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Infinitely many homoclinic orbits for Hamiltonian

systems with group symmetries ∗

Cheng Lee

Abstract

This paper deals via variational methods with the existence of infinitely
many homoclinic orbits for a class of the first-order time-dependent Hamil-
tonian systems

ż = JHz(t, z)

without any periodicity assumption on H , providing that H(t, z) is G-
symmetric with respect to z ∈ R2N , is superquadratic as |z| → ∞, and
satisfies some additional assumptions.

1 Introduction

This paper is an extension of the work [7]. We consider the existence of infinitely
many homoclinic orbits for the first-order time-dependent Hamiltonian systems

ż = JHz(t, z), (HS)

where z = (p, q) ∈ R2N , H ∈ C1(R×R2N ,R), H(t, 0) ≡ 0, and J is the standard
symplectic structure on R2N ,

J =

(
0 −IN
IN 0

)

with IN being the N × N identity matrix. By a homoclinic orbit we mean a
solution z ∈ C1(R,R2N ) of (HS) which satisfies z(t) 6≡ 0 and the asymptotic
condition z(t)→ 0 as |t| → ∞.
Establishing the existence of homoclinic orbits for systems like (HS) is a clas-

sical problem. Up to 1990, apart from a few isolated results, the only method for
dealing with such a problem was the small-perturbation technique of Melnikov.
In very recent years this kind of problem has been deeply investigated through
variational methods pioneered by Rabinowitz, Coti-Zelati, Ekeland, Séré, Hofer,
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Wysocki and others, see [2,4-6,8,11-12,14-18]. These papers considered Hamil-
tonians for the first-order systems (HS) of the form

H(t, z) =
1

2
Az · z +R(t, z),

where A is a 2N × 2N symmetric and constant matrix such that each eigen-
value of JA has a nonzero real part, and R(t, z) is periodic in t and globally
superquadratic in z. They showed that (HS) has at least one homoclinic orbit.
The existence of infinitely many homoclinic orbits of (HS) was also established
in [16,17] if, in addition, R(t, z) is convex in z.
Recall that, for the particular case of second order systems of the type

−q̈ = −L(t)q +Wq(t, q),

where L ∈ C(R,RN
2

) is a symmetric matrix-valued function, the works [15]
(among other results) and [6,12] obtained some existence results for homoclinic
orbits without periodicity assumptions on the Hamiltonian

H(t, p, q) =
1

2
|p|2 −

1

2
L(t)q · q +W (t, q) (p, q) ∈ R2N ,

providing instead that the smallest eigenvalue of L(t) grows without bound as
|t| → ∞, and W (t, q) satisfies some growth assumptions.
Motivated by the works of [6,12,15] Ding and Li studied in [9] the Hamil-

tonian

H(t, z) = −
1

2
M(t)z · z +R(t, z), (1.1)

where

M(t) =

(
0 L(t)
L(t) 0

)
,

with L being an N × N symmetric matrix-valued function. They proved that
(HS) has at least one homoclinic orbit under the assumptions:
(L1) The smallest eigenvalue of L(t) approaches ∞ as |t| → ∞, i.e.,

l(t) ≡ infξ∈RN ,|ξ|=1 L(t)ξ · ξ →∞ as |t| → ∞;

(L2) L ∈ C(R,RN
2

) and there exists T0 > 0 such that 2L(t)+
d
dt
L(t) are

nonnegative definite for all |t| ≥ T0;
(R1) R ∈ C1(R× R2N ,R) and there exists µ > 2 such that

0 < µR(t, z) ≤ Rz(t, z) · z ∀t ∈ R and z 6= 0;

(R2) 0 < b = inft∈R,|z|=1R(t, z);
(R3) |Rz(t, z)| = o(|z|) as z → 0 uniformly in t;
(R4) there exist 0 ≤ a1(t) ∈ L1(R) ∩ L∞(R), γ > 1 and a2 > 0 such that

|Rz(t, z)|
γ ≤ a1(t) + a2Rz(t, z) · z ∀(t, z).

In [7], Ding showed that (HS) possesses infinitely many homoclinic orbits if, in
addition, H(t, z) is even in z. The purpose of this paper is to show the same
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conclusion under a general symmetry condition. Our arguments remain simple
even under this general symmetry condition.

To state our result, we recall some standard notations concerning group
actions of compact subgroups G of the orthogonal group O(2N). We let V
denote the vector space R2N considered as a G-space. Hence G acts diagonally
on V k = (R2N )k, i.e., g(v1, · · · , vk) = (gv1, · · · , gvk) for g ∈ G and vi ∈ V
(k ∈ N, i = 1, 2, · · · , k). If G acts on two subspaces X and Y , then a G-
map f : X → Y is a continuous map which commutes with the action, i.e.,
f(gx) = gf(x) for any g ∈ G and x ∈ X . In the special case where the action
on Y is trivial (gy = y for all g ∈ G and y ∈ Y ) a G-map is also called invariant.
A subset A of V k is said to be invariant if gx ∈ A for every g ∈ G and x ∈ A.
We say that G acts admissibly on V if every G-map O → V k−1, O ⊆ V k an
open bounded invariant neighborhood of 0 in V k, has a zero on ∂O.
Now we can state the symmetry condition.

(S) There exists a compact subgroup G of O(2N) acting admissibly on V such
that gtJg = J for every g ∈ G and H(t, z) is invariant with respect to the
action, i.e., H(t, gz) = H(t, z) for all g ∈ G and (t, z) ∈ R× R2N .
Our result reads as follows.

Theorem 1. Let H be of the form (1.1) with L satisfying (L1) − (L2) and
R satisfying (R1) − (R4). Suppose, in addition, H satisfies (S). Then (HS)
possesses infinitely many homoclinic orbits {zk} such that

∫
R

[−
1

2
Jżk · zk −H(t, zk)]dt→∞ as k →∞.

The Borsuk-Ulam theorem states that V = R2N with the antipodal action
of G = {I2N ,−I2N} is admissible. So our result generalizes the result in [7].
A simple example of a matrix-valued function satisfying (L1)−(L2) is L(t) =

|t|θIN with θ > 1, which arises in the study of generalized harmonic oscillator
problems. Consider the functions of the form R(t, z) = b(t)W (z), where b(t) ∈
C(R,R), there exist positive constants b ≤ b such that b ≤ b(t) ≤ b for all t ∈ R,
and for some integer m > 0, W (z) =

∑m
i=1 ci|z|

µi with ci > 0 (1 ≤ i ≤ m) and
1 < µ1 ≤ µ2 ≤ · · · ≤ µm. If µ > 2, then R(t, z) satisfies (R1)− (R4).
The preliminary results are in Sec.2, and in Sec.3 is the proof of Theorem 1.

2 Preliminaries

An abstract critical point theorem will be used for proving Theorem 1. This
abstract theorem is introduced and proved in [3]. So we shall describe it briefly.
For details see [3].

Let E be a Hilbert space with an orthogonal action of a compact Lie groupG.
We are concerned with critical points of an invariant functional I ∈ C1(E,R).
We need the following assumptions:
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(A1) There exists an admissible representation V ofG such thatE = ⊕j∈ZEj

is a G-Hilbert space with Ej ∼= V as a representation of G for every j ∈ Z (note
that Z can be replaced by Z∗ = Z\{0}, depending on situations).
(A2) There exists a ∈ R such that for each k ≥ 1

inf
R>0

sup
u∈Ek,‖u‖≥R

I(u) = lim
R→+∞

sup
u∈Ek,‖u‖≥R

I(u) < a,

where Ek = ⊕j≤kEj .
(A3) bk = supr>0 infu∈E⊥k−1,‖u‖=r I(u)→∞ as k →∞.

(A4) dk = supu∈Ek I(u) <∞.
(A5) Every sequence un ∈ Fn = E⊥−n−1 = ⊕j≥−nE

j such that I(un) ≥ a
is bounded and (I|Fn)

′(un) → 0 as n → ∞, contains a subsequence which
converges in E to a critical point of I, which is the so-called (PS)∗ condition.
Now we can state the abstract theorem.

Theorem 2.1. Let E be a G-Hilbert space and I ∈ C1(E,R) be a G-invariant
functional satisfying (A1)− (A5). Then I has an unbounded sequence of critical
values. In fact, for each k ≥ 1 with bk > a there exists a critical value ck ∈
[bk, dk].

Remark 2.2: In [7], an abstract critical point proposition for even functionals
is posed to prove its main result. The proposition requires I to satisfy both (PS)∗

and (PS)∗∗ conditions.

Remark 2.3: The above conditions (A2) and (A3) show that the behavior of
I is quite interesting. Intuitively, I behaves like fountain (see [3]).
Next we consider the symmetric matrix-valued functionsM ∈ C(R,R2N×2N )

of the form

M(t) =

(
0 L(t)
L(t) 0

)
.

Suppose that L satisfies (L1) and (L2). Let A be the selfadjoint operator−J
d
dt
+

M with the domain D(A) ⊆ L2 ≡ L2(R,R2N ), defined as a sum of quadratic
forms. Let {E(λ)|−∞ < λ < +∞} be the resolution of A, and U = I −E(0)−
E(−0). Then U commutes with A, |A| and |A|1/2, and A = |A|U is the polar
decomposition of A (see [10]). D(A) = D(|A|) = D(I + |A|) is a Hilbert space
equipped with the norm

‖z‖1 = ‖(I + |A|)z‖L2 for all z ∈ D(A),

where ‖·‖L2 is the norm of L
2. It is not hard to check that D(A) is continuously

embedded in W 1,2 ≡W 1,2(R,R2N ) (see [9]). Moreover we have

Lemma 2.4: Suppose L satisfies (L1) and (L2). Then D(A) is compactly
embedded in L2.
For the proof of the above lemma, see [9, Lemma 2.1].
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Remark 2.5: From Lemma 2.4, it is clear that (I + |A|)−1 : L2 → L2 is a
compact linear operator. Therefore a standard argument shows that σ(A), the
spectrum of A, consists of eigenvalues numbered by (counted in their multiplic-
ities):

· · · ≤ λ−2 ≤ λ−1 ≤ 0 < λ1 ≤ λ2 ≤ · · ·

with λ±k → ±∞ as k → ∞, and a corresponding system of eigenfunctions
{ek}k∈Z∗ of A forms an orthonormal basis in L2 (for the situation here, we use
Z
∗, instead of Z).
Now we set E = D(|A|1/2) = D((I + |A|)1/2). E is a Hilbert space under

the inner product

(z1, z2)0 = (|A|
1/2z1, |A|

1/2z2)L2 + (z1, z2)L2

and norm

‖z‖0 = (z, z)
1/2
0 = ‖(I + |A|)1/2z‖L2,

where (·, ·)L2 denotes the L
2 inner product.

Let E0 = ker A (note dimE0 < ∞, by Lemma 2.4), E+ =ClE (span
{e1, e2, · · ·}) and E− = (E0 ⊕ E+)⊥E , where ClES denotes the closure of S
in E and S⊥E denotes the orthogonal complementary subspace of S in E. Then

E = E− ⊕ E0 ⊕ E+. (1.1)

Since, by Lemma 2.4, 0 is at most an isolated eigenvalue of A, for later conve-
nience we introduce on E the inner product

(z1, z2) = (|A|
1/2z1, |A|

1/2z2)L2 + (z
0
1 , z

0
2)L2

for all zi = z
−
i + z

0
i + z

+
i ∈ E

− ⊕ E0 ⊕ E+(i = 1, 2), and the norm

‖z‖ = (z, z)1/2 (1.2)

for all z ∈ E. Clearly, ‖ · ‖ is equivalent to ‖ · ‖0. Moreover, E is continuously
embedded in H1/2(R,R2N ), the Sobolev space of fractional order (see [9]).

Lemma 2.6: Suppose L satisfies (L1) and (L2). Then E is compactly embed-
ded in Lp for all p ∈ [2,∞).
For the proof of the above lemma, see [9, Lemma 2.2].
Finally we introduce

a(z, x) = (|A|1/2Uz, |A|1/2x)L2 (1.3)

for all z, x ∈ E. The form a(·, ·) is the quadratic form associated with A. Clearly,
for z ∈ D(A) and x ∈ E we have

a(z, x) = (Az, x)L2 =

∫
R

(−Jż +M(t)z) · x. (1.4)
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Clearly, E−, E0 and E+ are orthogonal to each other with respect to a(·, ·), and
furthermore

a(z, x) = ((P+ − P−)z, x) for z, x ∈ E ,

a(z, z) = ‖z+‖2 − ‖z−‖2 for z ∈ E, (1.5)

where P± : E → E± are the orthogonal projectors and z = z− + z0 + z+ ∈
E− ⊕ E0 ⊕ E+.

3 Proof of Theorem 1

Throughout this section, let the assumptions of Theorem 1 be satisfied. Let
E = D(|A|1/2) with norm (2.2). By (R1) and (R2) we have

R(t, z) ≥ b|z|µ ∀t ∈ R and |z| ≥ 1. (1.1)

Also by (R4) and (3.1) we have

|Rz(t, z)| ≤ C(1 + |z|
γ′−1) ∀(t, z), (1.2)

where γ′ = γ
γ−1 , which, together with (R3), yields that for any ε > 0 there is

Cε > 0 such that
|Rz(t, z)| ≤ ε|z|+ Cε|z|

γ′−1 ∀(t, z), (1.3)

and
|R(t, z)| ≤ ε|z|2 + Cε|z|

γ′ ∀(t, z). (1.4)

Subsequently, C and Ci stand for generic positive constants, not depending on
t and z.
Note that (3.1) and (3.4) imply γ′ ≥ µ > 2.
Let

ϕ(z) =

∫
R

R(t, z) ∀z ∈ E.

Equations (3.1)-(3.4) imply that ϕ is well-defined, ϕ ∈ C1(E,R), and

ϕ′(z)x =

∫
R

Rz(t, z)x ∀x, z ∈ E (1.5)

by Lemma 2.6. In addition, ϕ′ is a compact map. To see this, let zn → z weakly
in E. By Lemma 2.6 we can assume that zn → z strongly in Lp for p ∈ [2,∞).
By (3.5)

‖ϕ′(zn)− ϕ
′(z)‖ = sup

‖x‖=1
|

∫
R

(Rz(t, zn)−Rz(t, z))x|.

By (3.3) and the Hölder inequality, for any R > 0

|

∫
|t|≥R

(Rz(t, zn)−Rz(t, z))x|



EJDE–1999/42 Cheng Lee 7

≤ C

∫
|t|≥R

(|zn|+ |z|+ |zn|
γ′−1 + |z|γ

′−1)|x| (1.6)

≤ C[‖x‖L2(

∫
|t|≥R

|zn|
2 + |z|2)1/2 + ‖x‖Lγ′ (

∫
|t|≥R

|zn|
γ′ + |z|γ

′

)(γ
′−1)/γ′ ].

For ε > 0, by (3.6) we can take R0 so large that

|

∫
|t|≥R0

(Rz(t, zn)−Rz(t, z))x| < ε/2 (1.7)

for all ‖x‖ = 1 and n ∈ N. On the other hand, it is well-known (see [13]) that
since zn → z strongly in L2,

‖Rz(·, zn)−Rz(·, z)‖L2(BR0) → 0

as n→∞, where BR0 = (−R0, R0). Therefore, there is n0 ∈ N such that

|

∫
|t|≤R0

(Rz(t, zn)−Rz(t, z))x| < ε/2 (1.8)

for all ‖x‖ = 1 and n ≥ n0. Combining (3.7) and (3.8) yields

‖ϕ′(zn)− ϕ
′(z)‖ < ε ∀n ≥ n0.

Hence ϕ′ is compact.
Let a(·, ·) be the quadratic form given by (2.3), and define

I(z) =
1

2
a(z, z)− ϕ(z) ∀z ∈ E.

By (2.5)

I(z) =
1

2
(‖z+‖2 − ‖z−‖2)− ϕ(z) ∀z ∈ E

for all z = z− + z0 + z+ ∈ E− ⊕ E0 ⊕ E+. Then I ∈ C1(E,R). Note that by
(2.4) a standard argument can show that the nontrivial critical points of I on
E are homoclinic orbits of (HS).
Let Ê1 = E

− ⊕ E0 and Ê2 = E+ with {e−n}∞n=1 and {en}
∞
n=1 respectively,

where {en}n∈Z∗ is the system of eigenfunctions of A (see Remark 2.5). Then

E = Ê1 ⊕ Ê2 = ⊕j∈Z∗E
j ,

where E1 =span{e1, e2, · · · , e2N}, E2 =span{e2N+1, · · · , e4N}, · · ·;
E−1 =span{e−1, e−2, · · · , e−2N}, E−2 =span{e−2N−1, · · · , e−4N}, · · ·. Set also
En = ⊕j≤nEj and Fn = E⊥−n−1 = ⊕j≥−nE

j for j, n ∈ Z∗. It remains to check
the assumptions of Theorem 2.1. The action of G on E is simply given by
(gz)(t) = gz(t). Since g commutes with J and H(t, z) is invariant with respect
to the action, it is clear that (A1) is satisfied. Assumption (A2) follows from
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Lemma 3.1. For each k ≥ 1 there exists Rk > 0 such that I(z) < 0 for all
z ∈ Ek with ‖z‖ ≥ Rk.

Proof. By (3.4), (R1) and the fact that |z|µ ≤ |z|2 for |z| ≤ 1, we have for
any ε with 0 < ε ≤ b,

R(t, z) ≥ ε(|z|µ − |z|2) ∀(t, z). (1.9)

Let d > 0 be such that ‖z‖2L2 ≤ d‖z‖
2 for all z ∈ E (by Lemma 2.6) and take

ε = min{ 14d , b}. Then by (3.9) for z = z
− + z0 + z+ ∈ Ek we have

I(z) =
1

2
‖z+‖2 −

1

2
‖z−‖2 −

∫
R

R(t, z)

≤
1

2
‖z+‖2 −

1

2
‖z−‖2 + ε‖z‖2L2 − ε‖z‖

µ
Lµ (1.10)

≤ ‖z+‖2 −
1

4
‖z−‖2 +

1

4
‖z0‖2 − ε‖z‖µLµ.

Since dim[E0 ⊕ (⊕0<j≤kEj)] <∞, we have

‖z0 + z+‖2L2 = (z0 + z
+, z)L2

≤ ‖z0 + z+‖Lµ′‖z‖Lµ

≤ C(k)‖z0 + z+‖L2‖z‖Lµ,

and so ‖z0 + z+‖ ≤ C′(k)‖z‖Lµ or

C′′(k)‖z0 + z+‖µ ≤ ‖z‖µLµ, (1.11)

where C(k), C′(k) and C′′(k) > 0 depend on k but not on z ∈ Ek. Equations
(3.10) and (3.11) imply

I(z) ≤ ‖z0 + z+‖2 −
1

4
‖z−‖2 − εC′′(k)‖z0 + z+‖µ (1.12)

for all z ∈ Ek. Equation (3.12) implies that there is Rk > 0 such that

I(z) < 0 ∀z ∈ Ek with ‖z‖ ≥ Rk.

♦

Note that the above estimate (3.12) also gives supz∈Ek I(z) < ∞, that is,
(A4) holds. Next, (A3) is a consequence of

Lemma 3.2. There are rk > 0, ak > 0 (k ≥ 1) with ak →∞ as k →∞ such
that

I(z) ≥ ak ∀z ∈ E⊥k−1 with ‖z‖ = rk.
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Proof. Define

ηk = sup
z∈E⊥k \{0}

‖z‖Lγ′

‖z‖
.

Clearly ηk ≥ ηk+1 > 0. We claim that

ηk → 0 as k →∞. (1.13)

Suppose ηk → η > 0. Then there is a sequence zk ∈ E⊥k with ‖zk‖ = 1 and
‖zk‖Lγ1 ≥

η
2 . since (zk, en)→ 0 as k →∞ for each en (n ∈ Z

∗), zk → 0 weakly
in E and by Lemma 2.6, ‖zk‖Lγ′ → 0, a contradiction. The claim (3.13) is
proved.
By (3.4) with ε = 1

4d (d as in the proof of Lemma 3.1) and C = Cε we have,
for z ∈ E⊥k−1

I(z) =
1

2
‖z‖2 −

∫
R

R(t, z)

≥
1

4
‖z‖2 − C‖z‖γ

′

Lγ
′

≥
1

4
‖z‖2 − Cηγ

′

k−1‖z‖
γ′.

Taking rk = (2γ
′Cηγ

′

k−1)
−1
γ′−2 and ak = (

1
4 −

1
2γ′ )r

2
k one obtains

I(z) ≥ ak ∀z ∈ E⊥k−1 with ‖z‖ = rk.

Since γ′ > 2, equation (3.13) shows that ak →∞ as k →∞. ♦

Lemma 3.3 I satisfies (A5).

Proof. Let In = I|Fn . Suppose zn ∈ Fn such that 0 ≤ I(zn) ≤ C and
εn = ‖I ′n(zn)‖ → 0. By definition and (R1)

I(zn)−
1

2
I ′n(zn)zn =

∫
R

(
1

2
Rz(t, zn)zn −R(t, zn))

≥ (
1

2
−
1

µ
)

∫
R

Rz(t, zn)zn

≥ (
µ

2
− 1)

∫
R

R(t, zn). (1.14)

Equation (3.14) and hypothesis (R4) give ‖Rz(t, zn)‖
γ
Lγ ≤ C(1 + ‖zn‖), and

hence by Lemma 2.6,

‖z+n ‖
2 = I ′(zn)z

+
n +

∫
R

Rz(t, zn)z
+
n

≤ C‖z+n ‖(1 + ‖Rz(t, zn)‖Lγ ).
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Thus

‖z+n ‖ ≤ C(1 + ‖zn‖
1/γ). (1.15)

Similarly we have

‖z−n ‖ ≤ C(1 + ‖zn‖
1/γ). (1.16)

If E0 = {0}, (3.15) and (3.16) imply ‖zn‖ ≤ Const ∀n. Suppose E0 6= {0}. For
z ∈ E, let

z1(t) =

{
z(t) if |z(t)| < 1,
0 if |z(t)| ≥ 1,

z2(t) =

{
0 if |z(t)| < 1,
z(t) if |z(t)| ≥ 1.

Since by Lemma 2.6

∫
R

|z1n|
µ ≤

∫
R

|z1n|
2 ≤

∫
R

|zn|
2 ≤ C‖zn‖

2,

we have

‖z1n‖Lµ ≤ C‖zn‖
2/µ. (1.17)

By (3.1) and (3.14),

‖z2n‖Lµ ≤ C(1 + ‖zn‖
1/µ). (1.18)

By L2 orthogonality and Hölder’s inequality with µ′ = µ
µ−1 ,

‖z0n‖
2
L2 = (z0n, zn)L2

≤ ‖z0n‖Lµ′ (‖z
1
n‖Lµ + ‖z

2
n‖Lµ).

Hence since dimE0 <∞ and (3.17)-(3.18) hold, one sees

‖z0n‖Lµ ≤ C(‖zn‖
2/µ + ‖zn‖

1/µ). (1.19)

The combination of (3.15)-(3.16) and (3.19) shows that again ‖zn‖ ≤ Const.
Finally since ϕ′ is compact, a standard argument shows that {zn} has a con-
vergent subsequence. ♦

Proof of Theorem 1. What we have done so far shows that I satisfies all
the assumptions of Theorem 2.1. Hence I has a positive critical value sequence
{ck} with ck →∞. Let zk be the critical point of I such that I(zk) = ck. Then
zk is a homoclinic orbit of (HS) and

∫
R

(−
1

2
Jżk · zk −H(t, zk))dt = I(zk) = ck →∞

as k →∞. ♦
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