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Abstract. In this article, we study q-fractional Sturm-Liouville operators.

Using by the functional method, we pass to a new operator. Then, show-
ing that this operator is a maximal operator and constructing a self-adjoint

dilation of the maximal dissipative operator. We prove a theorem on the com-

pleteness of the system of eigenvectors and associated vectors of the dissipative
q-fractional Sturm-Liouville operators.

1. Introduction

It is well known that many problems in mechanics, engineering and mathematical
physics lead to the concept of completeness of root functions and basis properties
of all or part of the eigenvectors and associated vectors corresponding to some
operators. In many engineering applications, the Sturm-Liouville problems arise
as boundary value problems. These problems and many of the associated theories
were presented in 1800’s (see [22, 31, 41]), and since then, the related fields such
as fractional Sturm-Liouville operators and q-fractional Sturm-Liouville operators
have attracted considerable interest in a variety of applied sciences and mathematics
(see [21, 26, 28, 33] and the references therein).

Spectral theory is one of the major subjects of modern functional analysis and
its applications in mathematics. So there has recently been a noticeable interest
in spectral analysis of Sturm-Liouville boundary value problems (see [6, 10, 14, 20,
34, 38, 40] and the references therein).

There are some methods to give the completeness of non-self-adjoint (dissipa-
tive) operators, such as the method of contour integration of the resolvent, Lidskij’s
method, functional model method, etc. In this paper, we prove a theorem on the
completeness of the system of eigenvectors and associated vectors of dissipative
operators by using functional model theory that belongs to Sz.-Nagy-Foiaş. It is
related with the equivalence of the Lax-Phillips scattering function technique and
Sz.-Nagy-Foiaş characteristic function. By combining the results of Nagy-Foiaş [4]
and Lax-Phillips [3], the characteristic function is expressed with a scattering ma-
trix, and the dissipative operator in the spectral representation of dilation becomes
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the model. By means of different spectral representation of dilation, the given op-
erator can be written very simply and the functional models are obtained. The
eigenvalues, eigenvectors and the spectral projection of the model operator is ex-
pressed obviously by the characteristic function. In the centre of this method, the
problem on the completeness of the system of eigenvectors is solved by writing the
characteristic function as a factorization. That is, the factorization of the charac-
teristic function gives us information about whether the system of all eigenvectors
and associated vectors is complete or not. This approach is applied for dissipa-
tive Schrödinger operators, Sturm-Liouville operators, fractional Sturm-Liouville
operators and difference Sturm-Liouville operators (see [14, 20, 32, 38, 40]).

In this article, we apply it to the q-fractional Sturm-Liouville operator. To
do this, we form a new operator and show that this new operator is a maximal
dissipative operator. Then, we construct a functional model of the dissipative
operator by means of the incoming and outgoing spectral representations, and define
its characteristic function because this makes it possible to determine the scattering
matrix of dilation according to the Lax and Phillips scheme. Finally, we prove a
theorem on the completeness of the system of eigenvectors and associated vectors
of dissipative operators.

2. Preliminaries

In this section, we recall some basic definitions and properties of the fractional
calculus theory, which are useful in the following discussion. These definitions and
properties can be found in [1, 2, 5, 13, 29, 30, 32, 35, 37] and the references therein.

Let q be a positive number with 0 < q < 1, A ⊂ R,

At,q := {tqn : n ∈ N}, A∗t,q := At,q ∪ {0}, t > 0,

At,q := {±tqn : n ∈ N}, t > 0.

Let y(·) be a complex-valued function on A. The q-difference operator Dq is
defined by

Dqy(x) =
y(qx)− y(x)

µ(x)
for all x ∈ A\{0},

where µ(x) = (q − 1)x. The q-derivative at zero is defined by

Dqy(0) = lim
n→∞

y(qnx)− y(0)
qnx

(x ∈ A),

if the limit exists and does not depend on x. A right-inverse to Dq, the Jackson
q-integration is given by∫ x

0

f(t)dqt = x(1− q)
∞∑
n=0

qnf(qnx) (x ∈ A),

provided that the series converges, and∫ b

a

f(t)dqt =
∫ b

0

f(t)dqt−
∫ a

0

f(t)dqt (a, b ∈ A).

Let L2
q(0, a) be the space of all complex-valued functions defined on [0, a] such

that

‖f‖ :=
(∫ a

0

|f(x)|dqx
)1/2

<∞.
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The space L2
q(0, a) is a separable Hilbert space with the inner product

(f, g) :=
∫ a

0

f(x)g(x)dqx, f, g ∈ L2
q(0, a), (2.1)

and the orthonormal basis

φn(x) =

{
1√

x(1−q)
, x = aqn,

0, otherwise,

where n = 0, 1, 2, . . . (see [1]).

Definition 2.1. A function f which is defined on A, 0 ∈ A, is said to be q-regular
at zero if

lim
n→∞

f(xqn) = f(0)

for every x ∈ A (see [1]).

Let C(A) denote the space of all q-regular at zero functions on A. This space is
a normed space with the norm function

‖f‖ = sup{|f(xqn)| : x ∈ A, n ∈ N}.

(see [1]).

Definition 2.2. A q-regular at zero function f which is defined on A∗t,q is said to
be q-absolutely continuous if

∞∑
j=0

|f(uqj)− f(uqj+1)| ≤ K, ∀u ∈ A∗t,q,

where K is a constant depending on the function f (see [1]).

The space of q-absolutely continuous functions on A∗t,q is denoted by ACq(A∗t,q).
For n ∈ N and α, a1, . . . , an ∈ C, the q-shifted factorial, the multiple q-shifted

factorial and the q-binomial coefficients are defined by

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏
k=0

(1− aqk),

(a1, a2, . . . , ak : q) =
k∏
j=1

(aj ; q)n,[
α
0

]
q

= 1,
[
α
n

]
q

=
(1− qα)(1− qα−1) . . . (1− qα−n+1)

(q; q)n
,

respectively (see [1]). The generalized q-shifted factorial is defined by

(a; q)ν =
(a; q)∞

(aqν ; q)∞
(ν ∈ R)

(see [1]). The q-Gamma function is defined by

Γq(z) =
(q; q)∞
(qz; q)∞

(1− q)1−z, z ∈ C, |q| < 1

(see [1]).
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Definition 2.3. Let 0 < α ≤ 1. The left-sided and right-sided Riemann-Liouville
q-fractional operator are given by the formulas

Jαq,a+f(x) =
xα−1

Γq(α)

∫ x

a

(
qt

x
; q)α−1f(t)dqt, (2.2)

Jαq,b−f(x) =
1

Γq(α)

∫ b

qx

tα−1(
qx

t
; q)α−1f(t)dqt, (2.3)

respectively (see [32]).

Definition 2.4. Let α > 0 and dαe = m. The left-sided and right-sided Riemann-
Liouville fractional q-derivatives of order α are defined, respectively, as follows:

Dα
q,a+f(x) = Dm

q J
m−α
q,a+ f(x), (2.4)

Dα
q,b−f(x) =

(−1
q

)m
Dm
q−1J

m−α
q,b− f(x). (2.5)

Similar formulas give the left-sided and right-sided Caputo fractional q-derivatives
of order α, respectively as follows:

cDα
q,a+f(x) = Jm−αq,a+ Dm

q f(x),

cDα
q,b−f(x) = (

−1
q

)mJm−αq,b− Dm
q−1f(x)

(see [32]).

Theorem 2.5. (i) The left-sided Riemann-Liouville q-fractional operator satisfies
the semi-group property

Jαq,a+J
β
q,a+ = Jα+β

q,a+ f(x), x ∈ Aq,a, (2.6)

for any function defined on Aq,a and for any values of α and β.
(ii) The right-sided Riemann-Liouville q-fractional operator satisfies the semi-

group property
Jαq,b−J

β
q,b−f(x) = Jα+β

q,b− f(x), x ∈ Aq,b,

for any function defined on Aq,b and for any values of α and β (see [32]).

Definition 2.6. An operator T is called dissipative (accumulative) if Im(Tx, x) ≥
0, (Im(Tx, x) ≤ 0) for all x ∈ D(T ) (see [24, 25]).

Definition 2.7. The linear operator T with domain D(T ) acting in the Hilbert
space H is called simple if there is no invariant subspace N ⊆ D(T ) (N 6= {0}) of
the operator T on which the restriction T to N is self-adjoint (see [16]).

Definition 2.8. A triple (H,Λ1,Λ2) is called a space of boundary values of a closed
symmetric operator T on a Hilbert space H if Λ1,Λ2 are linear maps from D(T ∗)
to H with equal deficiency numbers such that:

(i) Green’s formula is valid,

(T ∗f, g)H − (f, T ∗g)H = (Λ1f,Λ2g)H − (Λ2f,Λ1g)H, f, g ∈ D(A∗).

(ii) For any F1, F2 ∈ H, there is a vector f ∈ D(T ∗) such that Λ1f = F1,
Λ2f = F2 [25].
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Definition 2.9. Let T : H → H be an operator acting on a Hilbert space H, and
let U : H → H be acting on another Hilbert space H ⊃H. The operator U is called
a dilation of A if

Tnh = PHU
nh, h ∈ H,n ≥ 0,

where PH is the orthogonal projection ofH onto H. The spaceH is called a dilation
space (see [4]).

Definition 2.10. Let T be a symmetric operator and λ a non-real number. The
operator

V = (T − λI)(T − λI)−1

is called the Cayley transform of the operator T (see [34]).

Definition 2.11. Let H be a Hilbert space and T : H → H be a contraction
operator, i.e., ‖T‖ < 1. The operator DT = (I − T ∗T )1/2 is called the defect
operator of T . The characteristic function θT of the contraction A is defined by

θT (ξ) = DT∗(I − ξT ∗)−1(ξ − T )DT

(see [4]).

Definition 2.12 ([4]). The analytic function S(λ) on the upper half-plane C+ is
called the inner function on C+ if |S(λ)| ≤ 1 for all λ ∈ C+ and |S(λ)| = 1 for
almost all λ ∈ (−∞,∞).

Definition 2.13. A sequence of points (an) inside the unit disk is said to satisfy
the Blaschke condition when ∑

n

(1− |an|) <∞.

Given a sequence obeying the Blaschke condition, the Blaschke product is defined
as

B(z) =
∏
n

B(an, z)

with factors

B(a, z) =
|a|
a

a− z
1− az

provided that a 6= 0. Here a is the complex conjugate of a (see [4]).

Definition 2.14. For a given countable set of points ai, i = 1, 2, . . . . such that
|ai| < 1 and

∑
i(1 − |ai|) < ∞, and an ordered family of orthogonal projections

{Pi} in E in the disk |ai| < 1 we can construct the Blaschke-Potapov product

Π(ξ) =
∞∏
k=1

{ ak − ξ
1− akξ

ak
|ak|

Pk + (I − Pk)}

which is the multi-dimensional analogue of the Blaschke product (see [6]).

Definition 2.15. The logarithmic capacity of a compact set E in the complex
plane is given by

γ(E) = e−V (E),

where
V (E) = inf

ν

∫
E×E

ln
1

u− v
dν(u)dν(v)

and ν runs over each probability measure on E (see [12]).
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Definition 2.16 ([12]). Let Ẽ be an n−dimensional Hilbert space (n < ∞). In
Ẽ we fix an orthonormal basis e1, e2, . . . , en and denote by Ek (k = 1, 2, . . . , n) the
linear span of the vectors e1, e2, . . . , ek. If L ⊂ Ek, then the population of x ∈ Ek−1

with the property
Cap{λ : λ ∈ C, (x+ λek) ⊂ L} > 0

will be shown by Γk−1L (CapG is the inner logarithmic capacity of a set G ⊂ C).
The Γ-capacity of a set L ⊂ Ẽ is a number

Γ− CapL := sup Cap{λ : λe1 ⊂ Γ1Γ2 . . .Γn−1L},

where the supremum is taken with respect to all orthonormal basis in Ẽ.

It is known that every set L ⊂ Ẽ of zero Γ-capacity has zero 2n-dimensional
Lebesgue measure; however, the converse is not true (see [16]).

Now denote by [E] the set of all linear operators in E (dimE = m). To convert
[E] into an m2−dimensional Hilbert space, we give the inner product 〈T, S〉 =
trS∗T for T, S ∈ [E] (trS∗T is the trace of the operators S∗T ). Hence we may give
the Γ-capacity of a set in E (see [16]).

3. Dilation of q-fractional Sturm-Liouville operator

In this section, we construct a space of boundary value for minimal symmet-
ric fractional q-Sturm-Liouville operator and describe all extensions (dissipative,
accumulative, self-adjoint and other) of such operators.

By q-fractional differential expression

τq,αy(x) := Dα
q,a−p(x)cDα

q,0+y(x) + r(x)y(x), α ∈ (0, 1), (3.1)

consider the fractional q-Sturm-Liouville equation

τq,αy(x)− λy(x) = 0, x ∈ A∗t,α, (3.2)

where p(x) 6= 0 for all x ∈ A∗t,α and p, r are real valued functions defined in A∗t,α.
For q → 1, this problem was investigated by Eryılmaz and Tuna (see [23]).

To pass from the differential expression τq,αy to operators, we introduce the
Hilbert space H ⊆ L2

q(A
∗
t,α) ∪ C(A∗t,α), α ∈ (0, 1) with the inner product (2.1).

Let L0 denote the closure of the minimal operator generated by (3.1) and D0 its
domain. Besides, we denote by D the set of all functions f from H such that f ∈
ACq(A∗t,q) and τq,αy ∈ H. D is the domain of the maximal operator L. Furthermore,
L = L∗0 [34].

For two arbitrary functions y, z ∈ D, we have Green’s identity [32]:∫ a

0

[y(x)τq,αz(x)− z(x)τq,αy(x)] dqx

= [y(x)(J1−α
q,a−p

cDα
q,0+z)(

x

q
)− z(x)(J1−α

q,a−p
cDα

q,0+y)(
x

q
)] |ax=0 .

(3.3)

Let us denote by Λ1,Λ2 the linear maps from D to E := C2 by the formulas

Λ1f =
(
−y(0)
y(a)

)
, Λ2f =

(
J1−α
q,a−p

cDα
q,0+y(0)

J1−α
q,a−p

cDα
q,0+y(aq )

)
, y ∈ D. (3.4)

Lemma 3.1. For arbitrary y, z ∈ D, one has

(Ly, z)H − (y,Lz)H = (Λ1y,Λ2z)E − (Λ2y,Λ1z)E .
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Proof. From Green’s identity and by

[y, z]x = y(x)J1−α
q,a−p

cDα
q,0+z(

x

q
)− z(x)J1−α

q,a−p
cDα

q,0+y(
x

q
),

y, z ∈ D, x ∈ [0, a],

we have
(Ly, z)H − (y,Lz)H = [y, z]a − [y, z]0.

Then, we obtain

(Λ1y,Λ2z)E − (Λ2y,Λ1z)E

= −y(0)J1−α
q,a−p

cDα
q,0+z(0)− (−z(0))J1−α

q,a−p
cDα

q,0+y(0)

+ y(a)J1−α
q,a−p

cDα
q,0+z(

a

q
)− z(a)J1−α

q,a−p
cDα

q,0+y(
a

q
)

= [y, z]a − [y, z]0.

Hence we have

(Ly, z)H − (y,Lz)H = (Λ1y,Λ2z)E − (Λ2y,Λ1z)E .

�

Theorem 3.2. The triplet (E,Λ1,Λ2) defined by (3.4) is a boundary space of the
operator L0.

Proof. The first condition is obtained from Lemma 3.1. Now we will prove the

second condition. Let u =
(
u1

u2

)
, v =

(
v1

v2

)
∈ E. Then, the vector-valued function

y(t) = α1(t)u1(t) + α2(t)v1(t) + β1(t)u2(t) + β2(t)v2(t),

where α1(·), α2(·), β1(·), β2(·) ∈ H, satisfies the conditions

α1(0) = −1,

J1−α
q,a−p

cDα
q,0+α1(0) = α1(a) = J1−α

q,a−p
cDα

q,0+α1(aq−1) = 0,

J1−α
q,a−p

cDα
q,0+α2(0) = 1,

α2(0) = α2(a) = J1−α
q,a−p

cDα
q,0+α2(aq−1) = 0,

β1(a) = 1,

β1(0) = J1−α
q,a−p

cDα
q,0+β1(0) = J1−α

q,a−p
cDα

q,0+β1(aq−1) = 0,

J1−α
q,a−p

cDα
q,0+β2(aq−1) = 1,

β2(0) = β2(a) = J1−α
q,a−p

cDα
q,0+β2(0) = 0.

Note that y(·) belongs to the set D and Λ1y = u, Λ2y = v. Hence the proof is
complete. �

Corollary 3.3. For any contraction K in E, the restriction of the operator L to
the set of functions y ∈ D satisfying either the boundary conditions

(K − I)Λ1y + i(K + I)Λ2y = 0 (3.5)

or
(K − I)Λ1y − i(K + I)Λ2y = 0 (3.6)
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is respectively, a maximal dissipative or a maximal accumulative extension of the
operator L0, where L0 is the restriction of the operator L to the domain D. Con-
versely, every maximal dissipative (accumulative) extension of the operator L0 is
the restriction of L to the set of functions y ∈ D satisfying (3.5) (3.6), and the
extension uniquely determines the contraction K. Conditions (3.5) (3.6), in which
K is an isometry describe the maximal symmetric extensions of L0 in H. If K is
unitary, these conditions define self-adjoint extensions.

In particular, the boundary conditions

−y(0) + γ1J
1−α
q,a−p

cDα
q,0+y(0) = 0, (3.7)

y(a) + γ2J
1−α
q,a−p

cDα
q,0+y(

a

q
) = 0, (3.8)

with Im γ1 ≥ 0 or γ1 =∞, Im γ2 ≥ 0 or γ2 =∞ (Im γ1 = 0 or γ1 =∞, Im γ2 = 0
or γ2 = ∞) describe the maximal dissipative (self-adjoint) extensions of L0 with
separated boundary conditions.

Now we study the maximal dissipative operator LK , where K is the strict con-
traction in E generated by the expression τq,αy and the boundary condition (3.5).
Since K is a strict contraction, the operator K + I must be invertible, and the
boundary condition (3.5) is equivalent to the condition

Λ2y + ΩΛ1y = 0, (3.9)

where Ω = −i(K + I)−1(K − I), Im Ω > 0, and −K is the Cayley transform of the
dissipative operator Ω. We denote LΩ (= LK) the dissipative operator generated
by the expression τq,αy and the boundary condition (3.9).

Let

Ω =
(
γ1 0
0 γ2

)
where Im γ1 > 0, Im γ2 > 0 and η2 = 2 Im Ω, η > 0. Then the boundary condition
(3.9) coincides with the separated boundary conditions (3.5) and (3.6).

4. Self-adjoint dilation, incoming and outgoing spectral
representations

In this section, we construct a self-adjoint dilation of the maximal dissipative
q-fractional Sturm-Liouville operator and its incoming and outgoing spectral rep-
resentations. Hence we determine the scattering matrix of the dilation according
to the Lax and Phillips scheme ([3], [4]). Later, we construct a functional model of
this operator, using incoming spectral representations. Finally, we determine the
characteristic function of this operator.

Now we consider the “incoming” and “outgoing” subspaces L2((−∞, 0);E) and
L2((0,∞);E). The orthogonal sum H = L2((−∞, 0);E) ⊕ H ⊕ L2((0,∞);E) is
called the main Hilbert space of the dilation.

In the space H, we define the operator Υ on the set D(Υ), where D(Υ) consist
of vectors w = 〈ψ−, y, ψ+〉, generated by the expression

Υ〈ψ−, y, ψ+〉 = 〈idψ−
dξ

, τq,αy, i
dψ+

dς
〉; (4.1)

Λ2y + ΩΛ1y = ηψ−(0),Λ2y + Ω∗1Λy = ηψ+(0), η2 := 2 Im Ω, η > 0, (4.2)
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where ψ− ∈ W 1
2 ((−∞, 0);E), ψ+ ∈ W 1

2 ((0,∞);E), y ∈ H and W 1
2 is the Sobolev

space.

Theorem 4.1. The operator Υ is self-adjoint in H.

Proof. We first prove that Υ is symmetric in H. Let f, g ∈ D(Υ), f = 〈ψ−, y, ψ+〉
and g = 〈ζ−, z, ζ+〉. Then, we have

(Υf, g)H − (f,Υg)H
= i(ψ−(0), ζ−(0))E − i(ψ+(0), ζ+(0))E + [y, z]a − [y, z]0.

(4.3)

By direct computation, we obtain

i(ψ−(0), ζ−(0))E − i(ψ+(0), ζ+(0))E + [y, z]a − [y, z]0 = 0.

Thus, Υ ⊆ Υ∗, i.e., Υ is a symmetric operator.
It is easy to check that Υ and Υ∗ are generated by the same expression (4.1).

Let us describe the domain of Υ∗. We shall compute the terms outside the integral
sign, which are obtained via integration by parts in the bilinear form (Υf, g)H,
f ∈ D(Υ), g ∈ D(Υ∗). Their sum is equal to zero, i.e.,

[y, z]a − [y, z]0 + i(ψ−(0), ζ−(0))E − i(ψ+(0), ζ+(0))E = 0. (4.4)

Further, solving the boundary conditions (4.2) for Λ1y and Λ2y, we find that

Λ1y = −iη−1(ψ−(0)− ψ+(0)), Λ2y = ηψ−(0) + iLη−1(ψ−(0)− ψ+(0)).

Therefore, using (3.4), we find that (4.4) is equivalent to the equality

i(ψ+(0), ζ+(0))E − i(ψ−(0), ζ−(0))E
= [y, z]a − [y, z]0 = (Λ1y,Λ2z)E − (Λ2y,Λ1z)E

= −i(η−1(ψ−(0)− ψ+(0)),Λ2z)E − (ηψ−(0),Λ1z)E

− i(Lη−1(ψ−(0)− ψ+(0)),Λ1z)E .

Since the values ψ∓(0) can be arbitrary vectors, a comparison of the coefficients of
ψi∓(0) (i = 1, 2) on the left-hand side and the right-hand side of the last equal-
ity proves that the vector g = 〈ζ−, z, ζ+〉 satisfies the boundary conditions (4.2),
namely, Λ2z + ΩΛ1z = ηζ−(0), Λ2z + Ω∗1Λ1z = ηζ+(0). Therefore D(Υ∗) ⊆ D(Υ),
and hence Υ = Υ∗. �

Note that the self-adjoint operator Υ generates a unitary group Ut = exp(iΥt)
(t ∈ (−∞,∞)) on H. Let us denote by P : H → H and P1 : H → H the mappings
acting according to the formulae P : 〈ψ−, y, ψ+〉 → y and P1 : y → 〈0, y, 0〉. Let
Zt := PUtP1, t ≥ 0, by using Ut. The family {Zt} (t ≥ 0) of operators is a strongly
continuous semigroup of completely non-unitary contraction on H. Let us denote
by B the generator of this semigroup : By = limt→+0(Zty−y

it ). The domain of B
consists of all vectors for which the limit exists. The operator B is dissipative. The
operator Υ is called the self-adjoint dilation of B. Then, we have the following
result.

Theorem 4.2. The operator Υ is a self-adjoint dilation of the operator LΩ(= LK).

Proof. It is sufficient to prove the following equality (see [6]):

P(Υ− λI)−1P1y = (LΩ − λI)−1y, y ∈ H, Imh < 0. (4.5)

We set (Υ − λI)−1P1y = g = 〈ζ−, z, ζ+〉. Then (Υ − λI)g = P1y, and hence
τq,αz − λz = y, ζ−(ξ) = ζ−(0)e−iλξ and ζ+(ξ) = ζ+(0)e−iλξ. Since g ∈ D(Υ), we
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have ζ− ∈ W 1
2 ((−∞, 0);E). Thus it follows that ζ−(0) = 0 and consequently, z

satisfies the boundary condition Λ2z + ΩΛ1z = 0. Therefore z ∈ D(LΩ), and since
the point λ with Imλ < 0 cannot be an eigenvalue of the dissipative operator, it
follows that z = (LΩ − λI)−1y. Thus

(Υ− λI)−1P1y = 〈0, (LΩ − λI)−1y, η−1(Λ2y + Ω∗Λ1y)e−iλξ〉

for y ∈ H and Imλ < 0. By applying the mapping P, we obtain

(LΩ − λI)−1 = P(Υ− λI)−1P1 = −iP
∫ ∞

0

Ute
−iλtdtP1

= −i
∫ ∞

0

Zte
−iλtdt = (B − λI)−1, Imλ < 0,

i.e., LΩ = B. �

On the other hand, the unitary group {Ut} has an important property which
makes it possible to apply it to the Lax-Phillips theory (see [3]). It has or-
thogonal incoming and outgoing subspaces D− = 〈L2(−∞, 0), 0, 0〉 and D+ =
〈0, 0, L2(0,∞)〉, and they have the following properties.

Lemma 4.3. UtD− ⊂ D−, t ≤ 0 and UtD+ ⊂ D+, t ≥ 0.

Proof. We will just prove for D+ since the proof for D− is similar. Set Rλ =
(Υ− λI)−1. Then, for all λ, with Imλ < 0, we have

Rλf = 〈0, 0,−ie−iλξ
∫ ξ

0

eiλsψ+(s)ds〉, f = 〈0, 0, ψ+〉 ∈ D+.

Hence we have Rλf ∈ D+. If g ⊥ D+, then we obtain

0 = (Rλf, g)H = −i
∫ ∞

0

e−iλt(Utf, g)Hdt, Imλ < 0.

Thus we have (Utf, g)H = 0 for all t ≥ 0, i.e., UtD+ ⊂ D+ for t ≥ 0. �

Lemma 4.4. ∩t≤0UtD− = ∩t≥0UtD+ = {0}.

Proof. Let us define the mapping P+ : H → L2((0,∞);E) and the mapping P+
1 :

L2((0,∞);E)→ D+ as P+ : 〈ψ−, y, ψ+〉 → ψ+ and P+
1 : ψ → 〈0, 0, ψ〉, respectively.

We consider that the semigroup of isometries U+
t := P+UtP+

1 (t ≥ 0) is a one-sided
shift in L2((0,∞);E). Indeed, the generator of the semigroup of the one-sided shift
Vt in L2((0,∞);E) is the differential operator i ddξ with the boundary condition
ψ(0) = 0. On the other hand, the generator S of the semigroup of isometries U+

t

(t ≥ 0) is the operator

Sψ = P+ΥP+
1 ψ = P+Υ〈0, 0, ψ〉 = P+〈0, 0, idψ

dξ
〉 = i

dψ

dξ
,

where ψ ∈W 1
2 ((0,∞);E) and ψ(0) = 0. Since a semigroup is uniquely determined

by its generator, it follows that U+
t = Vt, and hence we obtain

∩t≥0UtD+ = 〈0, 0,∩t≤0VtL
2((0,∞);E)〉 = {0}.

�

Lemma 4.5. The operator LΩ is simple.
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Proof. Let H ′ ⊂ H be a nontrivial subspace in which LΩ induces a self-adjoint
operator L′Ω with domain D(L′Ω) = H ′ ∩D(LΩ). If f ∈ D(L′Ω), then f ∈ D(L∗Ω)
and

0 =
d

dt
‖eiLΩtf‖2H =

d

dt
(eiLΩtf, eiLΩtf)H

= −2(Im ΩΛ1e
iLΩtf,Λ1e

iLΩtf)E .

Consequently, Λ1e
iLΩtf = 0. For eigenvectors y ∈ H ′ of the operator LΩ we have

Λ1y(λ) = 0. Using this result with the boundary condition Λ2y + ΩΛ1y = 0, we
have Λ2y = 0, i.e., y = 0. Since all the solutions of τq,αy = λy belong to H, from
this it can be concluded that the resolvent operator Rλ(LΩ) is compact, and the
spectrum of LΩ is purely discrete. Consequently, by the theorem on expansion in
the eigenvectors of the self-adjoint operator L′Ω, we obtain H ′ = {0}. Hence the
operator LΩ is simple. �

Now we set
H− = ∪t≥0UtD−, H+ = ∪t≤0UtD+.

Lemma 4.6. The equality H− +H+ = H holds.

Proof. From Lemma 4.5, it is easy to show that the subspace H′ = H	 (H−+H+)
is invariant relative to the group {Ut}, and has the form H′ = 〈0, H ′, 0〉 where H ′ is
a subspace of H. Therefore, if the subspace H′ (and hence also H ′) were nontrivial,
then the unitary group {U ′t} restricted to this subspace would be a unitary part of
the group {Ut}, and hence the restriction L′Ω of LΩ to H ′ would be a self-adjoint
operator in H ′. Since the operator LΩ is simple, it follows that H ′ = {0}. �

Suppose that χ(λ) and ω(λ) are the solutions of τq,αy = λy, satisfying the
conditions

χ(0, λ) = 0, J1−α
q,a−p

cDα
q,0+χ(0, λ) = −1, ω(0, λ) = 1, J1−α

q,a−p
cDα

q,0+ω(0, λ) = 0.

We denote by m(λ) the matrix-valued function satisfying the conditions

m(λ)Λ1χ = Λ2χ, m(λ)Λ1ω = Λ2ω.

m(λ) is a meromorphic function on the complex plane C with a countable number
of poles on the real axis. Furthermore, it is possible to show that the function m(λ)
possesses the following properties: Imm(λ) ≤ 0 for all Imλ 6= 0, and m∗(λ) = m(λ)
for all λ ∈ C, except the real poles m(λ).

We denote by µj(x, λ) and νj(x, λ) (j = 1, 2) the solutions of the system τq,αy =
λy, which satisfy the conditions

Λ1µj = (m(λ) + Ω)−1ηej , Λ1νj = (m(λ) + Ω∗)−1ηej (j = 1, 2),

where {e1, e2} is an orthonormal basis for E.
We set

U−λj(x, ξ, ρ) = 〈e−iλξej , µj(x, λ), η−1(m+ Ω∗)(m+ Ω)−1ηe−iλρej〉 (j = 1, 2).

We note that the vectors U−λj(x, ξ, ρ) (j = 1, 2) for real λ do not belong to the
space H. However, U−λj(x, ξ, ρ) (j = 1, 2) satisfies the equation ΥU = λU and the
corresponding boundary conditions for the operator Υ.
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By means of the vector U−λj(x, ξ, ρ) (j = 1, 2), we define the transformation

F− : f → f̃−(λ) by

(F−f)(λ) := f̃−(λ) :=
1√
2π

2∑
j=1

(f, U−λj)Hej

on the vectors f = 〈ψ−, y, ψ+〉 in which ψ−, ψ+, y are smooth, compactly supported
functions.

Lemma 4.7. The transformation F− maps isometrically H− onto L2((−∞,∞);E).
For all vectors f, g ∈ H− the Parseval equality and the inversion formulae hold:

(f, g)H = (f̃−, g̃−)L2 =
∫ ∞
−∞

2∑
j=1

f̃j−(λ)g̃j−(λ)dλ,

f =
1√
2π

∫ ∞
−∞

2∑
j=1

f̃j−(λ)U−λjdλ,

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Proof. By the Paley-Wiener theorem, we obtain

f̃j−(λ) =
1√
2π

(f, U−λj)H =
1

2π

∫ 0

−∞
(ψ−(ξ), e−iλξej)Edξ ∈ H2

−(E),

where f = 〈ψ−, 0, 0〉, g = 〈ζ+, 0, 0〉 ∈ D−. If we use the Parseval equality for Fourier
integrals, then we obtain

(f, g)H =
∫
t

−∞∞(ψ−(ξ), ζ−(ξ))Edξ =
∫ ∞
−∞

(f̃−(λ), g̃−(λ))Edλ = (F−f,F−g)L2 ,

where H2
±(E) denote the Hardy classes in L2((−∞,∞);E) consisting of the func-

tions analytically extendible to the upper and lower half-planes, respectively. We
now extend the Parseval equality to the whole of H−. We consider in H− the dense
set H ′− consisting of smooth, compactly supported functions in D− : f ∈ H ′− if
f = UT f0, f0 = 〈ψ−, 0, 0〉, ψ− ∈ C∞0 ((−∞, 0);E), where T = Tf is a nonneg-
ative number depending on f . If f, g ∈ H ′−, then for T > Tf and T > Tg we
have U−T f , U−T g ∈ D−. Moreover, the first components of these vectors belong to
C∞0 ((−∞, 0);E). Since the operators Ut (t ∈ (−∞,∞)) are unitary, by the equality

F−Utf =
1√
2π

2∑
j=1

(Utf, U−λj)Hej = eiλtF−f,

we have

(f, g)H = (U−T f, U−T g)H = (F−U−T f,F−U−T g)L2

= (e−iλTF−f, e−iλTF−g)L2 = (
∼
f ,
∼
g)L2 .

By taking the closure, we obtain the Parseval equality for the space H−. The
inversion formula is obtained from the Parseval equality if all integrals in it are
considered as limits in the mean of integrals over finite intervals. Finally, we obtain
the desired result

F−H− = ∪t≥0F−UtD− = ∪t≥0eiλtH2
− = L2((−∞,∞);E).
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�

Now we set

U+
λj(x, ξ, ρ) = 〈SΩ(λ)e−iλξej , νj(x, λ), e−iλρej〉 (j = 1, 2),

where
SΩ(λ) = η−1(m(λ) + Ω)(m(λ) + Ω∗)−1η. (4.6)

We note that the vectors U+
λj(x, ξ, ρ) for real λ do not belong to the space H. How-

ever, U+
λj(x, ξ, ρ) satisfies the equation ΥU = λU and the corresponding boundary

conditions for the operator Υ. With the help of the vector U+
λj(x, ξ, ρ), we define

the transformation F+ : f → f̃+(λ) by

(F+f)(λ) := f̃+(λ) :=
2∑
j=1

f̃j+(λ)ej :=
1√
2π

2∑
j=1

(f, U+
λj)Hej

on the vectors f = 〈ψ−, y, ψ+〉 in which ψ−, ψ+ and y are smooth, compactly
supported functions.

Lemma 4.8. The transformation F+ isometrically maps H+ onto L2((−∞,∞)).
For all vectors f, g ∈ H+ the Parseval equality and the inversion formula hold:

(f, g)H = (f̃+, g̃+)L2 =
∫ ∞
−∞

2∑
j=1

f̃j+(λ)g̃j+(λ)dλ,

f =
1√
2π

∫ ∞
−∞

2∑
j=1

f̃j+(λ)U+
λjdλ,

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).

The proof of the above lemma is similar to that of Lemma 4.7, and it is omitted.
It is clear that the matrix-valued function SΩ(λ) is meromorphic in C and all the
poles are in the lower half-plane. From (4.6), we obtain ‖SΩ(λ)‖ ≤ 1 for Imλ > 0
and SΩ(λ) is the unitary matrix for all λ ∈ R. Therefore, we have

U+
λj =

2∑
k=1

Sjk(λ)U−λk (j = 1, 2, . . . , n), (4.7)

where Sjk (j, k = 1, 2, . . . , n) are elements of the matrix SΩ(λ). From Lemmas 4.7
and 4.8, we obtain H− = H+. With Lemma 4.6, this shows that H− = H+ =
H. Therefore we have proved the following lemma for the incoming and outgoing
subspaces (for D− and D+).

Lemma 4.9. ∪t≥0UtD− = ∪t≤0UtD+ = H.

Lemma 4.10. D− ⊥ D+.

The proof of the above lemma is straightforward, hence omitted. Thus the trans-
formation F− isometrically maps H− onto L2((−∞,∞);E) with the subspace D−
mapped onto H2

−(E) ,and the operators Ut are transformed into the operators of
multiplication by eiλt. This means that F− is the incoming spectral representa-
tion for the group {Ut}. Similarly, F+ is the outgoing spectral representation for
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the group {Ut}. It follows that the passage from the F− representation of an el-
ement f ∈ H to its F+ representation is accomplished as f̃+(λ) = S−1

Ω (λ)f̃−(λ).
Consequently, according to [3], we have proved the following result.

Theorem 4.11. The function S−1
Ω (λ) is the scattering matrix of the group {Ut}

(of the self-adjoint operator Υ).

Let S(λ) be an arbitrary non-constant inner function on the upper half-plane.
Let us define K by the formula K = H2

+ 	 SH2
+. It is clear that K 6= {0} is

a subspace of the Hilbert space H2
+. We consider the semigroup of operators Zt

(t ≥ 0) acting in K according to the formula

Ztϕ = P[eiλtϕ], ϕ = ϕ(λ) ∈ K,
where P is the orthogonal projection from H2

+ onto K. The generator of the
semigroup {Zt} is denoted by

Tϕ = lim
t→+0

(
Ztϕ− ϕ

it
),

where T is a maximal dissipative operator acting in K, and with domain D(T )
consisting of all the functions ϕ ∈ K such that the limit exists. The operator T
is called a model dissipative operator. This model dissipative operator is a special
case of a more general model dissipative operator constructed by Nagy and Foiaş
[4], which is associated with the names of Lax-Phillips [3]. Here the basic assertion
is that S(λ) is the characteristic function of the operator T .

Let K = 〈0, H, 0〉, so that H =D− ⊕ K ⊕ D+. From the explicit form of the
unitary transformation F− under the mapping F−, we obtain

H → L2((−∞,∞);E), f → f̃−(λ) = (F−f)(λ),

D− → H2
−(E), D+ → SΩH

2
+(E),

K → H2
+(E)	 SΩH

2
+(E),

Ut → (F−UtF−1
− f̃−)(λ) = eiλtf̃−(λ).

(4.8)

The formulas in (4.8) show that the operator LΩ(LK) is unitarily equivalent to
the model dissipative operator with the characteristic function SΩ(λ). Since the
characteristic functions of unitary equivalent dissipative operators coincide (see [4]),
we have thus proved following theorem.

Theorem 4.12. The function SΩ(λ) defined by (4.6) coincides with the character-
istic function of the maximal dissipative operator LΩ(LK).

5. Completeness of root vectors

In this section, we prove that all the root vectors of the maximal dissipative
q-fractional Sturm-Liouville operator are complete. We know that the absence of
the singular factor in the factorization of the characteristic function guarantees the
completeness of the system of root vectors of maximal dissipative operators ([4]).
We will prove that the characteristic function of the maximal dissipative q-fractional
Sturm-Liouville operator is a Blaschke-Potapov product.

Lemma 5.1. The characteristic function S̃K(λ) of the operator LK has the form

S̃K(λ) :=SΩ(λ)
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=X1(I −K1K
∗
1 )1/2(Θ(ξ)−K1)(I −K∗1 Θ(ξ))−1(I −K1K

∗
1 )1/2X2,

where K1 = −K is the Cayley transformation of the dissipative operator Ω, and
Θ(ξ) is the Cayley transformation of the matrix-valued function m(λ), where

ξ = (λ− i)(λ+ i)−1,

X1 := (Im Ω)−1/2(I −K1)−1(I −K1K
∗
1 )1/2,

X2 := (I −K∗1K1)−1/2(I −K∗1 )−1(Im Ω)1/2,

|detX1||detX2| = 1.

Recall that the inner matrix-valued function S̃K(λ) is a Blaschke-Potapov prod-
uct if and only if det S̃K(λ) is a Blaschke product (see [11, 4]). By Lemma 5.1,
the characteristic function S̃K(λ)is a Blaschke-Potapov product if and only if the
matrix-valued function

XK(ξ) = (I −K1K
∗
1 )1/2(Θ(ξ)−K1)(I −K∗1 Θ(ξ))−1(I −K1K

∗
1 )1/2

is a Blaschke-Potapov product in the unit disk.
We use the following result of [11].

Lemma 5.2. Let X(ξ) (|ξ| < 1) be a analytic function with the values to be con-
tractive operators in [E] (‖X(ξ)‖ ≤ 1). Then for Γ-quasi-every strictly contractive
operators (i.e., for all strictly contractive K ∈ [E] possible with the exception of a
set of Γ of zero capacity) the inner part of the contractive function

XK(ξ) = (I −K1K
∗
1 )1/2(X(ξ)−K1)(I −K∗1X(ξ))−1(I −K1K

∗
1 )1/2

is a Blaschke-Potapov product.

By summing all the obtained results for the dissipative operator LK(LΩ), we
have proved the following result.

Theorem 5.3. ForΓ-quasi-every strictly contractive K ∈ [E] the characteristic
function S̃K(λ) of the dissipative operator LK is a Blaschke-Potapov product, and
the spectrum of LK is purely discrete and belongs to the open upper half-plane.
For Γ-quasi-every strictly contractive K ∈ [E] the operator LK has a countable
number of isolated eigenvalues with finite multiplicity and limit points at infinity,
and the system of eigenvectors and associated vectors (or root vectors) of this op-
erator is complete in the space H.
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