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Abstract

Background: Hospital-based back surgery in the United States increased by 60% from January 2012 to December 2017, yet
the supply of neurosurgeons remained relatively constant. During this time, adult obesity grew by 5%.

Objective: This study aimed to evaluate the demand and associated costs for hospital-based back surgery by geolocation over
time to evaluate provider practice variation. The study then leveraged hierarchical time series to generate tight demand forecasts
on an unobserved test set. Finally, explanatory financial, technical, workload, geographical, and temporal factors as well as
state-level obesity rates were investigated as predictors for the demand for hospital-based back surgery.

Methods: Hospital data from January 2012 to December 2017 were used to generate geospatial-temporal maps and a video of
the Current Procedural Terminology codes beginning with the digit 63 claims. Hierarchical time series modeling provided forecasts
for each state, the census regions, and the nation for an unobserved test set and then again for the out-years of 2018 and 2019.
Stepwise regression, lasso regression, ridge regression, elastic net, and gradient-boosted random forests were built on a training
set and evaluated on a test set to evaluate variables important to explaining the demand for hospital-based back surgery.

Results: Widespread, unexplained practice variation over time was seen using geographical information systems (GIS) multimedia
mapping. Hierarchical time series provided accurate forecasts on a blind dataset and suggested a 6.52% (from 497,325 procedures
in 2017 to 529,777 in 2018) growth of hospital-based back surgery in 2018 (529,777 and up to 13.00% by 2019 [from 497,325
procedures in 2017 to 563,023 procedures in 2019]). The increase in payments by 2019 are estimated to be US $323.9 million.
Extreme gradient-boosted random forests beat constrained and unconstrained regression models on a 20% unobserved test set
and suggested that obesity is one of the most important factors in explaining the increase in demand for hospital-based back
surgery.

Conclusions: Practice variation and obesity are factors to consider when estimating demand for hospital-based back surgery.
Federal, state, and local planners should evaluate demand-side and supply-side interventions for this emerging problem.

(J Med Internet Res 2019;21(10):e14609)  doi: 10.2196/14609
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Introduction

Background
In 2012, there were 3689 practicing board-certified
neurosurgeons in the United States [1]. That number was largely

unchanged in 2016 [2]. During these years, demand for back
surgery (Current Procedural Terminology [CPT] codes
beginning with the digit 63) increased by 49% from 311,028 to
464,391, and by the end of 2017, that increase was 60% [3].
CPT 63 medical codes are a series of spinal procedures including
laminectomies, laminotomies, decompressions, and
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corpectomies. These procedures do not include needle
decompression, catheter implantation, and, as of 2019,
endoscopic decompression [4]. Given the stable supply and
increasing demand, it is not surprising that the average payment
procedure increased from US $4166 to US $4859 from 2012 to
2016 and to US $5452 by the middle of 2018, an effective 4.5%
inflation rate [3]. Forecasting models that address increasing
demand are necessary to evaluate potential supply and
demand-side interventions.

Unsurprisingly, there is a marked variation in the treatment of
back disorders such as spondylolisthesis [5]. This variation
affects costs [6] as well as outcomes [5] associated with back
surgery. The implication of this variation is increased demand.
By evaluating the current geographic demand, policy makers
can prioritize efforts for cost and variation reduction by
evaluating those states and counties that exhibit high practice
area variation, implementing evidence-based best practice
policies and guidelines, educating populations about obesity
risks, and implementing interventions for those at risk of obesity
(eg, those living in food deserts).

During the same time that back surgeries have increased, adult
obesity rates in the United States have also increased. The rate
of this increase was 5% from 2012 to 2016 (34.9%-39.6%) [7].
Obesity has been linked to increased costs of medical care [8].
Although obese patients benefit from at least some back
surgeries, they do not fare as well as nonobese patients [9].
Although obesity has been linked to back pain [10], no studies
were found that directly link obesity to back surgery
requirements. This study evaluated that relationship as well.

Objectives
This study addressed 3 specific aspects of hospital-based CPT
63 surgery. First, a geospatial-temporal analysis by zip code is
conducted to describe the previous and current demand for CPT
63 surgery. The significance of this geospatial-temporal analysis
is that practice variation is highlighted for evaluation by federal,
state, and local policy makers. Second, forecasting models
estimate the demand and payments overall, by census region
and by state. These models are also designed for state policy
makers to assess potential supply- and demand-side intervention
requirements. Third, explanatory models are developed to
correlate obesity rates and financial, technical, workload,
temporal, and geospatial variables with demand for CPT 63
procedures. This analysis does not appear to be previously
investigated and is an important but overlooked correlational
analysis. The study focused specifically on hospital-based knee
surgery with CPT 63 codes (some of which reflect inpatient
procedures) and was delimited to knee surgery only.

Methods

Data
Definitive Healthcare provided the hospital, zip code, and
state-level procedure and cost data from January 2012 to June
2018 through the hospital revenue center analytics query, which
includes queries by CPT code. Data in Definitive Healthcare
are derived from the Standard Analytical Files by the Centers
for Medicare and Medicaid Services (CMS)]. From these data,

the organization uses undisclosed algorithms to estimate
all-payor claims. Columns with fewer than 11 claims or
procedures are not shown because of privacy requirements [3].
For this analysis, only complete annual data from 2012 to 2017
were used, as the CMS datafile and thus the associated estimates
from January 2018 through June 2018 were approximately only
93% complete [3].

The Centers for Disease Control and Prevention’s Behavioral
Risk Factor Surveillance System (BRFSS) prevalence data
provided the information for state-level adult obesity rates by
year, from 2012 to 2017 [11]. Guam, Puerto Rico, and the US
Virgin Islands were excluded from the analysis because of small
sample sizes in both datasets.

Geospatial Analysis
Heat maps are used to plot the zip code unit of analysis
procedure data by year. Heat maps provide the intensity of the
number of claims by time and geographic region. These types
of maps have been used for improving minority health
surveillance [12], examining birth outcomes [13], and evaluating
a variety of other applications in health care. The value in
geospatial-temporal analysis is the graphical depiction of change
in demand over time. A video display from 2012 to 2017 with
standardized heat intensities provides an animated view of the
change in demand by location. An analysis of cost and demand
centers is then provided.

Forecasting Analysis
The data in the Definitive Healthcare dataset are nonseasonal
as they provide annual-level observations by the hospital unit
of analysis. Even so, generating nonseasonal forecasting models
that have predictive capability on a blind withhold set at the
proper level of aggregation can provide decision support for
supply- and demand-side interventions. These types of models
have found support in many areas of health care such as
radiology [14] and Alzheimer disease [15].

To this end, hierarchical time series (HTS) [16] using R
statistical software [17] evaluated the number of claims as a
function of time series components. An HTS recognizes that
data are aggregated at various levels. In this case, the hierarchy
evaluated include the states, the census regions, and the nation.
The models are built on a training set of data for the years 2012
to 2015 and forecast on a blind test set, years 2016 and 2017.
Although Bayesian hierarchical models have been used for
spatially correlated health outcomes and utilization rates [18],
there is no readily found use of HTS for prediction in health
care.

To understand HTS, one needs to only consider a single medical
system that operates in 2 separate states with 3 hospitals per
state. There are then 4 basic ways using which one might
forecast annual visits as an example:

1. A forecast might be generated for each hospital, aggregated
at the state level and then further aggregated at the system
level. A variety of different forecast methods might be used
to generate the forecasts. The term for this method is
bottoms up.
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2. Forecasts might be generated at the state level and then
disaggregated (eg, via historical proportions) to the hospitals
and aggregated to the system level. Again, the forecasts
might be generated in multiple ways. The term for this
method is middle out.

3. Forecasts might be generated at the system level (via
multiple methods) and then disaggregated to all levels below
(eg, proportions). The term for this is top down.

4. One might take some combination of the previous methods
to minimize forecast error. This is an ensemble method that
might be termed the optimal reconciliation approach, which
is optimal if the forecasts are unbiased [19].

To avoid selection bias, all methods were evaluated for
performance on the test set. Furthermore, the method for
forecasting at these levels of hierarchy was using autoregressive
integrated moving average (ARIMA) components and as well
as smoothed error and trend components (exponential, trend,
seasonality [ETS] without seasonality).

ARIMA models focus on autocorrelation of components for
stationary time series data. The AR components are
autoregressive terms, offset by time. For example, the number
of claims at time t might be forecast by using the number of
claims at time t-1. This would be an AR1 model, as there is 1
offset. As ARIMA models assume stationarity of the time series
for forecasting, 2 other components are necessary. The first is
differencing or integration, the I in ARIMA, which helps
stabilize the mean (whereas transformations help stabilize the
variance). Although seasonality and trend might make an
ARIMA nonstationary, differencing often corrects this.
Sometimes, more than 1 difference is required to make the time
series stationary, for example, yt-yt-1-(yt-1-yt-2) is a 2d order
differencing. The last component, the MA or moving average,
corrects for autocorrelated errors as well. This component
averages previous observation(s) with the previous forecast(s)
[19].

ETS models have 3 components: error, trend, and seasonality.
As the data in this study are not seasonal, only the error
smoothing (identical to a moving average) and the trend
component (a Holt model [20]) are evaluated.

With HTS bottom-up models, a separate ARIMA/ETS is built
for each bottom-level component. For middle-out models, all
middle-level components have separate forecasts. For top-down
models, a single forecast is generated and proportioned down
to the lower levels.

Explanatory Analysis
Stepwise linear regression (both forward and backward), lasso
regression, robust regression, elastic net regression, and extreme
gradient-boosted random forests are built on unaggregated data
as well as state-level aggregated data to estimate the number of
claims. These models are built on a random 80% training set
(10,771 unaggregated, 245 aggregated observations) and
evaluated on a 20% withhold set (2693 unaggregated, 61
aggregated) as well. The total number of valid observations
were 13,464 unaggregated and 306 aggregated. The primary
hypothesis is that the inclusion of obesity rates as an independent
variable will yield better explanatory models for both the number
of claims and the payment per claim.

Stepwise linear regression based on minimum Akaike
Information Criterion was selected over best subset because of
the computational complexity. By using forward and backward
simultaneously, variables are added in sequence but might be
removed if they no longer contribute to the model [21].

Lasso regression is a form of constrained regression that
penalizes a model that selects too many variables by using an
L1-norm formulation (absolute value), whereas ridge regression
is similar but penalizes using an L2-norm formulation (squared
coefficient estimates). Elastic net uses a weighted L1 and L2
norm penalty function to reduce the number of coefficients in
the model. Formulae for estimating the parameters of the linear
model, the lasso regression, the ridge regression, and the elastic
net are shown in Figure 1.

Figure 1. Argmin equations for the regression models.

Random forests, a machine learning technique, use an ensemble
of decorrelated tree models and average the estimates of those

trees to build forecasts. A tree model itself classifies counts of
observations by splitting variables at points based on some
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decision criteria. An example of a tree with a depth of 3 (3
branches) is given in Figure 2, which splits observations by
obesity rate less than 31.63 and then again by obesity rate less
than 25.75 and number of discharges less than 10,558.78 and
then finally by net income less than US $35,018,392, cash less
than US $25,522,424, and cash less than US $8,122,498 [21].
The graph was produced by the xgboost package of R [22].
Gradient-boosted random forests optimize a cost function based

on the (pseudo-)residuals of a function using nonlinear
optimization techniques. Essentially, the residuals of each tree
in the forest are refitted with the possible independent variables
in another tree model to estimate a better fit of the original
function. Often, a learning rate (shrinkage) is applied to the
residuals to allow for better generalization. A discussion of
gradient boosting is available in Chapter 10 of Elements of
Statistical Learning [21].

Figure 2. An example of a single tree model with 3 branches. The graph was produced by the xgboost package of R. (NumDischarges indicates the
number of discharges).

Variables
All the considered variables from the Definitive Healthcare
dataset are shown in Table 1 with reasons for
exclusion/inclusion. Most variables were, by default, included
during analysis; however, those variables that were linear
combinations of each other or were necessarily unknowable
when forecasting CPT 63 codes were omitted.

There is 1 primary dependent variable of interest: number of
claims for CPT 63 codes. This variable is measured at the
hospital level over time and is also aggregated by zip code/year
for geospatial mapping and by state/year for forecasting and
additional modeling analysis. The number of claims include
third-party invoices provided by the hospital, regardless of the
payer. The number of claims provides a measure of the met
demand for services.

For the geospatial and temporal analyses, the variables year and
zip code (aggregated hospital-level data) are used to describe
the intensity of both the number of claims and the payment per
claim. Zip code provides a high resolution for geographic claims
data. For the HTS forecasting analysis, time components are
used without external regressors.

Explanatory stepwise regression, lasso regression, ridge
regression, elastic net, and gradient-boosted random forest
models investigate financial variables, technical variables,

workload variables, geospatial variables, a temporal variable
(year), and obesity rates (defined as the proportion of individuals
with a body mass index greater than or equal to 30%). A
discussion of each of the variable groups and variables follows.

The financial variables investigated include net patient revenue,
net income, cash on hand, total assets, total liabilities, and
proportion of Medicare/Medicaid reimbursement. The financial
variables were carefully selected from the set of available
financials such that they are not a linear combination of other
variables or nearly a linear combination (see Table 1). Although
available, total payments and charges for CPT 63 were not used
in the models, as they (1) would not be known in advance and
(2) would necessarily be direct functions of the number of
claims.

Quantitative workload variables include the number of staffed
beds, discharges, emergency room visits, surgeries, affiliated
physicians, and employees. Categorical technical variables
include ownership type, medical school affiliation, and hospital
type. These variables are investigated because of their
availability and possible confounding effects. Geographic
variables include urban/rural location, state, and zip code. These
variables are important in evaluating practice area variation and
associated effects.
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Obesity rates are of interest to the study. These rates are assigned
based on the state, as county and zip code level data are not

available. This independent variable is of importance to the
study.

Table 1. Variables in the study.

Scale of measurementDefinitionTypeVariable

{0, 1, 2, ...k}Filed third-party claimsDependentNumber of claims

[0%, 40%]Percentage obese by stateObesityObesity rate

US $Total CPT 63 paymentsFinancialCPTa 63 payments

US $Total CPT 63 chargesFinancialCPT 63 charges

US $Total revenue from patientsFinancialNet patient revenue

US $All revenue, patient-related or other-
wise

FinancialTotal revenues

US $Revenues less expensesFinancialNet income

US $Total dollars attributed to expensesFinancialTotal expenses

US $Funds immediately availableFinancialCash on hand

US $Current and noncurrent assetsFinancialTotal assets

US $Current and long-term debtFinancialTotal liabilities

%Percentage claims from either
source

FinancialPercentage Medicare/Medicaid

AK, AL, ...Hospital's state (address)GeospatialState

78666, ...5-digit hospital zip codeGeospatialZip code

Rural, urbanRural or urban locationTechnicalGeographic classification

Nonprofit, profit, governmentHospital ownershipTechnicalOwnership

Graduate, major, limited, noneLevel of affiliation if anyTechnicalMedical school affiliation

Short-term acute, children’s, etcType of hospitalTechnicalHospital type

2012, 2018Year of reportTemporalYear

{0, 1, ...n}Per Medicare reportWorkloadNumber of staffed beds

{0, 1, ...n}Total number of inpatient dischargesWorkloadNumber of discharges

{0, 1, ...n}Number of Medicare dischargesWorkloadNumber of Medicare discharges

{0, 1, ...n}Number of emergency room visitsWorkloadEstimated number of emergency room visits

{0, 1, ...n}Number of surgeriesWorkloadTotal surgeries

{0, 1, ...n}Number of acute bed daysWorkloadTotal acute days

{0, 1, ...n}Number of affiliated physiciansWorkloadNumber of affiliated physicians

{0, 1, ...n}Number of employeesWorkloadNumber of employees

aCPT: Current Procedural Terminology.

Results

Descriptive Statistics: Missing Data
Missing data were present in the Definitive Healthcare dataset.
As the percentage of missing data was small, the data were
imputed via regression trees (simple imputation). The total
number of valid observations at the hospital unit of analysis
from January 2012 to December 2017 was 13,769. There were
2244 unique zip codes with data resulting in 13,464 observations
from 2012 to 2017, although many of these were true zeros.
Aggregated at the state level, there were 306 observations of
the 50 states plus the District of Columbia over the 6-year span.

Descriptive Statistics: Quantitative Data
Important descriptive statistics for the Definitive Healthcare
data are shown (Table 2). The average number of CPT 63 claims
by hospital by year was 182, and the average payment was over
US $4045.99, about 50.37% of mean charges (US $8,032.13).
On average, hospitals performing these claims were large (227
beds with 1629 employees and 299 affiliated physicians). These
hospitals had on average positive net income (US $22 million)
and assets exceeding liabilities. Overall, 45% of their patients
used Medicare or Medicaid reimbursement.
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Table 2. Descriptive statistics for all years and all hospitals (N=13,769). The “K” suffix indicates dollars in thousands, while the “M” suffix indicates
dollars in millions.

MaximumMinimumMedianMean (SD)Variable

35921189182 (244)Claims, n

34,975.7603659.124045.99 (2448.96)Payments/claim, US $

18,966.3K0366.2K767.9K (1097.8K)Payments, US $

35,317.2K0616.4K1517.6K (2467.4K)Charges, US $

137,058.8006370.088032.13 (6993.90)Charges/claim, US $

5340.9M−98.6M217.5M343.8M (430.4M)Net patient revenue, US $

1316.0M−1648M11.3M22.8M (102.8M)Net income, US $

3597.8M−1992.7M2.8M30.3M (145.3M)Cash, US $

9969.4M−231.7M203.5M443.0M (820.1M)Total assets, US $

6372.4M−2583.8M69.2M178.2M (465.7M)Total liabilities, US $

26261.00177.00227.45 (201.36)Staffed beds, n

127,6001.008899.0011,822.61 (11,395.52)Discharges, n

543,457039,209.0047,439.59 (39,580.09)Emergency room visits, n

134,63807019.009643.21 (9666.56)Surgeries, n

34831.00198.00298.57 (333.43)Affiliated physicians, n

24,6737.001027.001629.46 (2044.45)Employees, n

100.440.45 (0.14)Percentage of Medicare/Medicaid, %

3820.2029.9229.44 (3.42)Obesity rate, n

The number of hospitals reporting CPT 63 claims increased by
91 from 2012 to 2017. Charges increased from US $2.115
million to US $4.75 million, whereas payments increased from
US $1.233 million to US $2.467 million. The proportion of
charges paid fluctuated between 45% and 58%. The number of
claims increased from 320K to 504K, a 60% increase (Table
3).

Variation across states from 2012 to 2017 for CPT 63 is
impressive. The maximum average payment per claim was in
Delaware (US $5190.62); however, the number of actual claims
was small (5569). New York had the second highest payment
per claim (US $5043.79) with 72,186 claims. Texas had the

largest number of claims (260,208), yet the average payment
per claim was only US $4223.22. On average, 60% of charges
were paid (Table 4).

Obesity rates by state have increased from 2012 to 2017 (Table
5). In 2012, the mean obesity rate per state was 27.95%. By
2017, this rate was 30.59%; however, this increase is not
weighted by population size. As discussed previously, the
aggregate increase for the United States from 2012 to 2017 was
5% (34.9% to 39.6%) [7]. The state data include the District of
Columbia (51 observations per year) but are not population
weighted.

Table 3. Average statistics by year show the growth in both claims and payments.

Charges/claim, in
US $

Payments/claim, in
US $

Total claims, nTotal charges, in mil-
lions of US $

Total payments, in mil-
lions of US $

Hospitals, nYear

66003847320,3712114.561232.6122482012

72513925372,1552698.341460.8022932013

82783699410,3173396.621517.8823062014

86024076428,8133688.721747.6822902015

89994550472,0044247.372147.4823362016

94144889504,6264750.682466.9223392017
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Table 4. Payments, charges, number of claims, payment per claim, charge per claim, and percentage of charges paid by state.

Percentage paid, %Charge/claim, in
US $

Payment/claim, in
US $

Number of claims,
n

Charges, in millions
of US $

Payments, in mil-
lions of US $

State

55.808649.314826.27438737.9421.17Alaska

55.505552.773083.4775,486419.16232.76Alabama

62.106051.073755.8533,087200.21124.27Arkansas

33.3012,760.424254.3941,274526.67175.60Arizona

32.2015,413.294969.31113,4101748.02563.57California

33.5010,598.653545.7241,537440.24147.28Colorado

52.308116.504247.1717,179139.4372.96Connecticut

48.809531.164651.78565553.9026.31District of
Columbia

111.504657.345190.62556925.9428.91Delaware

35.4011,740.794157.29131,4421543.23546.44Florida

48.708247.294013.0279,401654.84318.64Georgia

54.607861.444291.08280222.0312.02Hawaii

47.408050.583819.6234,419277.09131.47Iowa

56.906957.223956.1223,514163.5993.02Idaho

51.108618.734406.6081,960706.39361.17Illinois

45.109185.094142.9387,204800.98361.28Indiana

62.207772.784836.0739,992310.85193.40Kansas

70.206120.694298.0050,147306.93215.53Kentucky

48.207605.543664.6155,726423.83204.21Louisiana

78.906272.034950.0142,609267.24210.91Massachusetts

85.902784.662390.8934,73296.7283.04Maryland

89.303645.183255.2321,46878.2569.88Maine

79.905553.814436.4170,173389.73311.32Michigan

68.505905.414047.7347,410279.98191.90Minnesota

74.405866.304363.3383,085487.40362.53Missouri

39.8010,241.974071.7239,059400.04159.04Mississippi

62.406151.893841.6614,10686.7854.19Montana

56.907014.743988.87126,344886.27503.97North Carolina

85.004774.584060.13908143.3636.87North Dakota

51.207586.983,886.9824,310184.4494.49Nebraska

62.106305.403918.4919,091120.3874.81New Hampshire

51.709244.904778.9335,479328.00169.55New Jersey

45.507983.193631.59858368.5231.17New Mexico

51.207719.643953.6724,617190.0397.33Nevada

92.005482.215043.7972,186395.74364.09New York

53.308501.924534.8887,427743.30396.47Ohio

48.409578.464640.3851,639494.62239.62Oklahoma

64.407307.944706.5438,328280.10180.39Oregon

52.008634.054490.2985,334736.78383.17Pennsylvania

97.404339.104225.09377216.3715.94Rhode Island
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Percentage paid, %Charge/claim, in
US $

Payment/claim, in
US $

Number of claims,
n

Charges, in millions
of US $

Payments, in mil-
lions of US $

State

59.608069.034813.1460,977492.03293.49South Carolina

34.4011,459.543940.8417,870204.7870.42South Dakota

46.707744.183615.2679,948619.13289.03Tennessee

44.809417.344223.22260,2082,450.471,098.91Texas

103.704443.864608.3731,168138.51143.63Utah

49.708267.364108.6956,436466.58231.88Virginia

50.606864.493476.00357824.5612.44Vermont

39.5010,079.743976.8466,457669.87264.29Washington

56.907224.714112.3039,182283.08161.13Wisconsin

89.505504.074926.4823,852131.28117.51West Virginia

73.406633.274868.89614940.7929.94Wyoming

Table 5. State statistics for the proportion of the population identified as obese by the Behavioral Risk Factor Surveillance System by year.

YearStatistic

201720162015201420132012

30.59 (3.86)29.78 (3.74)29.28 (3.87)29.23 (3.42)28.65 (3.44)27.95 (3.38)Mean (SD) proportions

31.3029.9229.8329.6029.4027.60Median proportions

15.4215.3916.014.613.814.2Range

22.6422.2720.221.321.320.5Minimum

38.0637.6636.235.935.134.7Maximum

515151515151Count

Descriptive Statistics: Categorical Data
Of the 13,769 hospital observations, 3153 were rural and the
remaining 10,616 were urban. Most hospital observations were
classified as voluntary nonprofits (8866, 64%), whereas
proprietary corporations and government entities constituted
3426 (25%) and 1466 (11%), respectively, (11 hospital
observations had no ownership specification). Most of the
hospital observations (8311, 60%) had no affiliation with
medical schools. The vast majority of the observations were
from short-term acute care hospitals (13,040, 95%) with nearly
all of the remainder (678, 5%) associated with critical access
hospitals.

Descriptive Statistics: Correlational Analysis
Hierarchical clustered correlational analysis revealed strong
relationships among many of the quantitative variables.
Payments and claims are (as to be expected) highly correlated
(r=0.9). Most financial and workload metrics are highly
correlated as well (eg, net patient revenue and the number of
employees; r=0.95). Owing to the large sample size, nearly all
correlations are statistically significant at the alpha=.05 level
(see Figure 3). The matrix was produced using ggcorrplot [23].

The inclusion of obesity in this study is because of a
correlational finding that the number of CPT 63 procedures
appears to be influenced by state obesity rates at the aggregate
level (Figure 4 [24]). The question, though, is whether this
apparent correlation in the logs is sustained when other financial,
geographic, technical, and temporal variables are considered.
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Figure 3. The correlation matrix depicts the variable relationships. The X’s indicate no statistically significant correlation. Owing to the large sample
size, nearly all correlations are statistically significant at the alpha=.05 level. The matrix was produced using ggcorrplot.

Figure 4. Correlation between the natural logarithm of obesity rates and the natural logarithm of the number of CPT 63 surgeries performed by hospitals.

Exploratory Data Analysis: Feature Engineering and
Transformations
Although random forest regression models are scale invariant,
traditional regression techniques such as stepwise, lasso, ridge,
and elastic net are not [21]. Investigating transformations to
achieve multivariate normality (assuming random-effects
regression) is important to meet model assumptions.
Furthermore, time series forecasting often benefits from these
same techniques [16]. In addition, investigating additional
features that might be generated from the existing ones through
linear combinations and other methods often results in
disentangling collinear variables and finding interesting
relationships that might otherwise remain undiscovered.

A multivariate Box-Cox transformation was run using the car
package in R [25] for all modeled quantitative variables

simultaneously after these variables had been location adjusted
to make the variables strictly positive, definite, and scale
adjusted by dividing by the standard deviation. Multivariate
Box-Cox seeks to find power transformations (values of λ for
each variable) that make the data multivariate normal enough
for use in traditional linear models [26]. These transformations
help alleviate the problem of collinearity and address
multivariate normal assumptions of random-effects regression.
The null hypothesis is that the proposed transformation
generated through the transformation is a good fit. The
alternative is that it is not a good fit. The proposed
transformation was a vector of primarily natural logarithms
(values near zero) with some exceptions. The likelihood ratio
test resulted in a P value >.99, indicating that the assumption
of multivariate normality cannot be rejected. The actual vector
of transformations follows: λ={0.1, 0.3, 0.33, 0.38, 0.21, −0.07,
1.66, 0.76, −0.03, 0.55, 0.28, 0.17, 1.03, 1.04} for x={number
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of claims, number of staffed beds, number of discharges, ER
visits, total surgeries, net patient revenue, net income, cash,
total assets, total liabilities, affiliated physicians, employees,
percent Medicare/Medicaid, obesity rate}, respectively.

Univariate histograms for the number of claims and obesity pre-
and posttransformation are in Figure 5. The transformed graph

of the number of claims shows some slight skew but is otherwise
unremarkable. However, the graph of obesity rates is telling.
Although the transformation fails to reject the assumption of
multivariate normality, the obesity graph is bimodal. It is
possible that linear-in-parameter models will not be able to
correctly fit the importance of this variable, whereas tree-based
models will find patterns.

Figure 5. The untransformed and transformed histograms of the number of claims and the obesity rate variables.

Geospatial Analysis Results: Zip Code Unit of Analysis
Geospatial heat map analysis of CPT 63 number of claims by
year and parsed by zip code is shown in panels (Figure 6). The
maximum scale is approximately 7000 claims for each diagram
to allow for comparison across years. Multimedia Appendix 1
shows this analysis in video format.

In 2012, there was very little high-intensity activity (Houston
and Dallas, Texas, primarily, with some activity in the
Carolinas). The Eastern seaboard has activity, but it is not
intense, and the Western seaboard has minimal activity, except
near Seattle.

By 2013, the Eastern seaboard (particularly New Jersey) has
increased in intensity, and the areas around Chicago and Salem,
Oregon, are emerging as well. Houston and Dallas remain the
most intense regions for the number of claims.

In 2014, the number of claims in Seattle and San Antonio,
Texas, shifted these cities to high-intensity areas (some red
visible). It must be noted that 3 of the 4 cities with visible red
tint are in Texas (San Antonio, Dallas, and Houston).

The year 2015 saw increasing intensity in both the New Jersey
area and Chicago, Illinois. These 2 areas joined Houston, Dallas,
San Antonio, and Seattle as high-intensity claims areas. Despite
their populations, neither California nor Florida experienced
the claims intensity of Texas.

Houston, Dallas, San Antonio, Seattle, Longview (Texas),
Oklahoma City, the New Jersey area, and St. Louis were the
notable areas of high intensity in 2016. The California coast
became more intense along with Salt Lake City.

By 2017, the Eastern seaboard intensified (New Jersey,
Delaware, Pennsylvania, Virginia, and District of Columbia)
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along with Phoenix, Arizona, and Atlanta, Georgia areas. The
most intense areas remained Houston and Dallas.

Overall, the maps may suggest small area variations in practice
patterns [27]. Although California and Florida have large

populations, none of their major population centers reached the
high-intensity scale of major cities in Texas. Furthermore, the
Eastern seaboard’s increasing intensity suggests that something
has changed. The questions then become are these changes in
demand forecastable and how might they be explained.

Figure 6. Geospatial analysis of all CPT 63 claims from 2012 through 2017.

Forecasting Results

Number of Claims
Being able to forecast demand is necessary for decision makers
to investigate both supply- and demand-side interventions. To
that end, HTS for state, census bureau region, and the nation
using both ETS and ARIMA components were built on
2012-2015 training dataset and compared with the 2016-2017
test set using the hts package in R [16]. Bottom-up, top-down,
middle-out, and combination approaches to this forecasting
were analyzed.

The ETS models performed better on the test set in terms of
both variance and bias as shown (Table 6), and the middle-out
model performed better on all bias (mean error and mean
percentage error) as well as variance (root mean squared error,
mean absolute error, and mean absolute percentage error)
metrics. The overall forecast from the ETS middle-out model
for the unobserved years {2016, 2017} was {454,720.3,
482,049.9}, whereas the actual overall claims were {464,323,
497,325}, resulting in mean absolute percent error (MAPE) of
{2.0%, 3.1%}. Table 7 illustrates the forecast and actual number
of claims at the region-level hierarchy for the best performing
model, whereas Table 8 provides the state-by-state forecasts.
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Table 6. The performance metrics of the various hierarchical models show that the exponential, trend, seasonality middle-out model performed best
on the test set.

Mean absolute percent error (%)Mean percent error (%)Mean absolute errorRoot mean squared errorMean errorModel

10.713.161371.812905.64860.42ETSa-bottom up

10.543.031266.132423.58688.26ETS-top down

10.502.701219.592256.70611.75ETS-middle out

9.562.251235.042404.41682.27ETS-combination

26.6524.935762.2016496.725732.63ARIMAb-bottom up

25.6623.265312.3714953.595214.61ARIMA-top down

24.2020.704799.8813420.784606.38ARIMA-middle out

25.9220.655259.6714782.375159.04ARIMA-combination

aETS: exponential, trend, seasonality.
bARIMA: autoregressive integrated moving average.

Table 7. Region-level forecasts demonstrate small error. The average mean absolute percent error (MAPE) for {2016, 2017} was {3.4%, 6.2%},
respectively.

MAPE 2017 (%)MAPE 2016 (%)2017 actual2017 forecast2016 actual2016 forecastRegion

2.91.072,72070,63067,67267,019East North Central

5.60.047,10744,47742,74742,765East South Central

10.66.642,86038,30937,53235,044Middle Atlantic

0.31.738,34138,21135,25435,840Mountain

14.38.820,73317,76319,47617,763New England

12.03.143,86549,12243,64745,015Pacific

3.21.5103,546100,26696,09394,650South Atlantic

1.11.948,60048,07546,55045,653West North Central

5.55.879,55375,19775,35270,972West South Central
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Table 8. Forecasts produced by the exponential, trend, seasonality middle-out model by state for 2016 and 2017 have an average mean absolute percent
error (MAPE) of 10.1% and 13.2%, respectively.

Mean absolute error
2017 (%)

Mean absolute error 2016
(%)

2017 actual2017 forecast2016 actual2016 forecastState

5.231.77848251,132773Alaska

6.62.315,69714,65814,02913,709Alabama

15.15.86150707761936550Arkansas

1.911.49624943875858450Arizona

10.93.121,85924,24221,40222,060California

8.75.26512708167367089Colorado

25.618.23289244631032539Connecticut

2.83.61041107010151052Dist. of Columbia

46.937.812866831129702Delaware

5.75.825,41726,87023,61124,991Florida

16.27.214,09316,37214,29315,324Georgia

29.818.2527370451369Hawaii

7.31.56069562456985613Iowa

18.220.64793392047553775Idaho

8.61.315,16816,47415,79315,590Illinois

1.40.014,64814,85014,83914,839Indiana

7.410.97969738277926943Kansas

12.93.39239804478058061Kentucky

4.38.811,04411,519981710,682Louisiana

21.213.99556753384247251Massachusetts

4.64.16785647564586196Maryland

1.74.73345340237073532Maine

0.66.514,91415,00512,99813,843Michigan

29.613.4950712,3179,49910,768Minnesota

14.37.115,37813,18114,15513,157Missouri

0.78.27301725275626943Mississippi

47.812.02108311626382954Montana

11.55.624,31421,52722,42921,173North Carolina

0.210.02013201716721839North Dakota

8.79.94210457640364437Nebraska

14.52.43382289030733000New Hampshire

6.76.06659710270676643New Jersey

23.113.91755135015701351New Mexico

5.412.75320560644975067Nevada

9.29.415,44214,01414,20612,876New York

13.16.119,64317,07516,97715,944Ohio

0.35.910,38610,42110,2149613Oklahoma

11.610.7757484547,1117875Oregon

17.24.520,75917,19316,25915,524Pennsylvania

21.921.0750914695841Rhode Island
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Mean absolute error
2017 (%)

Mean absolute error 2016
(%)

2017 actual2017 forecast2016 actual2016 forecastState

12.11.213,49411,85810,92111,050South Carolina

13.821.73454297736982896South Dakota

2.35.314,87014,52313,35114,052Tennessee

11.110.251,97346,18149,12844,127Texas

0.72.46811676560776220Utah

2.413.212,02011,73112,14310,543Virginia

40.626.6411578474600Vermont

16.12.813,12115,23113,55113,937Washington

13.3.78347722770656803Wisconsin

27.811.65096368040943619West Virginia

34.133.014189341396935Wyoming

HTS with the middle-out approach and ETS methods was refit
on the entire dataset to generate forecasts. Figure 7 shows the
regional forecasts for 2018 and 2019. The East North Central
region of the country is likely to experience the largest growth
in claims. The overall demand for 2018 and 2019 is forecasted
to be {529,777, 562,023}, which represents growth of 6.52%
growth in the first year (from 497,325 procedures in 2017 to

529,777 in 2018) and 13.00% by 2019 (from 497,325 procedures
in 2017 to 562,023 in 2019). At US $5000 average per claim
(a simple linear model would suggest US $4910 in 2018 and
US $5123 in 2019), the net increase in cost for 2018 would be
US $162.2 million for 2018 and US $323.9 million for 2019.
The next question becomes what explains the predicted growth
of these claims other than possibly practice variation.

Figure 7. Regional forecasts generated by the hierarchical time series middle-out model with exponential, trend, seasonality components.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e14609 | p. 14http://www.jmir.org/2019/10/e14609/
(page number not for citation purposes)

Fulton & KruseJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Explanatory Modeling Results
To investigate explanatory variables, several models were
explored. Stepwise regression for the number of claims at the
hospital level using the transformed variables and an 80%
training set was successfully able to predict the number of claims

on the withheld test set with some accuracy (adjusted R2=0.39

on the training set and adjusted R2=0.38 on the test set). This
indicates that the sum of squared regression accounted for 38%
of the variance of the sum of squared total on the test set.
Payments and charges were excluded from the analysis as they
are necessarily functions of claims. The variables evaluated
were the number of staffed beds, discharges, surgeries, net
patient revenue, net income, total assets, total liabilities,
affiliated physicians, employees, percentage Medicare/Medicaid,
state, year, urban/rural status, ownership, medical school status,
and hospital type. Table 9 provides the remaining variables
generated from the stepwise regression at the hospital unit of
analysis. It should be noted that obesity did not remain in the
final model.

Stepwise regression for the number of claims with data
aggregated (mean) by state and by year (N=306 observations,

51 states/territories × 6 years) resulted in an impressive model
using an 80% training set to predict a 20% withhold set. The

adjusted R2 was 0.87 on the training set and 0.77 on the test set
after dropping insignificant variables from the analysis. The
variables in this model included state, year, number of
discharges, and total liabilities (a parsimonious model; Table
10). Again, there is no evidence that obesity rates are predictive
of CPT 63 surgery in this model.

Lasso, ridge, and elastic net regression models were able to

predict the unaggregated test set with some accuracy (R2=0.38,
0.37, 0.38, respectively.) None of these penalty-weighted models
improved upon the stepwise analysis significantly, although
elastic net tied. Obesity was not retained in these models. For

the aggregated set (state and year), the associated R2 were 0.78,
0.75, and 0.78, respectively. The lasso and elastic net models
were slightly superior to the stepwise regression model (Figure
5). The top 10 variables by effect size in the state-aggregated
elastic net model are shown in Table 11. The effect size of
obesity was near zero (0.0098). If one were to make a conclusion
using traditional and constrained linear models, obesity would
not be a factor for explaining the number of claims; however,
random forests would prove otherwise.

Table 9. Variables below from the stepwise regression predicted a withhold set with adjusted R2=0.38.

P valueF value (df)Mean squared errorSum of squaresVariable

<.0012423.29 (1)95.7895.78Staffed beds

<.001554.77 (1)21.9321.93Discharges

<.001442.68 (1)17.5017.50ER visits

<.0011041.03 (1)41.1541.15Surgeries

<.001140.99 (1)5.575.57Net patient revenue

<.00163.97 (1)2.532.53Net income

<.001112.70 (1)4.454.45Total liabilities

<.016.08 (1)0.240.24Affiliated physicians

<.001158.78 (1)6.286.28Employees

<.00129.34 (1)1.161.16Percentage Medicare/Medicaid

<.00126.49 (50)1.0552.35State

<.00140.91 (5)1.628.09Year

<.00150.43 (1)1.991.99Urban rural status

<.00122.68 (12)0.9010.76Ownership

<.00113.63 (4)0.542.16Medical school affiliation

<.013.24 (5)0.130.64Hospital type

Table 10. Variables in the analysis by state and by year.

P valueF value (df)Mean squared errorSum of squaresVariable

<.0126.40 (50)0.021.16State

<.0139.16 (5)0.030.17Year

<.0163.19 (1)0.060.06Discharges

.044.45 (1)0.0040.004Net income

.034.65 (1)0.0040.004Total liabilities
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Table 11. Top 10 coefficients by effect size of the elastic net.

CoefficientVariable

−1.539Total assets

−1.044Net patient revenue

0.212Number of staffed beds

0.186Number of discharges

−0.178New Jersey

0.162Total surgeries

−0.159New York

−0.145California

−0.143Delaware

−0.136Employees

Gradient-boosted random forests with hyperparameter tuning
outperformed all models: stepwise, lasso, ridge, elastic net
regression. On the unaggregated withhold set, a well-pruned
model (depth 4) with 2000 epoch runs and a slow learning rate
of 0.1 accounted for more than 78.5% of the variability

(R2=0.79) on the unobserved test set. Comparing this value with
the approximately 38% variability accounted for in the other

models suggests that the random forest model is superior. Figure
8 is a plot of the gain (the average improvement when the feature
is used in a tree) for the top 5 items in the importance matrix,
whereas Figure 9 is a plot of the cover (the average proportion
of samples affected by splitting using this feature) for the top
5 items of the unaggregated model. These figures illustrate that
obesity is one of the prominent features in both gain and cover
of the unaggregated model.

Figure 8. Gain plot for the top 5 variables, unaggregated model.
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Figure 9. Cover plot for the top 5 variables, unaggregated model.

Despite the exceptional gains of the extreme gradient-boosted
random forests on the unaggregated, hospital-level data, the
application of hyperparameter-tuned models to the aggregated
data (by state and year) yielded only nominal improvement over
the constrained regression methods, possibly because of the
smaller sample due to aggregation. A well-pruned model
(depth=3) after 3000 epochs with a slow learning rate (0.1)

achieved an R2 of 0.80. The gain and cover graphs are shown

in Figures 10 and 11, and obesity rate is the most important
feature at the state-aggregated level.

Most importantly, the gradient-boosted random forests identified
obesity as the second most important factor for gain at the
hospital level and as the most important factor for both gain
and cover at the state level of analysis. Furthermore, the
gradient-boosted random forests performed better than any other
model considered on a blinded test set.

Figure 10. Gain plot for the top 5 variables, aggregated model.
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Figure 11. Cover plot for the top 5 variables, aggregated model.

Discussion

Principal Findings
In this analysis, we evaluated the location, magnitude, and
reasons for the growth of CPT 63 back surgeries in the United
States. The GIS heat map analysis shows large-scale growth,
particularly in the Northeastern region of the United States, and
sustained activity in Texas. The entirety of the Eastern seaboard
has seen growth in these procedures, and the associated
increased cost is estimated to be US $323.9 million by the end
of 2019.

The principal findings of this study are described here. Each of
the following results includes a discussion of significance and
(if appropriate) policy:

1. The Northeastern seaboard is likely to see continued growth
in CPT 63 procedures. The implication for states in this
region is that they may see more unplanned expenditures
on health care, affecting their budgets. Furthermore, cost
controls and reduction of practice variation based on
evidence will become more important.

2. The cost associated with these procedures is outstripping
inflation and will likely result in national expenditures in
the triple-digit billions. The federal government may need
to evaluate its own evidence-based, best practice policies
associated with funding of procedures that link selected
interventions with outcomes and that reasonably limit
reimbursement.

3. Interstate practice variation appears to be extreme. For
example, large population centers in California have fewer
claims than large population centers in Texas. States should
also investigate intrastate variation.

4. Hierarchical forecasts suggest an increase in the number of
claims of 6.5% for 2018 and 13% in 2019. The initial
models were built on a blind test set and performed well.
These types of forecasts are reasonably effective for claims
analysis.

5. Explanatory regression models for nation-level claims data
had only some success in internal predictions. These models
excluded obesity as a predictor. Regression models were
more successful at predicting aggregated state/year models,
though. These traditional models should be abandoned in
favor of random forests.

6. Extreme gradient-boosted random forest models were highly
successful in predicting both hospital-level unit of analysis
number of claims and aggregate-level claims on an
unobserved test set. These models identified obesity as an
important factor in estimating the number of claims.
Furthermore, the use of these models underscores that even
after multivariate transformations, nonlinear functions may
exist in modeled data. Random forests unearthed patterns
not visible to regression and constrained regression models.

Limitations
There are many limitations in this work. First, the algorithms
used by Definitive Healthcare to extrapolate CMS data to
all-payor data are not divulged. This omission is problematic
for verification but understandable because of parochial
concerns. Second, only ETS and ARIMA models were
considered for the HTS fitting as these models are implemented
in the R HTS package. There are an infinite number of models
for forecasting, including random forest time series that might
have performed better. Third, the explanatory variables are
limited to those tracked by CMS and the BRFSS.
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Conclusions
Hospital-based back surgeries are likely to increase dramatically
over the next several years, yet the supply of neurosurgeons is
constant. With that increase, the cost of the procedures (mostly
borne by third-party payers) will increase as well. Practice
variation appears to be prevalent across the country; however,
obesity itself is a factor that must be considered as a significant
influence. Policy interventions must be considered at many
levels.

Clinical practice variation is something that may require
intervention at the federal level. For example, a study in
Scandinavia found significant differences among Norway,
Sweden, and Denmark in the use of concomitant arthrodesis
without any difference in treatment efficacy, increasing the cost
without improving outcomes [28]. Controlling costs across
states may require federal (and state) reimbursement
interventions and incentives.

States should continue educational and financial interventions
targeting obesity in adults and children. As the obesity epidemic
continues to grow, the medical intervention costs are likely to
grow accordingly. Furthermore, states should evaluate
county-to-county practice variation as these variations often
increase cost without improving quality [27].

Local interventions should consider the targeting of food deserts
(urban areas where fresh, quality food is difficult to find) for
eradication as well as educational interventions. Several studies
have shown that the food environment is directly linked to
obesity [29-31]. Eliminating or at least reducing the number of
food deserts requires incentivizing grocery stores to populate
areas where it may not be as lucrative because of poverty or
demand.

Insurance companies themselves have a vested interest in both
reducing obesity and controlling practice variation. Obesity is
linked to numerous health disorders such as heart disease, type
2 diabetes, and bone and joint disease [32], any of which may
result in additional costs to the health care system and insurer.
Funding prevention efforts and establishing policies to reduce
practice area variation are likely to benefit them as well as the
population health over time.

Federal, state, and local policy makers need to address the
increasing obesity epidemic and the likely associated increase
in demand for back surgeries. The implications of not doing so
are increased cost, questionable quality/cost trade-offs, and
reduced access because of the small and steady number of
available neurosurgeons. The fattening of America and the costs
associated with it are likely to continue increasing otherwise.
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Multimedia Appendix 1
This video depicts heat maps for the number of claims from 2012 through 2017.
[MP4 File (MP4 Video), 4334 KB-Multimedia Appendix 1]

References

1. American Association of Neurological Surgeons. 2012. Ensuring an Adequate Neurosurgical Workforce for the 21st Century
URL: https://www.aans.org/pdf/Legislative/Neurosurgery%20IOM%20GME%20Paper%2012%2019%2012.pdf [accessed
2019-09-03] [WebCite Cache ID 788BVM51T]

2. Greenwood B. Houston Chronicle. 2018. What Is the Job Outlook for a Neurosurgeon? URL: https://work.chron.com/
job-outlook-neurosurgeon-20074.html [accessed 2019-05-05] [WebCite Cache ID 788BjABT7]

3. Definitive Healthcare: Healthcare Analytics & Provider Data. 2019. URL: https://www.definitivehc.com/ [accessed
2019-05-05] [WebCite Cache ID 788Bun3Wb]

4. SuperCoder: Medical Coding & Billing Tools. 2019. CPT® Codes — Surgical Procedures on the Spine and Spinal Cord
URL: https://www.supercoder.com/cpt-codes-range/1844 [accessed 2019-08-31] [WebCite Cache ID 788C25UMY]

5. Azad TD, Vail D, O'Connell C, Han SS, Veeravagu A, Ratliff JK. Geographic variation in the surgical management of
lumbar spondylolisthesis: characterizing practice patterns and outcomes. Spine J 2018 Dec;18(12):2232-2238. [doi:
10.1016/j.spinee.2018.05.008] [Medline: 29746964]

6. Alvin MD, Lubelski D, Alam R, Williams SK, Obuchowski NA, Steinmetz MP, et al. Spine surgeon treatment variability:
the impact on costs. Global Spine J 2018 Aug;8(5):498-506 [FREE Full text] [doi: 10.1177/2192568217739610] [Medline:
30258756]

7. The State of Obesity – Better Policies for a Healthier America. 2019. National Obesity Rates & Trends URL: https://www.
stateofobesity.org/obesity-rates-trends-overview/ [accessed 2019-08-31] [WebCite Cache ID 788CDkupM]

8. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific
estimates. Health Aff (Millwood) 2009;28(5):w822-w831. [doi: 10.1377/hlthaff.28.5.w822] [Medline: 19635784]

9. Chan AK, Bisson EF, Bydon M, Glassman SD, Foley KT, Potts EA, et al. Obese patients benefit, but do not fare as well
as nonobese patients, following lumbar spondylolisthesis surgery: an analysis of the quality outcomes database. Neurosurgery
2018 Dec 12:- (epub ahead of print). [doi: 10.1093/neuros/nyy589] [Medline: 30541141]

10. Zhang TT, Liu Z, Liu YL, Zhao JJ, Liu DW, Tian QB. Obesity as a risk factor for low back pain: a meta-analysis. Clin
Spine Surg 2018 Feb;31(1):22-27. [doi: 10.1097/BSD.0000000000000468] [Medline: 27875413]

J Med Internet Res 2019 | vol. 21 | iss. 10 | e14609 | p. 19http://www.jmir.org/2019/10/e14609/
(page number not for citation purposes)

Fulton & KruseJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v21i10e14609_app1.mp4&filename=1b93edc3ea3fc4befa8eec24ca27f221.mp4
https://jmir.org/api/download?alt_name=jmir_v21i10e14609_app1.mp4&filename=1b93edc3ea3fc4befa8eec24ca27f221.mp4
https://www.aans.org/pdf/Legislative/Neurosurgery%20IOM%20GME%20Paper%2012%2019%2012.pdf
http://www.webcitation.org/

                                            788BVM51T
https://work.chron.com/job-outlook-neurosurgeon-20074.html
https://work.chron.com/job-outlook-neurosurgeon-20074.html
http://www.webcitation.org/

                                            788BjABT7
https://www.definitivehc.com/
http://www.webcitation.org/

                                            788Bun3Wb
https://www.supercoder.com/cpt-codes-range/1844
http://www.webcitation.org/

                                            788C25UMY
http://dx.doi.org/10.1016/j.spinee.2018.05.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29746964&dopt=Abstract
http://europepmc.org/abstract/MED/30258756
http://dx.doi.org/10.1177/2192568217739610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30258756&dopt=Abstract
https://www.stateofobesity.org/obesity-rates-trends-overview/
https://www.stateofobesity.org/obesity-rates-trends-overview/
http://www.webcitation.org/

                                            788CDkupM
http://dx.doi.org/10.1377/hlthaff.28.5.w822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19635784&dopt=Abstract
http://dx.doi.org/10.1093/neuros/nyy589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30541141&dopt=Abstract
http://dx.doi.org/10.1097/BSD.0000000000000468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27875413&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


11. Chronic Disease and Health Promotion Data & Indicators - CDC. 2019. BRFSS: Table of Overweight and Obesity (BMI)
URL: https://chronicdata.cdc.gov/Behavioral-Risk-Factors/BRFSS-Table-of-Overweight-and-Obesity-BMI-/fqb7-mgjf
[accessed 2019-05-05] [WebCite Cache ID 788CKzB88]

12. Lee DC, Yi SS, Athens JK, Vinson AJ, Wall SP, Ravenell JE. Using geospatial analysis and emergency claims data to
improve minority health surveillance. J Racial Ethn Health Disparities 2018 Aug;5(4):712-720 [FREE Full text] [doi:
10.1007/s40615-017-0415-4] [Medline: 28791583]

13. MacQuillan EL, Curtis AB, Baker KM, Paul R, Back YO. Using GIS mapping to target public health interventions:
examining birth outcomes across GIS techniques. J Community Health 2017 Aug;42(4):633-638. [doi:
10.1007/s10900-016-0298-z] [Medline: 27885583]

14. Côté MJ, Smith MA. Forecasting the demand for radiology services. Health Syst (Basingstoke) 2018;7(2):79-88 [FREE
Full text] [doi: 10.1080/20476965.2017.1390056] [Medline: 31214340]

15. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer's disease. Alzheimers
Dement 2007 Jul;3(3):186-191. [doi: 10.1016/j.jalz.2007.04.381] [Medline: 19595937]

16. Hyndman R, Lee A, Wang E, Wickramasuriya S. RDDR. 2018. HTS-package: Hierarchical and Grouped Time Series
URL: https://rdrr.io/cran/hts/man/hts-package.html [accessed 2019-08-31]

17. The R Development Core Team. Servidor de software libre de la Universidad de Zaragoza. 2018. R: A Language and
Environment for Statistical Computing URL: https://www.r-project.org/ [accessed 2019-09-03]

18. MacNab YC. Hierarchical Bayesian modeling of spatially correlated health service outcome and utilization rates. Biometrics
2003 Jun;59(2):305-316. [doi: 10.1111/1541-0420.00037] [Medline: 12926715]

19. Hyndman RJ, Athanasopoulos G. Forecasting: Principles and Practice. Second Edition. Boston, Massachusetts: OTexts;
2019.

20. Holt CC. Forecasting seasonals and trends by exponentially weighted moving averages. Int J Forecast 2004 Jan;20(1):5-10.
[doi: 10.1016/j.ijforecast.2003.09.015]

21. Hastie T, Tibshirani R, Friedman J. TheElements of Statistical Learning: Data Mining, Inference, and Prediction. Second
Edition. New York: Springer; 2019.

22. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H. XGBoost Documentation. 2018. XGBoost: Extreme Gradient
Boosting URL: https://xgboost.readthedocs.io/en/latest/ [accessed 2019-08-31]

23. Kassambara A. Statistical Tools for High-Throughput Data Analysis. 2018. ggcorrplot: Visualization of a Correlation
Matrix Using ggplot2 URL: http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2
[accessed 2019-08-31]

24. Softonic. 2016. Microsoft Excel 2016 URL: https://microsoft-excel-2016.en.softonic.com/ [accessed 2019-08-31]
25. Fox J, Weisberg S. An R Companion to Applied Regression. Second Edition. Thousand Oaks, CA: Sage Publications;

2011.
26. Box GE, Cox DR. An analysis of transformations. J R Stat Soc Series B Stat Methodol 2018 Dec 5;26(2):211-243 [FREE

Full text] [doi: 10.1111/j.2517-6161.1964.tb00553.x]
27. Wennberg J, Gittelsohn N. Small area variations in health care delivery. Science 1973 Dec 14;182(4117):1102-1108. [doi:

10.1126/science.182.4117.1102] [Medline: 4750608]
28. Lønne G, Fritzell P, Hägg O, Nordvall D, Gerdhem P, Lagerbäck T, et al. Lumbar spinal stenosis: comparison of surgical

practice variation and clinical outcome in three national spine registries. Spine J 2019 Jan;19(1):41-49. [doi:
10.1016/j.spinee.2018.05.028] [Medline: 29792994]

29. Morland K, Wing S, Roux AD. The contextual effect of the local food environment on residents' diets: the atherosclerosis
risk in communities study. Am J Public Health 2002 Nov;92(11):1761-1767. [doi: 10.2105/ajph.92.11.1761] [Medline:
12406805]

30. Morland K, Roux AV, Wing S. Supermarkets, other food stores, and obesity: the atherosclerosis risk in communities study.
Am J Prev Med 2006 Apr;30(4):333-339. [doi: 10.1016/j.amepre.2005.11.003] [Medline: 16530621]

31. Holsten JE. Obesity and the community food environment: a systematic review. Public Health Nutr 2009 Mar;12(3):397-405.
[doi: 10.1017/S1368980008002267] [Medline: 18477414]

32. Stanford Health Care (SHC) - Stanford Medical Center. 2019. Effects of Obesity URL: https://stanfordhealthcare.org/
medical-conditions/healthy-living/obesity.html [accessed 2019-08-31]

Abbreviations
ARIMA:  autoregressive integrated moving average models
BRFSS:  Behavioral Risk Factor Surveillance System
CPT:  Current Procedural Terminology
CMS:  Centers for Medicare and Medicaid Services
ETS:  exponential, trend, seasonality
HTS:  hierarchical time series
MAPE:  mean absolute percent error

J Med Internet Res 2019 | vol. 21 | iss. 10 | e14609 | p. 20http://www.jmir.org/2019/10/e14609/
(page number not for citation purposes)

Fulton & KruseJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://chronicdata.cdc.gov/Behavioral-Risk-Factors/BRFSS-Table-of-Overweight-and-Obesity-BMI-/fqb7-mgjf
http://www.webcitation.org/

                                            788CKzB88
http://europepmc.org/abstract/MED/28791583
http://dx.doi.org/10.1007/s40615-017-0415-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28791583&dopt=Abstract
http://dx.doi.org/10.1007/s10900-016-0298-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27885583&dopt=Abstract
http://europepmc.org/abstract/MED/31214340
http://europepmc.org/abstract/MED/31214340
http://dx.doi.org/10.1080/20476965.2017.1390056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31214340&dopt=Abstract
http://dx.doi.org/10.1016/j.jalz.2007.04.381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19595937&dopt=Abstract
https://rdrr.io/cran/hts/man/hts-package.html
https://www.r-project.org/
http://dx.doi.org/10.1111/1541-0420.00037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12926715&dopt=Abstract
http://dx.doi.org/10.1016/j.ijforecast.2003.09.015
https://xgboost.readthedocs.io/en/latest/
http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2
https://microsoft-excel-2016.en.softonic.com/
http://www.jstor.org/stable/2984418
http://www.jstor.org/stable/2984418
http://dx.doi.org/10.1111/j.2517-6161.1964.tb00553.x
http://dx.doi.org/10.1126/science.182.4117.1102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4750608&dopt=Abstract
http://dx.doi.org/10.1016/j.spinee.2018.05.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29792994&dopt=Abstract
http://dx.doi.org/10.2105/ajph.92.11.1761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12406805&dopt=Abstract
http://dx.doi.org/10.1016/j.amepre.2005.11.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16530621&dopt=Abstract
http://dx.doi.org/10.1017/S1368980008002267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18477414&dopt=Abstract
https://stanfordhealthcare.org/medical-conditions/healthy-living/obesity.html
https://stanfordhealthcare.org/medical-conditions/healthy-living/obesity.html
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by G Eysenbach; submitted 05.05.19; peer-reviewed by C Mavrot, A Kotlo; comments to author 26.07.19; revised version
received 31.07.19; accepted 09.08.19; published 29.10.19

Please cite as:
Fulton L, Kruse CS
Hospital-Based Back Surgery: Geospatial-Temporal, Explanatory, and Predictive Models
J Med Internet Res 2019;21(10):e14609
URL: http://www.jmir.org/2019/10/e14609/
doi: 10.2196/14609
PMID: 31663856

©Lawrence Fulton, Clemens Scott Kruse. Originally published in the Journal of Medical Internet Research (http://www.jmir.org),
29.10.2019. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic
information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be
included.

J Med Internet Res 2019 | vol. 21 | iss. 10 | e14609 | p. 21http://www.jmir.org/2019/10/e14609/
(page number not for citation purposes)

Fulton & KruseJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.jmir.org/2019/10/e14609/
http://dx.doi.org/10.2196/14609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31663856&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

