysis, additional tests are needed. If 
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prothymosin-α is removed from the dataset and the entire resampling analysis repeated, 

removing a second IDP, no obvious outliers were detected (Fig. S4). At a minimum, these 

results argue that net charge is a poor metric from which to model charge effects on 

hydrodynamic size since Figure 5B predicts that some IDP structures respond differently 

than others to small changes in the net charge. Of note, prothymosin-α had the largest value 

for κ among the sequences in the IDP dataset (κ = 0.423). Larger κ values trend in 

molecular dynamics simulations with compacted disordered structures,49 possibly providing 

an explanation for the somewhat reduced effect of net charge on Rh in prothymosin-α.

Effects of main chain bias for α helix on Rh

The HSC model has many limitations, as discussed above, and use of equation 6 for 

estimating IDP Rh will have errors from excluded volume and charge effects on structure, 

and possibly from position-specific perturbations to the intrinsic PPII propensities from 

neighboring residues.89 To test for additional error sources, Rh prediction error was again 

compared to 544 amino acid scales from the Amino Acid Index database,94 the fractional 

composition of each amino acid type, net charge density, net charge per residue, and κ. 

Prediction errors from equation 6 were normalized for IDP size using equation 5 and the 

results are given in Figure 5C. Correlations of prediction error to amino acid properties were 

weak, with an average R2 of 0.05 ± 0.05 and a maximum of 0.32. Amino acid properties that 

trend best with the prediction error were associated with α helix propensities, representing 

the 3 highest and 15 of the top 20 correlations (Table S4).96,99,101,104-115 Error correlation to 

net charge density, net charge per residue, and κ were 0, 0.0007, and 0.005, respectively.

The correlation of prediction error with α helix propensities could be another example of Rh 

sensitivity to intrinsic (φ, ψ) preferences, similar to the effects of intrinsic PPII propensities 

on IDP Rh.21,48 Figure 5D shows that increasing chain propensities for α helix seem to 

follow increasing prediction error, which was observed for each α helix propensity scale 

listed in Table S4 (Fig. S5). Inspection of equation 5 indicates that increasing prediction 

errors are associated with decreasing experimental Rh, providing a testable hypothesis. 

Specifically, these data predict Rh compaction with increasing α helix propensities.

To test this hypothesis, propensities for α helix were modeled using the same simulation 

strategy that was employed for PPII propensities.40,48 Briefly, a sampling bias was applied to 

main chain dihedral angles (φ, ψ) in simulations that computed Rh from HSC-generated 

ensembles of poly-ALA peptides. Surveys of α helix structures yield an average (φ, ψ) of 

(−64±7, −41±7).116 Accordingly, a sampling bias for α helix at residue position i, for 

example a 20% sampling bias, was equivalent to 20% of (φ, ψ) at position i located in the 

region of (−64±10, −41±10) and 80% distributed randomly in the allowed Ramachandran 

areas outside of (−64±10, −41±10). Following the van der Waals check, the α helix 

propensity, fα,i, was calculated as the sum of the probabilities (equation 2) for structures 

with (φ, ψ) in the region (−64±10, −41±10) at position i. No provisions accounting for the 

favorable energetics of intra-chain hydrogen bonds were added to the energy function, 

though the authors recognize that intra-chain hydrogen bonds contribute to α helix structural 

stability.116
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The effects of α helix propensities on Rh calculated from ensembles of poly-ALA peptides 

with N = 25 are shown in Figure 6. In these simulations, sampling biases were applied 

equally at each residue position, although the sampling bias for α helix did not necessarily 

match the applied sampling bias for PPII in any particular ensemble. Of note, fα,chain, 

calculated as the sum of fα,i for each position i and divided by N, was generally greater than 

the applied sampling bias for α helix (Fig. 6A inset). In contrast, fPPII,chain was smaller than 

the applied PPII sampling bias, consistent with previous results.40 For poly-ALA with no 

PPII sampling bias, fα,chain from 0.1 – 0.2 reduced Rh by ~ 5%, relative to Rh when no 

sampling preference for α helix was applied (Fig. 6A). For fα,chain > 0.2, Rh gradually 

increased with increasing fα,chain. When sampling biases for PPII were applied, the percent 

reduction in Rh from α helix propensities generally increased with increasing PPII bias.

Several observations from these simulations are noteworthy. First, Rh compaction was 

observed owing to α helix propensities, consistent with the motivating hypothesis from the 

observed dataset trend (Fig. 5D). Second, weak fα,chain values produced substantial 

compaction in Rh. For ensembles with fPPII,chain from 0.3 – 0.5, which should be expected 

for most IDPs (see Fig. 2B), chain averaged α helix propensities of just 0.05 – 0.1 resulted 

in 10 – 20% Rh compaction. This contrasts with simulation results for PPII bias, whereby 

weak PPII propensities (fPPII,chain ≤ 0.1) produced relatively small changes in Rh.40,48 Third, 

the effects of α helix propensities on Rh were modulated by PPII propensities. And fourth, 

the reciprocal relationship was also observed where the effects of PPII propensities on Rh 

were modulated by α helix propensities. Figure 6B shows that when no bias for α helix is 

applied to a poly-ALA chain, Rh increases with increasing chain propensity for PPII. For 

fα,chain of ~ 0.05 – 0.07, however, compaction occurs and increases in Rh from increasing 

PPII propensities are reduced. When the chain bias for α helix was very high (fα,chain ~ 0.50 

– 0.60), the trend is reversed and increasing chain propensities for PPII yield decreasing Rh. 

Considering that the trend among experimental Rh is for decreasing Rh with increasing α 
helix propensities (Fig. 5D) and increasing Rh with increasing PPII propensities,21 these 

observations argue for intrinsic α helix propensities that are generally weak in IDPs, when 

averaged for a chain. In summary, these results predict that intrinsic bias to preferred (φ, ψ) 

regions in disordered polypeptides, even at levels below experimental79,87-89,117 and 

computational118,119 estimates for the common amino acids, are capable of establishing 

sequence-dependent variability in the structural dimensions of the disordered protein 

conformational ensemble and concomitant sequence-dependent effects on IDP Rh.

DISCUSSION

Identifying the molecular properties that regulate disordered protein structures, and to what 

extent, is critical for establishing molecular descriptions of IDP-mediated biology. Here, 

conformational ensembles of polypeptides were simulated using a model based on the HSC 

algorithm to assess the contributions of net charge, main chain dihedral angle bias, and 

excluded volume to the hydrodynamic dimensions of disordered structures. To test and 

evaluate simulation results, Rh calculated from simulated ensembles were compared to 

experimental Rh from 26 IDPs showing diverse sequence compositions, chain lengths, 

charge patterns, and net charge. There are benefits to using a HSC model for simulating 

disordered structures. First, it is reductionistic and thus useful for identifying salient 
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phenomena by subtracting out uninteresting results. For example, the overall magnitude of 

Rh for a disordered ensemble may not be interesting, since its value is largely driven by 

excluded volume effects and chain-solvent interactions that are somewhat similar among 

different IDPs, at least in the simulated data (Fig. 3B). The deviations in experimental Rh 

from this random coil approximation accordingly could yield detail on the intra- and inter-

molecular interactions that bias state distributions in the protein conformational ensemble. 

Second, proposed structural effectors, such as chain bias for (φ, ψ) representative of PPII
40 

and coulombic interactions between charged groups,48 could be added to the model and the 

capabilities of these changes tested. The HSC model also has limitations. As used above, 

and in addition to the limitations already noted, it is not capable of establishing why there is 

a particular (φ, ψ) bias, or net charge effect on Rh, only that the comparative analysis 

indicates that these specific structural effectors are present in IDP systems.

The results of this study indicate that IDP Rh can be described from simple physicochemical 

properties associated with the polypeptide chain. The main structural determinants, other 

than N, seem to be excluded volume effects that can be reasonably approximated using poly-

ALA (Fig. 3B), chain-solvent interactions that cause a general compaction in the 

hydrodynamic dimensions (Fig. 3A), charge effects that, when averaged across a dataset of 

IDP structures, cause a general expansion that trends with the net charge density (Fig. 4C), 

and bias in the main chain dihedral angles for common (φ, ψ) that have been associated with 

PPII and α helix (Figs. 4A and 6). Most likely, this list of pertinent structural effectors is not 

complete and the identification of additional Rh sensitive properties awaits further study. For 

example, energetic preferences for (φ, ψ) in other areas of the allowed Ramachandran 

regions,90-92 position-specific perturbations to the intrinsic conformational propensities from 

neighboring residues,89 and a more accurate accounting of charge effects on structure than 

provided by the net charge density are probably needed and currently underestimated in the 

model (i.e., assumed to be negligible). In spite of the gross simplicity of this model, it is 

interesting to note that IDP Rh can be predicted accurately from sequence using just 

experimental PPII propensities, an estimation of the protein net charge, and equation 6 (Fig. 

5A).

The agreement between the observed IDP dataset trend, showing that experimental Rh 

generally compact with increasing chain propensities for α helix (Fig. 5D), with the effect 

on simulated Rh of a sampling bias to the canonical (φ, ψ) of α helix structures (Fig. 6A) 

offers compelling evidence for the hypothesis that main chain biases for common (φ, ψ) are 

key determinants for establishing hydrodynamic size in IDPs. Previously, it was shown that 

experimental PPII propensities are capable of describing sequence-based differences in IDP 

Rh,21,48 which was predicted from HSC simulations of disordered polypeptides.40 Here, the 

simulated data predict that IDP Rh are modulated also by intrinsic α helix propensities. 

Weak α helix propensities (< 0.10) were capable of producing substantial compaction in the 

simulations, decreasing Rh by upwards of 20%, and the effects on Rh owing to α helix 

propensities were dependent on the chain propensity for PPII. Likewise, PPII effects on Rh 

were modulated by chain propensities for α helix. While experiments that directly test these 

predictions have yet to be provided, the results, overall, demonstrate how intrinsic structural 

propensities are capable of influencing the chain dimensions in disordered proteins.
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Figure 1. 
Rh trends with N in proteins. Solid and open circles are IDPs21-39 and folded 

proteins,16,40,41 respectively. The trend for folded proteins, Rh = 4.65·N0.30, was determined 

from the inset plot and is shown by the dashed line. The trend for chemically denatured 

proteins, Rh = 2.21·N0.57, from Wilkins16 is shown by the solid line. Rh is reported in Å. 

Inset: Plot of log Rh and log N for the folded proteins, which gave a linear slope and y-

intercept of 0.298 (v ~ 0.30) and 0.667 (Ro = antilog (0.667) ~ 4.65), respectively.
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Figure 2. 
A) Net charge density calculated from sequence for each dataset IDP. B) Chain-averaged 

PPII propensity calculated from sequence for each dataset IDP using experimental 

propensities.79 In A and B, bold lines are dataset averages, whereas grey lines are averages ± 

the standard deviation. C) Rh (in Å) and KD for the IDPs identified in panels A and B and 

the folded proteins chicken egg albumin, bovine erythrocyte carbonic anhydrase, 

Staphylococcal nuclease, and horse heart myoglobin. Open squares are DLS-measured Rh, 

from largest to smallest, for the IDPs PGR (38.4 ± 0.9Å), prothymosin-α (33.8 ± 1.3Å), 

p53(1-93) (32.8 ± 1.2Å), Hdm2-ABD (31.0 ± 0.5Å), ALA−PRO− p53(1-93) (27.7 ± 0.9Å), 

and PRO− p53(1-93) (27.5 ± 1.3Å). Filled circles are Rh estimated as one-half the maximum 

Cα-Cα distance in the crystallographic structures of albumin,81 carbonic anhydrase,82 

nuclease,83 and myoglobin.84 KD is the distribution coefficient determined by SEC. 

Standard deviations from measuring KD were < 0.007. The dashed line is a linear fit of Rh to 

KD applied to the filled circles (folded proteins), which was used to estimate Rh from KD for 

the IDPs. Table S1 lists the averages of the DLS-measured and KD-estimated Rh for each of 

the 6 IDPs. Inset: Filled circles are Rh measured by DLS for the folded proteins compared 

to Rh estimated from crystal structures as one-half the maximum Cα-Cα distance, showing 

good agreement. DLS-measured Rh for each folded protein was: albumin (35.6 ± 0.5Å), 

carbonic anhydrase (26.8 ± 0.8Å), myoglobin (22.7 ± 0.8Å), and nuclease (22.4 ± 0.4Å).
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Figure 3. 
Rh calculated from simulated conformational ensembles. A) L/2 distribution in ensembles of 

poly-GLY (blue), poly-ALA (black), and poly-PRO (red) with N = 15. Stippled curves were 

determined by giving each structure equal statistical weight; solid curves are probability-

weighted distributions using equation 2. Vertical lines show <L>/2 calculated for each 

ensemble by equation 3. Inset: <L>/2 calculated for ensembles with increasingly larger 

numbers of simulated structures. B) Filled circles are experimental IDP Rh. Lower-stippled, 

solid, and upper-stippled black lines show the trend in Rh with N from ensembles simulated 

for poly-GLY, poly-ALA, and poly-PRO, respectively. Red dot with error bar at N = 25 is 

the average ± standard deviation in Rh calculated from ensembles simulated for IDP 

fragments. Red lines extrapolate the fragment average to larger N by using the poly-ALA 

scaling relationship (Rh = 2.16·N0.509) with pre-factor or exponent modified for agreement 

with the fragment average at N = 25 (dashed line is Ro changed to 2.22 and v kept at 0.509; 

stippled line is Ro kept at 2.16 and v changed to 0.518). Blue line is the trend for poly-PRO 

when simulated with PPII propensity of 0.95 at each residue position. C) Open circles show 

Rh from ensembles simulated for each 25-residue IDP fragment, with the average ± the 

standard deviation given by the error bar (11.4 ± 0.5 Å). Rh from ensembles simulated for 

IDP fragments with N = 20 give an average ± standard deviation of 10.3 ± 0.4 Å, shown by 

the filled circle with error bar. Lines match their panel B representations. D) Open circles are 

Rh from ensembles simulated for the 25-residue IDP fragments and the corresponding GLY 

compositions determined from sequence. Shading is the range in fractional GLY 

composition for the natural IDP sequences in the dataset. E) Open column with error bar is 

the average Rh (± standard deviation) from ensembles simulated for the 33 IDP fragments 

with N = 25. Black columns show Rh calculated from ensembles simulated for 6 different 

sequences based on the C-terminal 25-residue fragment from p53(1-93) wild type. Shown 

are p53(69-93) (left-most black column) and p53(69-93) with ALA point substitutions 
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applied at the PRO-71, PRO-72, VAL-73, THR-81, and TRP-91 positions as labeled. Rh is in 

Å.
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Figure 4. 
Predicting Rh from intrinsic PPII propensities. A) Filled circles show Rh (in Å) predicted 

from sequence for each dataset IDP using equation 4. The stippled line is the identity line. 

B) Prediction error, normalized for IDP size using equation 5, was compared to 567 amino 

acid scales (544 from the Amino Acid Index database,94 20 representing fractional 

composition for the common amino acids, the net charge density, the net charge per residue, 

and κ). Scales from the Amino Acid Index database were summed by sequence and 

normalized to chain length. The correlation (R2) for each comparison is in rank order from 

left to right. Inset: Number of amino acids scales with R2 greater than the average plus 2, 3, 

and 4 times the standard deviation (σ). C) Comparison of prediction error to net charge 

density for each dataset IDP. The line is the observed trend; error = −0.25·(net charge 

density) + 0.31.
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Figure 5. 
Predicting Rh from intrinsic PPII propensities and net charge. A) Filled circles show Rh (in 

Å) predicted from sequence for each dataset IDP using equation 6. The identity line is 

shown by the stippled line. Inset: slope and y-intercept for the linear trend in Fig. 4C when a 

singular IDP is removed from the training set. B) Each filled circle represents the removal of 

a singular IDP from the training set. The concomitant change in correlation for predicted and 

experimental Rh (ΔR2) is compared to the fractional change in predicted Rh for the removed 

IDP. C) Prediction error, normalized for IDP size by equation 5, was compared to 567 amino 

acid scales (same scales as Fig. 4B). The correlation (R2) for each comparison is in rank 

order from left to right. Inset: Number of amino acids scales with R2 greater than the 

average plus 3, 4, and 5 times the standard deviation (σ). D) Comparison of prediction error 

to the best performing scale, normalized frequency of α helix in all α class,104 showing the 

trend line.
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Figure 6. 
Rh for poly-ALA (N = 25) simulated with intrinsic propensities for α helix and PPII. A) 

Open circles are ensembles with no applied sampling bias for PPII. Filled circles are 

ensembles simulated with applied PPII sampling biases of 0.10 (black), 0.20 (blue), 0.30 

(green), 0.40 (orange), and 0.50 (red). Shown is the change in Rh relative to Rh expected 

from fPPII,chain using equation 4. Curves in both panels (A and B) represent data fits to 

second order polynomials and have no physical meaning; they were provided to highlight 

trends. Inset: Chain propensities calculated for each ensemble, fα,chain (circles) and fPPII,chain 

(triangles), and compared to the applied sampling bias. The stippled line is the identity line. 

B) Open circles are ensembles with no applied sampling bias for α helix. Filled circles are 

ensembles simulated with applied α helix bias resulting in fα,chain of ~ 0.05 – 0.07 (blue) 

and fα,chain of ~ 0.50 – 0.60 (red).
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Table I

Sequence properties and amino acid scales with best correlation (R2) to equation 4 error.

R 2 scale

0.58 net charge density

0.53 beta-structure-coil equilibrium95

0.50 ASP fractional composition

0.47 positional residue frequency at helix termini N' 96

0.46 helix initiator at position i-197

0.45 amino acid net charge98

0.44 frequency as 1st residue in turn99

0.43 amino acid isoelectric point100

0.43 positional residue frequency at helix termini N" 96

0.39 frequency in beta-bends101
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