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Infinitely many homoclinic orbits for Hamiltonian
systems with group symmetries *

Cheng Lee

Abstract

This paper deals via variational methods with the existence of infinitely
many homoclinic orbits for a class of the first-order time-dependent Hamil-
tonian systems

z2=JH.(t,2)
without any periodicity assumption on H, providing that H(¢,z) is G-
symmetric with respect to z € R?Y, is superquadratic as |z| = oo, and
satisfies some additional assumptions.

1 Introduction

This paper is an extension of the work [7]. We consider the existence of infinitely
many homoclinic orbits for the first-order time-dependent Hamiltonian systems

L= JH.(t, 2), (HS)

where z = (p,q) € R*M , H € CY(RxR2N R), H(t,0) = 0, and J is the standard
symplectic structure on RV,

(0 Iy
=™

with Iny being the N x N identity matrix. By a homoclinic orbit we mean a
solution z € C*(R,R?N) of (HS) which satisfies z(t) # 0 and the asymptotic
condition z(t) — 0 as [¢t| — oo.

Establishing the existence of homoclinic orbits for systems like (HS) is a clas-
sical problem. Up to 1990, apart from a few isolated results, the only method for
dealing with such a problem was the small-perturbation technique of Melnikov.
In very recent years this kind of problem has been deeply investigated through
variational methods pioneered by Rabinowitz, Coti-Zelati, Ekeland, Séré, Hofer,
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Wysocki and others, see [2,4-6,8,11-12,14-18]. These papers considered Hamil-
tonians for the first-order systems (HS) of the form

1
H(t,z)= §Az -z + R(t, 2),

where A is a 2N x 2N symmetric and constant matrix such that each eigen-
value of JA has a nonzero real part, and R(t,z) is periodic in ¢ and globally
superquadratic in z. They showed that (HS) has at least one homoclinic orbit.
The existence of infinitely many homoclinic orbits of (HS) was also established
in [16,17] if, in addition, R(t, z) is convex in z.

Recall that, for the particular case of second order systems of the type

=G =—L(t)g + Wy(t,q),

where L € C(R,RY 2) is a symmetric matrix-valued function, the works [15]
(among other results) and [6,12] obtained some existence results for homoclinic
orbits without periodicity assumptions on the Hamiltonian

1 1
H(t,pvq) = §|p|2_ §L(t)qQ+W(t7q) (pvq) €R2N7

providing instead that the smallest eigenvalue of L(t) grows without bound as
[t| = oo, and W (t, q) satisfies some growth assumptions.

Motivated by the works of [6,12,15] Ding and Li studied in [9] the Hamil-
tonian

H(t,z) = —%M(t)z-z—i—R(t,z), (1.1)

M) = ( o o0 )

with L being an N X N symmetric matrix-valued function. They proved that
(HS) has at least one homoclinic orbit under the assumptions:
(L1) The smallest eigenvalue of L(t) approaches oo as [t| — o0, i.e.,
I(t) = infecpn |g)=1 L(t)€ - € — 00 as [t] — oo;
(Lg) L € C(R,RNz) and there exists Ty > 0 such that 2L(t)i%L(t) are
nonnegative definite for all |t| > To;
(R1) R € C1(R x R2N R) and there exists p > 2 such that

where

0< puR(t,z) <R,(t,z) -z VtecRand z #0;

(RQ) 0<b= inftG]R,|z|:1 R(tv Z)7
(R3) |R:(t, 2z)| = o(]z]) as z — 0 uniformly in ¢;
(R4) there exist 0 < a1(t) € LY(R) N L>=(R), v > 1 and as > 0 such that

|R.(t,2)|" <ai(t) +az2R.(t,2) -z V(¢ 2).

In [7], Ding showed that (HS) possesses infinitely many homoclinic orbits if, in
addition, H (¢, z) is even in z. The purpose of this paper is to show the same
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conclusion under a general symmetry condition. Our arguments remain simple
even under this general symmetry condition.

To state our result, we recall some standard notations concerning group
actions of compact subgroups G of the orthogonal group O(2N). We let V
denote the vector space R?V considered as a G-space. Hence G acts diagonally
on VF = (RPV)E ie., g(vl,---,vF) = (gvl,---,gvF) for g € G and v' € V
(k € Nyi = 1,2,---,k). If G acts on two subspaces X and Y, then a G-
map f : X — Y is a continuous map which commutes with the action, i.e.,
f(gx) = gf(z) for any g € G and = € X. In the special case where the action
onY is trivial (gy = y for all g € G and y € Y') a G-map is also called invariant.
A subset A of V¥ is said to be invariant if gz € A for every g € G and x € A.
We say that G acts admissibly on V if every G-map O — V*~1 O C V¥ an
open bounded invariant neighborhood of 0 in V*, has a zero on 90.

Now we can state the symmetry condition.

(S) There exists a compact subgroup G of O(2N) acting admissibly on V' such
that g'Jg = J for every ¢ € G and H(t,z) is invariant with respect to the
action, i.e., H(t,gz) = H(t,z) for all g € G and (¢, 2) € R x R?V,

Our result reads as follows.

Theorem 1. Let H be of the form (1.1) with L satisfying (L1) — (L2) and
R satisfying (R1) — (R4). Suppose, in addition, H satisfies (S). Then (HS)
possesses infinitely many homoclinic orbits {z} such that

1
/[—iJz"k sz — H(t, zg)]dt = 00 as k — oo.
R

The Borsuk-Ulam theorem states that V = R?V with the antipodal action
of G = {Ihn,—Izn} is admissible. So our result generalizes the result in [7].

A simple example of a matrix-valued function satisfying (L1)— (L2) is L(t) =
|t|°Ix with @ > 1, which arises in the study of generalized harmonic oscillator
problems. Consider the functions of the form R(¢, z) = b(t)W (z), where b(t) €
C(R,R), there exist positive constants b < b such that b < b(t) < b for all t € R,
and for some integer m > 0, W(z) = > 1", ¢;]2|** with ¢; > 0 (1 <4 < m) and
1<pr <po<--- <. If p> 2, then R(t, z) satisfies (R1) — (Ra).

The preliminary results are in Sec.2, and in Sec.3 is the proof of Theorem 1.

2 Preliminaries

An abstract critical point theorem will be used for proving Theorem 1. This
abstract theorem is introduced and proved in [3]. So we shall describe it briefly.
For details see [3].

Let E be a Hilbert space with an orthogonal action of a compact Lie group G.
We are concerned with critical points of an invariant functional I € C*(E,R).
We need the following assumptions:
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(A1) There exists an admissible representation V of G such that E = @;c7E7
is a G-Hilbert space with E’/ = V as a representation of G for every j € Z (note
that Z can be replaced by Z* = Z\{0}, depending on situations).

(A2) There exists a € R such that for each k > 1

inf sup I(u)= lim sup  I(u) <a,
R>0uem, ul2R R=roouem lull =R

where E), = @jSkEj.

(A3) be =sup,ginf,cpr  jy=rI(u) = 00 as k — oo.

(A4) d = sup,cp, I(u) < oo.

(As) Every sequence u, € F,, = EX, | = ®;>_,E’ such that I(u,) > a
is bounded and (I|f,) (u,) — 0 as m — oo, contains a subsequence which
converges in E to a critical point of I, which is the so-called (PS)* condition.

Now we can state the abstract theorem.

Theorem 2.1. Let E be a G-Hilbert space and I € C*(E,R) be a G-invariant
functional satisfying (A1) — (As). Then I has an unbounded sequence of critical
values. In fact, for each k > 1 with by > a there exists a critical value c €

[bk, d].

Remark 2.2: In [7], an abstract critical point proposition for even functionals
is posed to prove its main result. The proposition requires I to satisfy both (PS)*
and (PS)** conditions.

Remark 2.3: The above conditions (Az) and (Asz) show that the behavior of
I is quite interesting. Intuitively, I behaves like fountain (see [3]).
Next we consider the symmetric matrix-valued functions M € C(R

of the form o L)
o= o).

Suppose that L satisfies (L1) and (Lz). Let A be the selfadjoint operator —J 4 +
M with the domain D(A) C L? = L?(R,R?Y), defined as a sum of quadratic
forms. Let {E(A\)| — oo < A < 400} be the resolution of A, and U = I — E(0) —
E(—0). Then U commutes with A, |A| and |A|'/2, and A = |A|U is the polar
decomposition of A (see [10]). D(A) = D(|A|) = D(I + |A]) is a Hilbert space
equipped with the norm

,RQNXQN)

IzllL = |(I + |A])z| L2 for all z € D(A),

where || -|| 2 is the norm of L2. It is not hard to check that D(A) is continuously
embedded in W12 = WhH2(R,R?V) (see [9]). Moreover we have

Lemma 2.4: Suppose L satisfies (L1) and (Lg). Then D(A) is compactly
embedded in L?.
For the proof of the above lemma, see [9, Lemma 2.1].
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Remark 2.5: From Lemma 2.4, it is clear that (I + |A|)™!: L? — L? is a
compact linear operator. Therefore a standard argument shows that o(A), the
spectrum of A, consists of eigenvalues numbered by (counted in their multiplic-
ities):

<A< A <0< A S Al

with ALy — +o0o as K — oo, and a corresponding system of eigenfunctions
{er}rez of A forms an orthonormal basis in L? (for the situation here, we use
Z*, instead of Z).

Now we set £ = D(]A|'/?) = D((I + |A|)'/?). E is a Hilbert space under
the inner product

(21,22)0 = (|A|1/2217 |A|1/222)L2 + (21, 22) 12

and norm
Izllo = (2, 2)g”> = (I + |A)22| 2,

where (-, )72 denotes the L? inner product.

Let E° = ker A (note dimE® < oo, by Lemma 2.4), ET =Clg (span
{e1,e2,---}) and E~ = (E° @ E*)*2, where ClgS denotes the closure of S
in F and S1# denotes the orthogonal complementary subspace of S in E. Then

E=E oE°@E". (1.1)

Since, by Lemma 2.4, 0 is at most an isolated eigenvalue of A, for later conve-
nience we introduce on E the inner product

(21, 22) = (JAI" 20, | A2 22) 12 + (20, 23) 12
forall z; = z; +29+4 2 € E-® E°® E*(i = 1,2), and the norm
2]l = (2, 2)'/ (1.2)

for all z € E. Clearly, || - || is equivalent to || - ||o. Moreover, E is continuously
embedded in H'/2(R,R?Y), the Sobolev space of fractional order (see [9]).

Lemma 2.6: Suppose L satisfies (L1) and (Lz). Then E is compactly embed-
ded in LP for all p € [2,00).

For the proof of the above lemma, see [9, Lemma 2.2].

Finally we introduce

a(z,x) = (|A|Y?Uz, |A|Y%2) 2 (1.3)

for all z,z € E. The form a(-, -) is the quadratic form associated with A. Clearly,
for z € D(A) and z € E we have

a(z,x) = (Az,x)p2 = /R(—Jz" + M(t)z) - x. (1.4)
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Clearly, E~, E° and E* are orthogonal to each other with respect to a(-,-), and
furthermore

a(z,x) = ((PT — P7)z,z) forz,z € F,

a(,2) = [P = |7 [P forze B, (15)

where P* : E — E* are the orthogonal projectors and z = 2z~ + 20 + 2F €
E-oE°o E*.

3 Proof of Theorem 1

Throughout this section, let the assumptions of Theorem 1 be satisfied. Let
E = D(|A]'/?) with norm (2.2). By (Ry) and (Rz) we have

R(t,z) > blz|* VteR and |z|>1. (1.1)
Also by (R4) and (3.1) we have
|Ra(t2)] < C(L+ 12771 V(1 2), (1.2)

where «' = %, which, together with (Rs), yields that for any € > 0 there is
C. > 0 such that

IR.(t,2)| < e|z| + Cel2[" ™! (¢, 2), (1.3)

and )
IR(t,2)| < elzf? + Cela" W(t, 2). (14)

Subsequently, C and C; stand for generic positive constants, not depending on
t and z.
Note that (3.1) and (3.4) imply 7" > p > 2.

Let

o(z) = /RR(t,z) Vz e E.

Equations (3.1)-(3.4) imply that ¢ is well-defined, ¢ € C1(E,R), and

o (2)r = /RRZ(t, z)x Vx,z€FE (1.5)

by Lemma 2.6. In addition, ¢’ is a compact map. To see this, let z,, — z weakly
in E. By Lemma 2.6 we can assume that z, — z strongly in L? for p € [2, 00).
By (3.5)

1" (2n) = @' (2) = sup | [ (R.(t,2n) — Ru(t,2))z.
lzl=1 Jr

By (3.3) and the Hoélder inequality, for any R > 0

| /| B2 = R,
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IN

C (lzn| + 2] + [za" =1 + 2] ") (1.6)
tI>R

Cllallzal [ fanf 412 + el ([ Jaal” 4120007
ltI=R [t|>R

IN

For £ > 0, by (3.6) we can take Ry so large that
|/ (Rz(t,zn) — R.(t,2))x| < eg/2 (1.7)
[t|>Ro

for all ||z|| =1 and n € N. On the other hand, it is well-known (see [13]) that
since z, — z strongly in L2,

||Rz(7zn) - RZ(7 Z)||L2(BR0) —0

as n — oo, where Br, = (—Ry, Ry). Therefore, there is ng € N such that
|/ (Ru(t, 20) — Ru(t, 2))r| < /2 (1.8)
[t|[<Ro

for all ||z|| =1 and n > ng. Combining (3.7) and (3.8) yields
¢’ () — ¢ (2)] <& Vn >mne.

Hence ¢’ is compact.
Let a(-,-) be the quadratic form given by (2.3), and define

I(z) = %a(z,z) —p(z) VzekE.

By (2.5) ,
I(z) = (17 P = 1=71%) — ¢(z) Vz€E

forall 2 =27 +20+2" € E-® E°® E*. Then I € C'(E,R). Note that by
(2.4) a standard argument can show that the nontrivial critical points of I on
E are homoclinic orbits of (HS).

Let By = E~ @ E° and By = ET with {e_,}°%, and {e, }5°, respectively,
where {e, }nez~ is the system of eigenfunctions of A (see Remark 2.5). Then

E=E ®FE,= ®jez-E7,

where E' =span{ei, ez, -+, ean}, E? =span{eani1, ", €an},

E~! =span{e_1,e_2,--,e_an}, E72 =span{e_an_1,*,€_4n}, - Set also
E, = @jgnEj and F,, = Ei‘n_l = @jz,nEj for j,n € Z*. It remains to check
the assumptions of Theorem 2.1. The action of G on FE is simply given by
(92)(t) = g=(t). Since g commutes with J and H (¢, z) is invariant with respect
to the action, it is clear that (A;) is satisfied. Assumption (A3) follows from
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Lemma 3.1. For each k > 1 there exists Ry > 0 such that I(z) < 0 for all
z € By, with ||z|| > Ry.

Proof. By (3.4), (R1) and the fact that |z|* < |2|? for |z| < 1, we have for
any € with 0 < ¢ < b,

R(t,2) > e(|z|" — |2[*) V(t, 2). (1.9)

Let d > 0 be such that ||z||?, < d|z||? for all z € E (by Lemma 2.6) and take
e = min{5,b}. Then by (3.9) for z = 2~ + 2° + 2 € Ej, we have

1 1, -
I(z) = SI"1P =Sl 17 = [ Rt 2)

2 2 &
1 1, _

< Sl = eI + ellzlze — ezl (1.10)

1 1
2 —2 012
S E2 trd E20 (bt (2 it £
Since dim[E° & (®o<j<kE’)] < 0o, we have

12° + 2*)|7: = (20+2",2)re
12° + 2| e | 2]
C(k)|I2° + 2| a2l

and so |20 + 2F|| < C'(k)||z||Lx or
C"(k)[|2° + 2F|* < 2l (1.11)

where C(k),C’'(k) and C”(k) > 0 depend on k but not on z € E;. Equations
(3.10) and (3.11) imply

1
I(z) < [|12° + 277 = Zll27 17 = eC"(R)]12° + 2|1 (1.12)
for all z € Ej. Equation (3.12) implies that there is R > 0 such that
I(z) <0 Vz e Ej with ||z]| > Rg.

¢

Note that the above estimate (3.12) also gives sup,.p, I(2) < oo, that is,
(A4) holds. Next, (As) is a consequence of

Lemma 3.2. There are ri, > 0, ar, > 0 (k > 1) with ar, — o0 as k — oo such
that
I(z) > a, Vz € Ej-, with ||z|| = ry.
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Proof. Define

T sup HZ”L’Y’ )
z€EF\{0} || 2]

Clearly i > 141 > 0. We claim that
m —0 as k— oo (1.13)

Suppose nmr, — n > 0. Then there is a sequence 2z, € Ej- with ||zx]| = 1 and
2|l 41 > 3. since (zx,en) — 0 as k — oo for each e, (n € Z*), 2z, — 0 weakly
in E and by Lemma 2.6, ||zx||;~ — 0, a contradiction. The claim (3.13) is
proved.

By (3.4) with € = 5 (d as in the proof of Lemma 3.1) and C' = C. we have,
for z € E,ﬂ-_l

1
1) = sl - [ Rit.o)
]_ ’
> Tl - cl,
1 / /
> SR~ on =)

’ —1
Taking 7, = (2¢/Cn]_,)7 2 and aj, = (5 — 2#,)7‘2 one obtains

I(z) > a, Yz € Ej- | with ||z|| = .
Since 7/ > 2, equation (3.13) shows that a — oo as k — 0. O

Lemma 3.3 I satisfies (As).

Proof. Let I, = I|p,. Suppose z, € F, such that 0 < I(z,) < C and
€n = ||I],(zn)|| — 0. By definition and (Rq)

1) = 5he)sn = [ GR35 — Alt.)

> (-1 [ Rtz (1.14)

Vv

Equation (3.14) and hypothesis (Ra4) give ||R.(t,2,)[7, < C(1 + ||zn]]), and
hence by Lemma 2.6,

ll? = I'(zn)zrfJf/RRz(t,zn)ZI

Clizg |1 + | R, zn) [ 27)-

IN
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Thus
Iz < CQA+ [|zal7). (1.15)

Similarly we have
lz I < C(L + Jlzal /™). (1.16)

If E° = {0}, (3.15) and (3.16) imply ||2,|| < Const Vn. Suppose E° # {0}. For
z € E, let

A i )] <1, (0 i )] <
fo=10" & Fosy 2= >

Since by Lemma 2.6

/ A < / 212 < / 22 < Ozl
R R R

lznllze < Ollza**. (1.17)

we have

By (3.1) and (3.14),
27 lze < O+ llzall/9). (1.18)

2 . .. . . . _
By L? orthogonality and Holder’s inequality with p' = ﬁ,

||z’2||%2 = (zgvzn)L2
< lznlipw (lzalle + 12211 ze)-

Hence since dimE® < oo and (3.17)-(3.18) hold, one sees
lznllze < CUlznll®* + llzall*/*). (1.19)

The combination of (3.15)-(3.16) and (3.19) shows that again ||z,|| < Const.
Finally since ¢’ is compact, a standard argument shows that {z,} has a con-
vergent subsequence. O

Proof of Theorem 1. What we have done so far shows that I satisfies all
the assumptions of Theorem 2.1. Hence I has a positive critical value sequence
{ck} with ¢ — oo. Let z; be the critical point of I such that I(zx) = ci. Then
2y is a homoclinic orbit of (HS) and

1
/(—§Jzk o — H(t, 20))dt = I(25) = cx — 00
R
as k — oo. &
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