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UNBOUNDED SOLUTIONS FOR SCHRODINGER QUASILINEAR
ELLIPTIC PROBLEMS WITH PERTURBATION BY A POSITIVE
NON-SQUARE DIFFUSION TERM
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ABSTRACT. In this article, we present a version of Keller-Osserman condition
for the Schrédinger quasilinear elliptic problem

k
—Au + auAu2 =a(x)g(u) in RY,
u>0 inRY, lim wu(z) = oo,
|z|—oc0

where a : RV — [0,00) and g : [0,00) — [0,00) are suitable continuous
functions, N > 1, and k > 0 is a parameter. By combining a dual approach
and this version of Keller-Osserman condition, we show the existence and
multiplicity of solutions.

1. INTRODUCTION

In this article, we consider the problem

—Au+ EUAUQ =a(z)g(u) inRY,

2 (1.1)

u>0 inRY  lim u(z) — oo,

where A is the Laplacian operator, a(z) is a nonnegative continuous function,

g :[0,00) — [0,00) is a nondecreasing continuous function that satisfies g(s) > 0,

s>0, N >1and k > 0 is a parameter.

Equation is a modified nonlinear Schrédinger equation by the quasilinear

and nonconvex term uAu?, which is called of square diffusion. A solution of
is related to standing wave solutions for the quasilinear Schrédinger equation

ize + Az — w(@)z + kAN (|212)2 + n(z,2) =0, =RV, (1.2)

where w is a potential function, h and n are real functions and « is a real constant.
This connection is established by the fact that z(t,z) = e~*¥*u(x) is a solution to
if and only if u satisfies the equation in for suitable constants w, h, 7 and
k. This kind of equations appears in several applications: superfluid film in plasma
physics [I0]; in models of the self-channeling of a high-power ultrashort laser in
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matter [9] and [16]; in the theory of Heidelberg ferromagnetism and magnus [7]; in
dissipative quantum mechanics [I]; and in condensed matter theory [6].

Even for bounded solutions, there are only a few results in the literature studying
existence and multiplicity of such solutions to the equation in with positive
perturbation; that is, & > 0. One important result, that shows the existence of
solutions for a related operator of the equation in , is due to Alves, Wang and
Shen [3] who showed the existence of bounded solutions satisfying

sup |u(z)| < v/1/k
zERN
for each 0 < k < ko, for some kg > 0. In fact, they considered the equation

—Au+V(z)u+ guAuz =a(z)g(u) inRY

for some appropriate potential V. For more references on this direction, we refer
the reader to [4] [2] 20, [19] and references therein.

On the other hand, after these papers, we wondered whether it is possible to
exist unbounded solutions for (L.I); that is, solutions u(z) — oo as |z| — oc.
Surprisingly, under an appropriate version of Keller-Osserman condition to this
operator, we were able to show the existence of an infinite number of solutions to

. Our solutions satisfy
inf |u(z)| = V1/k
T€RN
for a given k > 0.

Research about existence of explosive solutions (or unbounded solutions) is mo-
tivated principally by its applications in models of population dynamical, subsonic
motion of a gas, non-Newtonian fluids, non-Newtonian filtration as well as in the
theory of the electric potential in a glowing hollow metal body. Remarkable work
about unbounded solutions was done by Keller [§] and Osserman [I5], both in 1957.
They established necessary and sufficient conditions for the existence of solutions

and sub solutions to the semilinear and autonomous problem (that is, a = 1)
Au = a(z)g(u) in RY,
w>0 inRY, lim u(z)— oo, (1.3)

|z|—o00

where g is a non-decreasing continuous function. This is done under the condition

oo gt t

After these works, a function g satisfies the well-known Keller-Osserman condition,

for the Laplacian operator, if
+oo dt
— < .
J CORCI.

Recently, there have been a number of papers trying to obtain “Keller-Osserman
conditions” for various operators. The authors have also considered this question
for ¢-Laplacian operator in [18].

For non-autonomous, it has arisen an important issues on existence of
solutions, namely, “how radial” is a(z) at infinity; that is, how big is the function

Aosc(r) :=1a(r) —a(r), r >0,
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where
a(r) = min{a(z) : |z| =7}, a(r) =max{a(z):|z|=7r}, r>0. (1.5)

As a consequence of this, we have that aos.(r) = 0, r > ro ,if and only if, a is
symmetric radially for |z| > 7o, for some rg > 0. In particular, if ro = 0 we say
that a(z) is radially symmetric.

Considering aosc = 0, Lair and Wood in [I2] proved that

/100 ra(r)dr = oo (1.6)

is a sufficient condition for to have radial solution. They considered g(u) = u?,
u > 0 with 0 < v < 1, that is, g satisfies .

In 2003, Lair [II] allowed a(z) to be not necessarily radial in the whole space,
but he did not allow a(z) to have aes too big. More exactly, he assumed

T

/OO Taose (1) exp(A(r))dr < oo, where A(r) = / sa(s)ds, r >0

0 0

and proved that , with suitable g that includes u” for 0 < v < 1, admits a
solution, if and only if, holds with @ in place of a.

In this way, Mabroux and Hansen [13] in 2007 improved the above results, con-
sidering the hypothesis

/ Taosc('r)(l +A(7"))7/(1_7)d7" < 00.
0

For a more general operator, Rhouma and Drissi [5] in 2014 proved similar results.
Before stating our main results, we dfine a solution of (|1.1)) as a positive function
u € CH(RY) such that u — 0o as |z| — oo, and

/ (1 — ku?)VuVpdr — k/ |Vul|*upds
RN RN

= / a(z)g(u)pdr  for all ¢ € CH°(RN).
RN

Throughout this article we assume that g : [0,00) — [0,00) is a nondecreasing
continuous function with g(s) > 0 for s > 0. Also we use the condition

lim inf @ > 0. (1.7)

t—oo

Our first result reads as follows.

Theorem 1.1. Assume that (L1.7)) is satisfied and

+o00 dt .
/1 W =00, where Go(t) = /0 g(\/g)d87 t>0. (18)

/Ooo (sl—N /OstN_la(t)dt)ds = oo, (1.9)

then for each o > 1 and k > 0, there exists a solution u = u,r € C*(RY) to
problem (L.1)). Furthermore,

If apsc =0 and

inf w(z)>+/o/k.

TERN
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For non-radial potentials a(z), we need to control the size of this non-radiality.
So, for each o > 1, let us assume that G = G, : (0,00) — (0, 00), defined by

(0 —1)VEk
8o

is non-decreasing and is invertible; such that

o 1 o0 S
0<H:=—— 1—N/tN—1 osc(t)dt
< — [ (] P anar)

<[oo (s( [ atoyir)))]s < oc.

Our second result reads as follows.

Theorem 1.2. Assume g satisfies (1.8) and that for t > 0 the function g(t)/t°
is non-decreasing for some 6 > o/(c —1). Also suppose that a(x) is such that a

satisfies (1.9) and @ satisfies (1.10). Then there exists a solution v = U, ke €
CL(RYN) of problem (L.1)) satisfying

irﬂlefNu(x) >o/k and a<u(0)<(a+e)+H
fAS]

G(t) = t?/g(t), t>0,

(1.10)

for each o > 1 and a, k,e > 0 given so that a > /o /k.

We note that this work contributes to the literature of quasilinear Schrédinger
equation in at least two aspects: Firstly, as far as we know, there are no results con-
sidering this kind of operators (a positive perturbation) in the context of unbounded
solutions. We mention the authors have already considered in [I7] a negative per-
turbation, that is, & < 0 in the problem . Secondly, we present a version of
“Keller-Orsemann condition” for this kind of operator that “captures” the influence
of the perturbation term.

We organized this article the following way: in section 2, we establish an equiva-
lent problem to the , via a very specific change of variable. In the last section
we complete the proof of Theorems and [[.2]

2. AUXILIARY RESULTS

In this section, a change of variables allows us to transform problem into
a new problem. In the new problem, we establish a version of Keller-Orsemann
condition and show the existence of an entire solution that is unbounded.

First, we note that the problem is equivalent to the modified quasilinear
Schrodinger problem

div(i?(u)Vu) — L)l (u)|Vul* = a(z)g(uv), = RN,

u>0 inRY,  lim u(zr) — oo, (2.1)

whenever u(z) > \/o/k for x € RV where I(t) = Vkt2 — 1 for t > /o /k for each

k > 0 and o > 1 given. In these situations, we conclude that the solutions obtained

to (2.1)) are solutions of the original problem (1.1]).
So, we look for by a positive function v € C*(RY) that satisfies u — oo as
|z] — oo and

—/RNZ (u)VuVepdr — /RN (uw)l' (u)|Vul*pdz :/ a(z)g(u)pdx

RN
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for all p € C$°(RY); that is, this u € C*(RY) will be an unbounded solution to

(2.1).
To do this, first let us define ! : [1/V ko, 00) — [0,00) by

Vko 1 : 1 T
1) = 1y ot) = { Vo1~ veT U Sts Vi
VEtZ —1 ift >/,
for each o > 1, and set
t
L(t) = L, x(t) = / l(s)ds fort>1/Vko. (2.2)
1/Vko

It is a consequence of the above definitions that the function L : [1/vka, o0) —
[0,00) is a C2-injective function; that is, the inverse function L=! : [0,00) —
[1/Vko, 00) is well-defined and L~ is a C2-function as well. After this, we are able
to prove more Lemmas. The first lemma follows from the definitions and properties
of [ and L.

Lemma 2.1. Under the above conditions, the functions | and L™ satisfy:

(1) 0 < 1(t) < =t for all t € [1/VEo, \/o/F] and Y225 < () < Vit

forallt > \/o/k,
(2) 0< L(t) < 242 for all t € [1/Vko, /o /k] and
14/ (o -1k 1y(oc—1)o
s Ly g SHOs VRS,
for allt > /o /k,

(3) L7\(t) < [ -AL 4 2 fort >0, and

- (e—1)k

14/o0—1 1 < < \/o’3

V ke Ve for Vko(o-1) = = VEo-1)’
t o

vvie o otz

4) fort > +\/o/k, the function £ s nondecreasing for each § > —Z=.
1(t) o—1

L7t >

In the sequel, we use the definitions and properties of I, L and L~ to provide
solutions ([2.1]) by establishing solutions to (2.3)) below.

Lemma 2.2. Assume u = L~ (w), where w € CY(RYN) is a solution of the problem

Ao — o) 2L @) o

(LTw)) " (2.3)
w>o/VEk inRY, ‘1‘131 w(x) = oo.

Then u € CH(RYN) is a solution of problem (L.1)) that satisfies u(z) > /o /k for all
r € RV,

Proof. First, note that u > /o /k is a consequence of w > 0/\/%. By the regularity
of L, we obtain v € C*(R"), because w € C*(R"). Besides this, it follows from the
behavior of L and L~ that w(z) — 400 as |z| — +oo if and only if u(x) — +oo
as |z| — +oo.
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Since

it follows that

that is,
Vu = (ku? — 1)"Y2Vw.
Thus, for each ¢ € C3(RY), we have
(1 — ku®)VuVep = —(ku? — 1)/?VwVe. (2.4)
On the other hand, since w € C*(R") is a solution of problem (2.3)), we have

k
/ (ku? — 1)/2VwVy = / VuV{(ku® —1)1/2p} — / A 2u |Vw|?p
RN RN RN RU”® — 1

=— xM w? — 1)V — u|Vu|?
= [ @l =1~ [ kuval

“ I(u
:—/a
RN

(@
@atwye— [ kulvube.

Then using ([2.4), we have v € C'(RY) is a solution to (I.I}). This completes the
proof. ([

3. PROOF OF MAIN RESULTS

Below, we show the existence of a solution to (2.3)) and after this, by using the
second Lemma above, we are able to show the existence of a solution to Problem
(1.3). This arguments relies on ideas found in [I4].

Proof of Theorem [I.1] Since aos. = 0, that is, a(z) = a(|z|) for all z € RY, we have
that a radial solution for (2.3]) can be obtained by solving the problem

N-1 ”—erlarLl(w)) in 0
(rY 7w’ = ( )Z(L_l(w)) (0, 00), (3.1)

w'(0) =0, w(0)=a>0,

where 7 = |2| > 0 and « > o/V/k is a real number, for each ¢ > 1 and k > 0.

Since a, g, | and L~! are continuous functions, we can follow the approach in
[21] to show that there exist a right maximal extreme I'(a) > 0, and a function
we € C?(0,T(a))NCL([0,T(x))) solution of the problem on (0,T'(a)), for each
a > o/Vk given.

If we assumed that I'(a) < oo for some a > o/v/k, then we would obtain, by
standard arguments of ordinary differential equations, that either w,(r) — oo as
r — I'(a)” orw (r) — oo as r — I'(«v) 7; that is, wq (|z]) would satisfy the problem

(L~ (w))
w'(0) w(0) = a > 0, (3:2)

lim  wu(r) =00 or lim  w/ (r) = oo.
r—I'(a)~ r—I'(a)~

(rN ') = rN_la(T)M in (0,I(a)),
—0,
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So, using that a solution w of (3.2) is non-decreasing and I(t) > /o — 1 for all
t > \/o/k, we obtain that w satisfies

(PN l') < 22 Nl () in (0,T(),

T Vo -1
w(0)=a>0, w'(0)=0, (3.3)
lim  wu(r) =00 or lim ! (r) = oo,
r—I'(a)~ r—I'(a)~

where ao = maxp_  a(z).
By integrating the inequality above over (0,7) with 0 < r < I'(a) and assuming
lwalleo < C < oo for some C' > 0, we obtain

INEY)
limsup ' (r) < T()=N / N1 (L (w(8)))dt < oo
r—I(a)~ 0

by the continuity of all involved functions. So, from now on, we assume that
We (z)—00 as 7 — I'(a) ™.
By using w’ > 0 again, we can rewrite the inequality in (3.3]) as

W' < 2 (go L™H(w) forall 0 <r < T(a)

Vo—1

this lead us, after multiplying this inequality by w’ and integrating it on (0,7), to

;(w'(r))2§/or Zf’il(gopl)(w(s))w'(s)ds: \/ij a

that is,

([ o1 0s) ™ wi) < Vafaf VT for a0 < <o)

Now, by integrating in the above inequality over (0,I'(«)) and reminding that
we (x)—00 as 7 — I'(a) ™, we obtain

/:o (/at(QOL—l)(s)ds)_l/th <V2\/as/ Vo —1T(a) < . (3.4)

On the other hand, from Lemma (3) and the monotonicity of g, it follows
that

w(r)

(9o L™)(s)ds;

2\/

(QOL—l)(t)Sg( CEDL

+ %) for all t > o /Vk;

that is,

t t 2t/ o
oLt sdsg/ ——— + —)dsforall t > a.
[ aor i< [ of )

As a consequence of this and (3.4]), we have

/aoo{/atg Big( (2;\/51)k+2>d8}_1/2dt</

@

- { /at(g o L_l)(s)ds}_l/th.

So, by estimating in the last inequality and using (3.4) again, we obtain

/Oo Go(t)~Y2dt < C( aoo/\/m)r(a) < o0,
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for some real constant C' > 0. This is impossible, because we are assuming that g

satisfies (1.8]).
It follows from Lemma (1), hypothesis (1.7) and L™ > /o /k, that

gL~ (wa(r)) _ g(L~ (wa(r)))
WL~ wa(r))) — VEL= (wa(r))

and for each a > o/v/k given and for some M > 0, because wq(r) > « for all 7 > 0.
Since, w,, satisfies

we(r) =a+ /07” (tl_N /Ot sN_la(s)g(L_l(wa)))ds) dt, r >0, (3.6)

it follows from (3.5]), that

>M >0 forallr>0, (3.5)

T t
wa(r) > a+ M/ (tl_N/ sN_la(s)ds>dt — 00, asr — oo. (3.7)
0 0
This completes the proof. O

Proof of Theorem [I.3 Set ﬂ > a > o/Vk. Since the hypothesis g(t)/t° being
non-increasing 1mphes , from Theorem - there exist positive and radially
symmetric solutions w,,, wg € CY(RY) to the problems

9T W)
Ao =a(la) f oy R

we(0) = a, ‘ llim we (x) = 00,
and
_ gL~ (wg)) N
Awﬂ - Q(‘I‘D Z(L,]_(wﬁ ) in R )
wg(0) = B, | l‘im wg(x) = oo,

respectively, where a and @ were defined in ({1.5)).
Besides this, from (3.6)), (3.7)), we, g, L~ be non-decreasing and Lemma (3),
it follows that

ro,opt 1w,
we(r) < 2/0 (/0 a(s)?((f_l((wa))))ds)dt

l
< 0719(2 0_1 \/wj) [r(/o (t)dt)—/orta(t)dt}
)r/ora() t.

N

§2g(2 (0_1 \/@)/ (/0 - )ds dt
)k
)k

(
= - 9(24(071
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for all » > 0 sufficiently large. That is, it follows from the definition of G, that

W 9 1 "
QH\/@SQ (7‘/0 a(t)dt) for all » >> 0.

Now, setting
0 < S(B) =sup{r > 0: wy(r) <wg(r)} < oo,

we claim that S(3) = oo for all § > o + H and for each a > o/V/k given. In fact,
by assuming this is not true, then there exists a 8y > a+ H such that w, (S(30)) =
wz(S(Bo)). So, by using that g(t)/t° is non-decreasing for § > o/(c — 1), Lemma
and w, < wg on [0,5(By)], we obtain

Bo

(3.8)

I
o)
4
S—
B4
=
2
o~
T —
=2 =z
L
S—
2
w
2
L
S
w
N~—
~|

S(Bo) t ~1(, ~1(w,
<a +/O tl_N[/O sN_l(a(s)?(fl((wa)))) —a(s)?((fl((wa)))))ds} dt.

On the other hand, from g,! and w, being non-decreasing, it follows that

—-N {/Ot leaosc(S)mds}

1 t t
< (tl_N/ SN_laOSC(s)ds)g(g_l (t/ E(S)ds)) = H(¢),
Vo —1 0 0
for ¢ > 0, where x[o,5(5) stands for the characteristic function of [0, S(3)].
So, from the hypothesis ((1.10) and (3.8)), it follows that

ﬁ0§a+/ H(s)ds < a+ H,
0

but this is impossible. B
Now, by setting 3 = (a4 €) + H, for each o > ¢/v/k and € > 0 given, and by
considering the problem

B g(Lil(w)) .
Aw = a(x)m in By (0), (3.9)

w>0in B,(0), w=w, ondB,(0),

we can infer by standard methods of sub and super solutions that there exists a
Wy, = Wy.q € CH(B,,) solution of satisfying O'/\/E <o < w, <w, <wgin
B,, for all n € N.

So, by defining w}, = wy,|p, for m > n and for each n € N given, where w,, is
a solution of Problem in the ball B,,(0), we obtain that {w]} is a bounded
m-sequence in C*¥»(B,,) for some 0 < v,, < 1 by Regularity theory.
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Hence, we can extract subsequences of {w],} such that

111 C'(B1) 4

Wy, W3, Wy, ... —— W,
-

2 2 2 C (B2) o

Wh, Wy, W, ... —— W~
L=

3 .3 3 C'(B3) 3

wy, Wy, We, . .. —— W,

So, the function w : RN — (0, 00) given by w(z) = w™(x) for x € B,, is well-defined
and the sequence {w3, } satisfies w3, — w in C'(K) for any compact set K C RV
with o/\/E < a <w, <w < wg; that is, w € CY(RY) and is a solution of (L.1). O
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