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QUALITATIVE PROPERTIES OF SOLUTIONS TO SEMILINEAR
HEAT EQUATIONS WITH SINGULAR INITIAL DATA

JUNJIE LI

Abstract. This article concerns the nonnegative solutions to the Cauchy
problem

ut −∆u + b(x, t)|u|p−1u = 0 in RN × (0,∞),

u(x, 0) = u0(x) in RN .

We investigate how the comparison principle, extinction in finite time, in-
stantaneous shrinking of support, and existence of solutions depend on the
behaviour of the coefficient b(x, t).

1. Introduction

In this paper we investigate the qualitative properties of the nonnegative solu-
tions to the Cauchy problem

Lu := ut −∆u+ b(x, t)|u|p−1u = 0 in RN × (0,∞), (1.1)

u(x, 0) = u0(x) in RN , (1.2)

where 0 < p < 1, b(x, t) ≥ 0, and u0(x) satisfies the hypothesis
(H1) u0(x) ∈ C(RN \{0}), 0 < u0(x) ≤ f(x) := f0 + f1

|x|k0
in RN (f0 ≥ 0, f1 > 0,

k0 > 0).
Note that for any positive number q, when k0 is large, f(x) /∈ Lq

loc(RN ). So to give
a proper definition of the solution to (1.1), (1.2) is the first thing to be consider.
Moreover, due to the singularity of the initial value, solutions to (1.1), (1.2) are in
general unbounded, and the singularity at x = 0 cannot be “kill” for t > 0 even
if b(x, t) possesses some kind of singularity at x = 0; see for instance the following
example:

Example 1.1. Let b(x, t) = (k0(k0 + 2 − N))/(|x|k0(1−p)+2) with k0 + 2 > N
and u(x, 0) = 1/(|x|k0). Then u(x, t) = 1

|x|k0
is a classical solution to (1.1) in

(RN \ {0})× (0,∞).

Due to these facts, we give the definition of solution to (1.1), (1.2) as follows.
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Definition 1.2. By a solution to problem (1.1), (1.2) we mean a function u(x, t) ∈
C((RN \ {0}) × [0,∞)) ∩ C2,1((RN \ {0}) × (0,∞)) satisfying classically (1.1) in
(RN \ {0})× (0,∞)) with u(x, 0) = u0(x) in (RN \ {0}).

One sees that this definition allows solutions of (1.1), (1.2) take their potential
singular points only at x = 0. Does problem (1.1), (1.2) have such a solution?
Although we do not know at the moment the precise and proper conditions im-
posed on b(x, t) under which problem (1.1), (1.2) is global solvable in the sense of
Definition 1.2, we give in Section 4 a positive answer when b(x, t) satisfies certain
conditions. One also believe that if b(x, t) is only nonnegative such phenomena
as comparison principle, extinction in finite time and instantaneous shrinking of
support for solutions cease to hold. Our aim in this paper is to give suitable condi-
tions on b(x, t) under which the above mentioned phenomena are valid, i.e., we are
mainly interested in the following: What conditions we add on b(x, t) so that

(a) Comparison principles for subsolutions and supersolutions of (1.1) hold.
(b) The solution u(x, t) of (1.1) has the property of instantaneous shrinking of

the support (the support of u(x, t) is bounded for t > 0 although the initial
value u0(x) is positive every where).

(c) The solution of (1.1) becomes extinct in finite time.
(d) Problem (1.1), (1.2) has a global solution.

There are many results on (a)–(d) when initial value u0(x) does not possess singular
points; see [3, 5, 7, 9, 11] for (a); [1, 6, 7, 8, 10, 11] for (b) and (c); and [3, 7, 9, 11]
for (d). The reader can find further references therein. However, when initial value
u0(x) is subject to (H1), to our knowledge there are few developments in these
direction. As is known to all, the comparison principle is one of the cornerstones in
dealing with phenomena (b) and (c). We establish, in the next section, a comparison
principle when b(x, t) is under some conditions. We also state a negative result on
comparison principles. From this negative result one can see that the comparison
principle is not valid when the singularity of b(x, t) is not very “strong”. These
results and their proofs are of interest in themselves. The study of phenomena
(b) and (c) is the subject of Section 3. Section 4 is devoted to global existence
problems.

2. Comparison Principle

In the sequel we use ε0, R0 and bi (i = 0, 1) to denote different positive constants,
their values may change from one place to the next. The statement that a constant
depends only on the data means that this constant can be determined in terms of
N , p, f0, f1 and k0. We also use Br(x0) to denote the ball in RN of radius r and
centered at x0.

Definition 2.1. For M0 ≥ f0, 0 < T0 ≤ ∞, FM0(T0) is the set of all nonnegative
functions u(x, t) in C((RN \ {0})× [0, T0)) ∩ C2,1((RN \ {0})× (0, T0)) satisfying

u(x, t) ≤M0 +
f1
|x|k0

in RN \ {0})× [0, T0). (2.1)

Theorem 2.2 (Comparison Principle). Assume 0 < p ≤ 1 , and let u±(x, t) ∈
FM0(T0) satisfy

±Lu± ≥ 0 in (RN \ {0})× (0, T0),

u−(x, 0) ≤ u+(x, 0) in RN \ {0}.
(2.2)
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(a) If k0 < N − 2 and b(x, t) ≥ 0 in (RN \ {0})× [0, T0), then

u−(x, t) ≤ u+(x, t) in (RN \ {0})× [0, T0);

(b) if k0 ≥ N − 2, and for k > k0, R0 > 0,

b(x, t) ≥


k0(k + 2−N)f1−p

1

p|x|k0(1−p)+2
in (BR0(0) \ {0})× [0, T0),

0 in (RN \BR0(0))× [0, T0),
(2.3)

then u−(x, t) ≤ u+(x, t) in (RN \ {0})× [0, T0).

Proof. Suppose the contrary, then there exists a point (x0, t0) ∈ (RN \{0})×(0, T0)
such that

u−(x0, t0)− u+(x0, t0) = 2a > 0. (2.4)
Let θ0 ∈ (0, 1) and λ0 ≥ 1 be fixed, and set

v±(x, t) =


|x|k0+θ0

(1 + |x|2)
k0+2θ0

2

u±(x, t), x 6= 0, t ∈ [0, T0),

0, x = 0, t ∈ [0, T0),

w(x, t) = eλ0(t
0−t)(v−(x, t)− v+(x, t)), E = {(x, t) ∈ RN × (0, t0];w(x, t) > 0}.

From the hypotheses, one easily see that v±(x, t) ∈ C(RN × [0, T0)) ∩ C2,1((RN \
{0})× (0, T0)) and

lim
|x|→∞

v±(x, t) = 0 uniformly in t ∈ [0, t0]. (2.5)

A straightforward calculation yields

±
(
v±t −∆v± + 2bi(x)v±xi

)
= ± |x|k0+θ0

(1 + |x|2)
k0+2θ0

2

Lu±

±
{
c(x)v± +

(k0 + θ0)(k0 + θ0 + 2−N)
|x|2

v±

−
( |x|k0+θ0

(1 + |x|2)
k0+2θ0

2

)1−p
b(x, t)(v±)p

}
,

≥ ±
{
−

( |x|k0+θ0

(1 + |x|2)
k0+2θ0

2

)1−p
b(x, t)(v±)p + c(x)v±

+
(k0 + θ0)(k0 + θ0 + 2−N)

|x|2
v±

}
in (RN \ {0})× (0, T0), where

bi(x) =
(k0 + θ0)xi

|x|2
− (k0 + 2θ0)xi

1 + |x|2
,

c(x) =
(k0 + 2θ0)(N − 2k0 − 2θ0)

1 + |x|2
− (k0 + 2θ0)(2− k0 − 2θ0)|x|2

(1 + |x|2)2
.

Therefore,

wt −∆w + 2bi(x)wxi

≤ −λow − pb(x, t)w
(u−)1−p

+N(k0 + 2θ0)w +
(k0 + θ0)(k0 + θ0 + 2−N)

|x|2
w

(2.6)
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in E, where we have used the elementary inequality:

ap − bp ≥ p(a− b)
a1−p

for a > b ≥ 0.

Case i) k0 ≥ N − 2. In view of (2.3), (2.6) and u− ∈ FM0(T0), we first fix θ0 and
R̄ ∈ (0, R0) small enough such that

pb(x, t)
(u−(x, t))1−p

≥ k0(k + 2−N)f1−p
1

(M0 + f1
|x|k0

)1−p|x|k0(1−p)+2
≥ (k0 + θ0)(k0 + θ0 + 2−N)

|x|2
(2.7)

in (BR̄(0) \ {0})× (0, t0], and then take λ0 satisfying

λ0 ≥
(k0 + θ0)(k0 + θ0 + 2−N)

R̄2
+ (k0 + 2θ0)(N + 3k0 + 4θ0 + 2), (2.8)

to obtain wt −∆w + 2bi(x)wxi
≤ 0 in E.

Case ii) k0 < N − 2. This time we choose λ0 as in (2.8) and θ0 small enough such
that k0 + θ0 + 2−N ≤ 0. Then from (2.6) we get

wt −∆w + 2bi(x)wxi ≤ 0 in E.

Thus, we have for small θ0 and large λ0,

wt −∆w + 2bi(x)w ≤ 0 in E. (2.9)

For any t ∈ (0, to], if , w(x, t) attains its positive maximum at x(t) ((2.5) implies
that w(x, t) cannot attain its positive maximum at infinity), then by (2.9) we deduce

wt(x(t), t) ≤ 0. (2.10)

We introduce now the function

W (t) = sup
x∈RN

w(x, t).

From w(x, 0) ≤ 0 and (2.4),

W (t0) ≥ 2a, W (0) ≤ 0. (2.11)

Set
t∗ = inf{t ∈ [0, t0];W (τ) ≥ a, τ ∈ (t, t0]}. (2.12)

By (2.11) and the continuity of W (t) on {t ∈ [0, t0];W (t) ≥ a
2}, we have

0 < t∗ < t0, and W (t∗) = a. (2.13)

From the proof of [4, Theorem 4.5], one can easily see that W (t) is Lipschitz
continuous on [t∗, t0] and

W ′(t) ≤ wt(x(t), t) a.e. in [t∗, t0], (2.14)

where x(t) is a point ∈ RN \ {0} satisfying w(x(t), t) = W (t). Therefore, from
(2.10) and (2.14),

W ′(t) ≤ 0 a.e. in [t∗, t0],

which implies a = W (t∗) ≥W (t0) ≥ 2a, a contradiction. �

For the case k0 ≥ N − 2 we do not know at the moment in a certain sense a
precise or a sharp condition on b(x, t) under which the comparison principle remains
valid. However, we have the following negative result.
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Theorem 2.3. Assume k0 ≥ N − 2, N > 4 and 0 < p < 1. Suppose that for
positive constants ε0, b0, b1, and R0,

b0(1 +
1

|x|N−2
)1−p ≤ b(x, t) ≤ b1(1 +

1
|x|N−2

)1−p (2.15)

in (BR0(0) \ {0})× [0, T0), and

b(x, t) ≥ ε0 in (RN \BR0(0))× [0, T0). (2.16)

Then there exist u± ∈ FM0(T0) satisfying (2.2) and a point (x0, t0) ∈ (RN \ {0})×
(0, T0) such that

u−(x0, t0) > u+(x0, t0), (2.17)
where M0 = f0 if f0 > 0; M0 > 0 if f0 = 0.

Proof. If not, then we have for any pair u± ∈ FM0(T0) satisfying (2.2),

u−(x, t) ≤ u+(x, t) in (RN \ {0})× [0, T0). (2.18)

Let α, β and f̄ ∈ (0, 1) be fixed, denote a+ = max{a, 0} and set

V ∗(x) =
f̄

α2ω|x|N−2
(α2 − |x|2)ω

+, U∗(x, t) = f̄(1 +
1

|x|N−2
)(1− βt)σ

+, (2.19)

where ω = 2/(1− p), σ = 1/(1− p).
We may choose f̄ small enough such that V ∗, U∗ are in FM0(∞). One can easily

verify

LV ∗ = (α2 − |x|2)ωp
+

( f̄

|x|N−2

)p
[b(x, t)
α2ωp

− 4ω(ω − 1)|x|2

α2ω
(

f̄

|x|N−2
)1−p

− 2ω(N − 4)
α2ω

(
f̄

|x|N−2
)1−p(α2 − |x|2)+

]
≤ (α2 − |x|2)ωp

+ (
f̄

|x|N−2
)1−p

[b(x, t)
α2ωp

− ω̄

α2(ω−1)
(

f̄

|x|N−2
)1−p

]
,

(2.20)

and

LU∗ = (1− βt)σp
+

[
f̄(1 +

1
|x|N−2

)]p[b(x, t)− βσ(f̄(1 +
1

|x|N−2
))1−p

]
, (2.21)

where ω̄ = 2ωmin{2ω − 2, N − 4}. From (2.15), (2.16), (2.20) and (2.21), it easily
follows

LV ∗ ≤ 0 in (RN \ {0})× (0,∞),

LU∗ ≥ 0 in (RN \ {0})× (0,∞),

provided that α and β are small enough. Hence by V ∗(x) ≤ U∗(x, 0) in RN \ {0}
and (2.18),

V ∗(x) ≤ U∗(x, t) in (RN \ {0})× [0, t∗], (2.22)
where t∗ = min{1, T0

2 }. One can establish step by step on t that

V ∗(x) ≤ U∗(x, t) in (RN \ {0})× [0,∞), (2.23)

in particular,

f̄

α2ω|x|N−2
(α2 − |x|2)ω

+ = V ∗(x) ≤ U∗(x, t) = 0, t >
1
β
, x 6= 0,

this yields a contradiction. �
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3. Instantaneous shrinking of the support: Extinction properties

For an arbitrary nonnegative continuous function v(x, t) defined in (RN \ {0})×
[0, T0)(0 < T0 ≤ ∞), we set

ξ(t; v) = sup{|x|; v(x, t) > 0}, t ∈ [0, T0). (3.1)

Definition 3.1. Assume that 0 ≤ v(x, t) ∈ C((RN \{0})×[0, T0)), and ξ(0; v) = ∞.
We say that instantaneous shrinking of support occurs for v if there exists τ > 0
such that ξ(t; v) <∞ for all t ∈ (0, τ ].

Definition 3.2. Assume that 0 ≤ v(x, t) ∈ C((RN \ {0}) × [0,∞)), we say that
extinction in finite time occurs for v if there exists T0 > 0 such that v(x, t) ≡ 0 in
(RN \ {0})× [T0,∞).

We begin with a theorem on the instantaneous shrinking of support property.

Theorem 3.3. Assume that 0 < p < 1 and (H1) hold, and let u(x, t) ∈ FM0(T0)
be a solution of (1.1), (1.2). If b(x, t) satisfies, in addition to b(x, t) ≥ 0 in (RN \
{0})× [0, T0),

b(x, t) ≥ h(|x|)f1−p(x) in (RN \BR0(0))× [0, T0), (3.2)

where R0 > 0, h(r) is a positive non-decreasing C2-function in [R0,∞) satisfying
for some positive constant h0,

lim
r→∞

h(r) = ∞,

h′(r) + |h′′(r)| ≤ h0h(r), r ∈ [R0,∞).
(3.3)

Then instantaneous shrinking of support occurs for u. Further,

ξ(t;u) ≤ h−1(
1
βt

), ∀ t ∈ (0, τ ],

where β is a positive constant depending only on p; τ is small enough, and h−1(a) =
sup{r;h(r) = a}.

Proof. Denote ω = 2
1−p , and let β ∈ (0, 1) and l0 ≥ R0 + 1 be fixed. We introduce

the function
U(x, t) = 2f(x)(1− βth(|x|))ω

+ := 2f(x)Zω(x, t).
We wish to prove that for small τ > 0 and large l0,

u(x, t) ≤ U(x, t) in {|x| ≥ l0} × [0, τ ]. (3.4)

From the definition of h−1(·), one can see that h−1( 1
βt ) > l0 for t ∈ (0, τ ], provided

that τ is small enough. Hence the assertion of the theorem easily follows from (3.4).
Set

Q+ = {(x, t) ∈ (RN \Bl0(0))× (0, T0); Z(x, t) > 0}.
It is obvious that U(x, t) ∈ C2,1((RN \ {0}) × [0, T0)), 0 < Z(x, t) ≤ 1 in Q+ and
LU = 0 in (RN \Bl0(0))× (0, T0) \Q+. A straightforward calculation yields

LU = −2ωβh(|x|)f(x)Zω−1 − 2k0(k0 + 2−N)f1
|x|2+k0

Zω

− 4ωk0f1
|x|1+k0

βth′Zω−1 − 2ω(ω − 1)(βth′)2fZωp

+ 2βtωh′′fZω−1 +
2ω(N − 1)

|x|
βth′fZω−1 + 2pbfpZωp.

(3.5)
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By (3.2), (3.3) and (3.5), we get

LU ≥ 2fZωp
[
−ωβh(|x|)− k0(k0 + 2)

l20
− 2ωk0h0

l0
− ω(ω − 1)h2

0 − h0ω +
h(|x|)

2
]

≥ 0 in Q+,

(3.6)
provided that β is small and l0 is large. ¿From U(x, 0) > u(x, 0) on |x| = l0 and
the continuity of U and u, there exists τ = τ(l0) > 0 such that

u(x, t) ≤ U(x, t), |x| = l0, t ∈ [0, τ ]. (3.7)

From (3.6), (3.7) and U(x, 0) > u(x, 0) in RN \Bl0(0), an application of the standard
comparison principle immediately leads to the desired estimate (3.4). �

The next theorem demonstrates that the hypothesis limr→∞ h(r) = ∞ in Theo-
rem 3.3 is in a certain sense sharp.

Theorem 3.4. Assume 0 < p < 1. Let u ∈ FM0(T0) be a solution of (1.1), (1.2)
with u0(x) = f(x), and suppose that for a positive constant b1,

0 ≤ b(x, t) ≤ b1f
1−p(x) in (RN \BR0(0))× [0, T0). (3.8)

Then there exist positive constants H and τ (H depends only on the data, R0 and
b1; τ is small enough) such that

u(x, t) ≥ f(x)
2

(1−Ht)
1

1−p

+ in (RN \BR0(0))× [0, τ ]. (3.9)

In particular, instantaneous shrinking of support does not occur for u.

Proof. . Let H > 0 be fixed , consider the function

V (x, t) =
f(x)

2
(1−Ht)σ

+ :=
f(x)

2
Zσ(t) (σ =

1
1− p

).

In view of (3.8), a direct calculation gives

LV = −Hσf
2

Zσp − k0(k0 + 2−N)f1
2|x|2+k0

Zσ + (
f

2
)pbZσp

≤ fZσp(−Hσ
2

+
k0N

2R2
0

+
b1
2p

) < 0
(3.10)

in (RN \ BR0(0)) × (0, T0), provided H is large enough. Since u(x, 0) > V (x, 0)
when |x| = R0, arguing similarly as in the proof of Theorem 3.3, one can easily see
the validity of (3.9) for small τ > 0. �

We pass now to the extinction in finite time phenomenon. We distinguish two
cases: k0 < N − 2 and k0 ≥ N − 2.

Theorem 3.5 (Case k0 < N − 2). Assume 0 < p < 1 and that (H1) holds, and let
u ∈ FM0(∞) be a solution to (1.1), (1.2). If

b(x, t) ≥ b0f
1−p(x) in (RN \ {0})× [0,∞) (b0 > 0), (3.11)

then extinction in finite time occurs for u.
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Proof. Let β be fixed, and consider the function

U(x, t) = f(x)(1− βt)σ
+ (σ =

1
1− p

). (3.12)

A quick calculation gives

LU = (1− βt)σp
+

[
−βσf(x)− f1k0(k0 + 2−N)

|x|k0+2
(1− βt)+ + b(x, t)fp(x)

]
. (3.13)

Then by the hypotheses, we have

LU ≥ (1− βt)σp
+ f(x)(−βσ + b0) ≥ 0,

provided β is small enough. Hence by Theorem 2.2,

u(x, t) ≤ U(x, t) in (RN \ {0})× [0,∞),

which implies u(x, t) ≡ 0 in (RN \ {0})× [ 1
β ,∞). �

Theorem 3.6 (Case k0 ≥ N − 2). Assume p, u0(x) and u(x, t) are as in Theorem
3.5. Suppose that for positive constants k > k0, R0 and ε0,

b(x, t) ≥

{
k0(k+2−N)f1−p

1
p|x|k0(1−p)+2 in (BR0(0)) \ {0})× [0,∞),

ε0 in (RN \BR0(0))× [0,∞).
(3.14)

Then extinction in finite time occurs for u.

Proof. This time we introduce the function

U(x, t) = (f̃0 +
f1
|x|ko

)(1− βt)σ
+ (σ =

1
1− p

),

where

f̃0 = f0 + 1 + (
2f1k0(k0 + 2−N)

ε0R
k0+2
0

)1/p. (3.15)

First, by the hypotheses and (3.15), one can see in (RN \BR0(0))× (0,∞),

LU = (1− βt)σp
+

{
−βσ(f̃0 +

f1
|x|k0

)− f1k0(k0 + 2−N)
|x|k0+2

(1− βt)+

+ b(x, t)(f̃0 +
f1
|x|k0

)p
}

≥ (1− βt)σp
+

{
−βσ(f̃0 +

f1

Rk0
0

)− f1k0(k0 + 2−N)
Rk0+2

0

+ ε0f̃
p
0

}
≥ (1− βt)σp

+

{
−βσ(f̃0 +

f1

Rk0
0

) +
ε0f̃

p
0

2
}
.

(3.16)

Next, in (BR0(0))× (0,∞),

LU ≥ (1−βt)σp
+

{
−βσ(f̃0+

f1
|x|k0

)+(
1
p
−1)

k0(k + 2−N)f1−p
1

|x|k0(1−p)+2
(f̃0+

f1
|x|k0

)p
}
. (3.17)

From (3.16) and (3.17), one can easily conclude

LU ≥ 0 in (RN \ {0})× (0,∞),

provided β is small enough. Thus, by comparison

u(x, t) ≤ U(x, t) in (RN \ {0})× [0,∞). (3.18)



EJDE-2004/53 QUALITATIVE PROPERTIES OF SOLUTIONS 9

The assertion of the theorem follows immediately from (3.18) and the definition of
U(x, t). �

The following negative result shows that in a certain sense the condition b(x, t) ≥
ε0 > 0 in (RN \BR0(0))× [0,∞) in (3.14) is necessary.

Theorem 3.7. Assume k0 ≥ N − 2 and 1
2 < p < 1, and let u in FM0(∞) be a

solution of (1.1), (1.2) with u0(x) = f(x). If

b(x, t) ≥ k0(k + 2−N)f1−p
1

p|x|k0(1−p)+2
in (BR0(0) \ {0})× [0,∞), (3.19)

and
0 ≤ b(x, t) ≤ g(|x|)f1−p(x) in (RN \BRo(0))× [0,∞), (3.20)

where g(r) is a positive non-increasing C2-function in [R0,∞) satisfying

lim
r→∞

g(r) = 0,

−g
′(r)
r

+ |g′′(r)| ≤ g0g
2(r) in [R0,∞) (g0 > 0).

(3.21)

Then extinction in finite time does not occur for u.

Proof. Let γ be large enough such that (1−γg(|x|))+ > 0 implies |x| ≥ R0. Consider
the function

V (x, t) = f(x)(1− γ(t+ 1)g(|x|))σ
+ := f(x)Zσ(x, t) (σ =

1
1− p

).

Since 1
2 < p < 1, V (x, t) ∈ C2,1((RN \ {0})× [0,∞)). Set

Q+ = {(x, t) ∈ (RN \ {0})× (0,∞);Z(x, t) > 0}.

It is obvious that LV = 0 in (RN \ {0})× (0,∞) \Q+ and Q+ ⊆ (RN \BRo(0))×
(0,∞). Now, we compute in Q+,

LV = f(x)Zσp(x, t)
[
−σγg(|x|)− f1k0(k0 + 2−N)

|x|k0+2f(x)
Z(x, t)− 2σk0f1γ(1 + t)g′(|x|)

|x|k0+1f(x)

− σ(σ − 1)(γ(1 + t)g′(|x|))2Z−1(x, t) + σ(N − 1)
γ(1 + t)g′(|x|)

|x|

+ σγ(1 + t)g′′(|x|) +
b(x, t)
f1−p(x)

]
.

(3.22)
Then by (3.19)–(3.22), we have

LV ≤ f(x)Zσp(x, t)[−σγg(|x|) + σg0(2k0 + 1)g(|x|) + g(|x|)] ≤ 0,

provided γ is large enough. Hence from (3.19) and (3.20), an application of Theorem
2.2 yields

u(x, t) ≥ V (x, t) in (RN \ {0})× [0,∞). (3.23)

From the definition of V (x, t) and limr→∞ g(r) = 0, we see that for any T > 0,
there exists a point x = x(T ) ∈ RN \ {0} such that V (x, T ) > 0, whence by (3.23)
u(x, T ) > 0. �

For the case k0 < N − 2 we have the following result.
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Theorem 3.8. Assume k0 < N − 2 and 1
2 < p < 1. Let u(x, t) ∈ FM0(∞) be a

solution to the problem (1.1), (1.2) with u0(x) = f(x). If

0 ≤ b(x, t) ≤ b1f
1−p(x)
|x|2

in (RN \ {0})× [0,∞) (b1 > 0). (3.24)

Then extinction in finite time does not occur for u.

Proof. We introduce the function

V (x, t) = f(x)(1− γt

|x|2
)σ
+ := f(x)Zσ(x, t) (σ =

1
1− p

),

where γ is a large constant to be chosen. A simple calculation yields

LV

= − σγ

|x|2
f(x)Zσp(x, t)− k0(k0 + 2−N)f1

|x|ko+2
Zσ(x, t)− 2σ(N − 4)γt

|x|4
f(x)Zσp(x, t)

− 4σ(σ − 1)
|x|6

(γt)2f(x)Zσ−2(x, t) +
4σk0f1
|x|k0+4

γtZσp(x, t) + b(x, t)fp(x)Zσp(x, t).

Then by (3.24), we have for large γ

LV ≤ f(x)Zσp(x, t){− σγ

|x|2
+
ko(N + 4σ) + 8σ

|x|2
+

b1
|x|2

} ≤ 0,

and hence by comparison, u(x, t) ≥ V (x, t) in (RN \ {0})× [0,∞). The remaining
of the proof is as before. �

4. Existence

We begin with a global existence result.

Theorem 4.1. Assume that 0 < p ≤ 1 and (H1) hold, and suppose that b(x, t) ∈
Cα0,

α0
2 ((RN \ {0})× [0,∞))(α0 ∈ (0, 1)) satisfies

b(x, t) ≥

{
k0(k0+2−N)+f1−p

1
|x|k0(1−p)+2 in (BR0(0) \ {0})× [0,∞),

0 in (RN \BR0(0))× [0,∞).
(4.1)

Then there exists a solution u(x, t) ∈ FM0(∞) to (1.1), (1.2) for some constant Mo

depending only on the data and R0.

Proof. . For any large n, let un(x, t) be the unique solution of the approximated
problem

(un)t −∆un + bn(x, t)|un|p−1un = 0 in Bn(0)× (0, n2], (4.2)

un(x, t) = 0 on ∂Bn(0)× (0, n2], (4.3)

un(x, 0) = uo,n(x)ψn(x) in Bn(0). (4.4)

Here ψn(x) is a smooth cutoff function in Bn(0) satisfying 0 ≤ ψn ≤ 1, ψn(x) = 0
on ∂Bn(0) and ψn(x) = 1 in Bn−1(0); u0,n(x) and bn(x, t) are, respectively, the
smooth approximation of u0(x) and b(x, t) satisfying

lim
n→∞

u0,n(x) = u0(x) in RN \ {0},

0 ≤ u0,n(x) ≤ f0 +
f1

(|x|2 + n−2)
k0
2

in RN ,
(4.5)
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lim
n→∞

bn(x, t) = b(x, t) in (RN \ {0})× [0,∞) (4.6)

and

bn(x, t) ≥


k0(k0+2−N)+f1−p

1

(|x|2+n−2)
k0(1−p)+2

2

, in BRo
(0) \ {0})× [0,∞),

0 in (RN \BR0(0))× [0,∞).
(4.7)

Clearly, un(x, t) ≥ 0 in Bn(0) × [0, n2]. To estimate the upper bound of un(x, t),
we introduce the function

Un(x, t) = M̃ + f1g(
√
|x|2 + n−2), (4.8)

where M̃ ≥ f0 is a large constant to be fixed, and

g(r) =


1

rk0
, 0 < r ≤ r0 := k0+1

2(k0+3)R0,

−k0(k0+1)2

12r
k0+3
0

(r − R0
2 )3 + k0+3

3(k0+1)r
k0
0

, r0 < r ≤ R0
2 ,

k0+3

3(k0+1)r
k0
0

, r > R0
2 .

(4.9)

It is readily to verify that g(r) ∈ C2(0,∞). From the definition of g(r), we compute

rg′′(r) + (N − 1)g′(r) ≤


k0(k0+2−N)+

r g(r), 0 < r ≤ r0,

C, r0 < r ≤ R0
2 ,

0, r > R0
2 ,

(4.10)

where C depends only on N , k0, and R0; and

LUn = bn(x, t)Up
n(x, t)− f1

{ |x|2

|x|2 + n−2
g′′(

√
|x|2 + n−2)

+ (
N√

|x|2 + n−2
− |x|2

(|x|2 + n−2)
3
2
)g′(

√
|x|2 + n−2)

}
≥ bn(x, t)Up

n(x, t)− f1√
|x|2 + n−2

[√
|x|2 + n−2g′′(

√
|x|2 + n−2)

+ (N − 1)g′(
√
|x|2 + n−2)

]
.

(4.11)

By (4.7)–(4.11) we have for large M̃ ,

LUn ≥ 0 in Bn(0)× (0, n2],

and hence by comparison,

un(x, t) ≤ Un(x, t) ≤ 2M̃ +
f1
|x|ko

in (Bn(0) \ {0})× [0, n2]. (4.12)

From this equation, according to the well-known interior estimates of solutions and
their continuity module (see for instance [2, 3, 9]), it follows that for any l ≥ 2 and
n ≥ l + 4, we have

‖un‖
C2+α1,1+

α1
2 (Ql)

≤ Cl, (4.13)

|un(x, t)− un(x′, t′)| ≤ ωl(|x− x′|+ |t− t′| 12 ) (4.14)

for all (x, t), (x′, t′) ∈ Q̂l, where Ql = (Bl(0) \ B1/l(0)) × [ 1
l2 , l

2], Q̂l = (Bl(0) \
B1/l(0)) × [0, l2];α1(> 0) is independent of n and l, Cl and ωl(r) are independent
of n, and ωl(r) tends to zero as r ↓ 0.
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The above estimates together with Arzela’s lemma and a diagonal argument
imply that there exists a function u(x, t) ∈ FM0(∞) (M0 = 2M̃) such that, after
extracting a subsequence if necessary,

lim
n→∞

un(x, t) = u(x, t) in (RN \ {0})× [0,∞),

and u(x, t) solves (1.1), (1.2) in the classical sense. �

From Theorems 2.2 and 4.1 we have the following statement.

Corollary 4.2. Assume 0 < p ≤ 1 and (H1) hold, and suppose that b(x, t) ∈
Cα0,

α0
2 ((RN \ {0})× [0,∞)), α0 ∈ (0, 1), satisfies:

(a) For k0 < N − 2, b(x, t) ≥ 0 in (RN \ {0})× [0,∞)
(b) For k0 ≥ N − 2, k > k0,

b(x, t) ≥

{
k0(k+2−N)f1−p

1
p|x|k0(1−p)+2 in (BR0(0) \ {0})× [0,∞),

0 in (RN \BR0(0))× [0,∞).

Then problem (1.1), (1.2) is uniquely solvable in FM0(∞) for some M0 ≥ f0.
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