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POSITIVE SOLUTIONS OF A NONLINEAR

THREE-POINT BOUNDARY-VALUE PROBLEM

Ruyun Ma

Abstract. We study the existence of positive solutions to the boundary-value prob-

lem
u′′ + a(t)f(u) = 0, t ∈ (0, 1)

u(0) = 0, αu(η) = u(1) ,

where 0 < η < 1 and 0 < α < 1/η. We show the existence of at least one positive

solution if f is either superlinear or sublinear by applying the fixed point theorem in

cones.

1. Introduction

The study of multi-point boundary-value problems for linear second order ordi-
nary differential equations was initiated by Il’in and Moiseev [7, 8]. Then Gupta
[5] studied three-point boundary-value problems for nonlinear ordinary differen-
tial equations. Since then, the more general nonlinear multi-point boundary value
problems have been studied by several authors by using the Leray-Schauder Contin-
uation Theorem, Nonlinear Alternatives of Leray-Schauder, and coincidence degree
theory. We refer the reader to [1-3, 6, 10-12] for some recent results of nonlinear
multi-point boundary value problems.
In this paper, we consider the existence of positive solutions to the equation

u′′ + a(t)f(u) = 0, t ∈ (0, 1) (1.1)

with the boundary condition

u(0) = 0, αu(η) = u(1) , (1.2)

where 0 < η < 1. Our purpose here is to give some existence results for positive so-
lutions to (1.1)-(1.2), assuming that αη < 1 and f is either superlinear or sublinear.
Our proof is based upon the fixed point theorem in a cone.

From now on, we assume the following:
(A1) f ∈ C([0,∞), [0,∞));
(A2) a ∈ C([0, 1], [0,∞)) and there exists x0 ∈ [η, 1] such that a(x0) > 0
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Set

f0 = lim
u→0+

f(u)

u
, f∞ = lim

u→∞

f(u)

u

Then f0 = 0 and f∞ = ∞ correspond to the superlinear case, and f0 = ∞ and
f∞ = 0 correspond to the sublinear case. By the positive solution of (1.1)-(1.2)
we understand a function u(t) which is positive on 0 < t < 1 and satisfies the
differential equation (1.1) and the boundary conditions (1.2).

The main result of this paper is the following

Theorem 1. Assume (A1) and (A2) hold. Then the problem (1.1)-(1.2) has at
least one positive solution in the case
(i) f0 = 0 and f∞ =∞ (superlinear) or
(ii) f0 =∞ and f∞ = 0 (sublinear).

The proof of above theorem is based upon an application of the following well-
known Guo’s fixed point theorem [4].

Theorem 2. Let E be a Banach space, and let K ⊂ E be a cone. Assume Ω1,Ω2
are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) −→ K

be a completely continuous operator such that
(i) ‖ Au ‖≤‖ u ‖, u ∈ K ∩ ∂Ω1, and ‖ Au ‖≥‖ u ‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖ Au ‖≥‖ u ‖, u ∈ K ∩ ∂Ω1 , and ‖ Au ‖≤‖ u ‖, u ∈ K ∩ ∂Ω2.
Then A has a fixed point in K ∩ (Ω2 \Ω1).

2. The Preliminary Lemmas

Lemma 1. Let αη 6= 1 then for y ∈ C[0, 1], the problem

u′′ + y(t) = 0, t ∈ (0, 1) (2.1)

u(0) = 0, αu(η) = u(1) (2.2)

has a unique solution

u(t) = −

∫ t
0

(t− s)y(s)ds−
αt

1− αη

∫ η
0

(η − s)y(s)ds+
t

1− αη

∫ 1
0

(1− s)y(s) ds

The proof of this lemma can be found in [6].

Lemma 2. Let 0 < α < 1
η
. If y ∈ C[0, 1] and y ≥ 0, then the unique solution u of

the problem (2.1)-(2.2) satisfies

u ≥ 0, t ∈ [0, 1]

Proof From the fact that u′′(x) = −y(x) ≤ 0, we know that the graph of u(t) is
concave down on (0,1). So, if u(1) ≥ 0, then the concavity of u and the boundary
condition u(0) = 0 imply that u ≥ 0 for t ∈ [0, 1].
If u(1) < 0, then we have that

u(η) < 0 (2.3)

and

u(1) = αu(η) >
1

η
u(η). (2.4)

This contradicts the concavity of u.
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Lemma 3. Let αη > 1. If y ∈ C[0, 1] and y(t) ≥ 0 for t ∈ (0, 1), then (2.1)-(2.2)
has no positive solution.

Proof Assume that (2.1)-(2.2) has a positive solution u.
If u(1) > 0, then u(η) > 0 and

u(1)

1
=
αu(η)

1
>
u(η)

η
(2.5)

this contradicts the concavity of u.
If u(1) = 0 and u(τ) > 0 for some τ ∈ (0, 1), then

u(η) = u(1) = 0, τ 6= η (2.6)

If τ ∈ (0, η), then u(τ) > u(η) = u(1), which contradicts the concavity of u. If
τ ∈ (η, 1), then u(0) = u(η) < u(τ) which contradicts the concavity of u again.

In the rest of the paper, we assume that αη < 1. Moreover, we will work in the
Banach space C[0, 1], and only the sup norm is used.

Lemma 4. Let 0 < α < 1
η
. If y ∈ C[0, 1] and y ≥ 0, then the unique solution u of

the problem (2.1)-(2.2) satisfies

inf
t∈[η,1]

u(t) ≥ γ‖u‖,

where γ = min{αη, α(1−η)1−αη , η}.

Proof. We divide the proof into two steps.
Step 1. We deal with the case 0 < α < 1. In this case, by Lemma 2, we know that

u(η) ≥ u(1). (2.7)

Set
u(t̄) = ‖u‖. (2.8)

If t̄ ≤ η < 1, then
min
t∈[η,1]

u(t) = u(1) (2.9)

and

u(t̄) ≤ u(1) +
u(1)− u(η)

1− η
(0− 1)

= u(1)[1 −
1− 1

α

1− η
]

= u(1)
1− αη

α(1 − η)
.

This together with (2.9) implies that

min
t∈[η,1]

u(t) ≥
α(1− η)

1− αη
‖u‖. (2.10)
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If η < t̄ < 1, then
min
t∈[η,1]

u(t) = u(1) (2.11)

From the concavity of u, we know that

u(η)

η
≥
u(t̄)

t̄
(2.12)

Combining (2.12) and boundary condition αu(η) = u(1), we conclude that

u(1)

αη
≥
u(t̄)

t̄
≥ u(t̄) = ‖u‖.

This is
min
t∈[η,1]

u(t) ≥ αη‖u‖. (2.13)

Step 2. We deal with the case 1 ≤ α < 1
η
. In this case, we have

u(η) ≤ u(1). (2.14)

Set
u(t̄) = ‖u‖ (2.15)

then we can choose t̄ such that
η ≤ t̄ ≤ 1 (2.16)

(we note that if t̄ ∈ [0, 1] \ [η, 1], then the point (η, u(η)) is below the straight line
determined by (1, u(1)) and (t̄, u(t̄)). This contradicts the concavity of u. From
(2.14) and the concavity of u, we know that

min
t∈[η,1]

u(t) = u(η). (2.17)

Using the concavity of u and Lemma 2, we have that

u(η)

η
≥
u(t̄)

t̄
. (2.18)

This implies
min
t∈[η,1]

u(t) ≥ η‖u‖. (2.19)

This completes the proof.

3 Proof of main theorem

Proof of Theorem 1. Superlinear case. Suppose then that f0 = 0 and f∞ =∞.
We wish to show the existence of a positive solution of (1.1)-(1.2). Now (1.1)-(1.2)
has a solution y = y(t) if and only if y solves the operator equation

y(t) =−

∫ t
0

(t− s)a(s)f(y(s))ds −
αt

1− αη

∫ η
0

(η − s)a(s)f(y(s))ds

+
t

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

def
=Ay(t).

(3.1)
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Denote

K = {y | y ∈ C[0, 1], y ≥ 0, min
η≤t≤1

y(t) ≥ γ‖y‖}. (3.2)

It is obvious that K is a cone in C[0, 1]. Moreover, by Lemma 4, AK ⊂ K. It is
also easy to check that A : K → K is completely continuous.

Now since f0 = 0, we may choose H1 > 0 so that f(y) ≤ εy, for 0 < y < H1,
where ε > 0 satisfies

ε

1− αη

∫ 1
0

(1− s)a(s)ds ≤ 1. (3.3)

Thus, if y ∈ K and ‖y‖ = H1, then from (3.1) and (3.3), we get

Ay(t) ≤
t

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

≤
t

1− αη

∫ 1
0

(1− s)a(s)εy(s)ds

≤
ε

1− αη

∫ 1
0

(1− s)a(s)ds‖y‖

≤
ε

1− αη

∫ 1
0

(1− s)a(s)dsH1.

(3.4)

Now if we let

Ω1 = {y ∈ C[0, 1] | ‖y‖ < H1}, (3.5)

then (3.4) shows that ‖Ay‖ ≤ ‖y‖, for y ∈ K ∩ ∂Ω1.

Further, since f∞ =∞, there exists Ĥ2 > 0 such that f(u) ≥ ρu, for u ≥ Ĥ2,
where ρ > 0 is chosen so that

ρ
ηγ

1− ηα

∫ 1
η

(1− s)a(s)ds ≥ 1. (3.6)

Let H2 = max{2H1,
Ĥ2
γ
} and Ω2 = {y ∈ C[0, 1] | ‖y‖ < H2}, then y ∈ K and

‖y‖ = H2 implies

min
η≤t≤1

y(t) ≥ γ‖y‖ ≥ Ĥ2,
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and so

Ay(η) = −

∫ η
0

(η − s)a(s)f(y(s))dt−
αη

1− αη

∫ η
0

(η − s)a(s)f(y(s))ds

+
η

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

=−
1

1− αη

∫ η
0

(η − s)a(s)f(y(s))ds+
η

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

=−
1

1− αη

∫ η
0

ηa(s)f(y(s))ds +
1

1− αη

∫ η
0

sa(s)f(y(s))ds

+
η

1− αη

∫ 1
0

a(s)f(y(s))ds −
η

1− αη

∫ 1
0

sa(s)f(y(s))ds

=
η

1− αη

∫ 1
η

a(s)f(y(s))ds +
1

1− αη

∫ η
0

sa(s)f(y(s))ds

−
η

1− αη

∫ 1
0

sa(s)f(y(s))ds

≥
η

1− αη

∫ 1
η

a(s)f(y(s))ds −
η

1− αη

∫ 1
η

sa(s)f(y(s))ds (by η < 1)

=
η

1− αη

∫ 1
η

(1− s)a(s)f(y(s))ds.

(3.7)

Hence, for y ∈ K ∩ ∂Ω2,

‖Ay‖ ≥ ρ
ηγ

1− αη

∫ 1
η

(1− s)a(s)ds‖y‖ ≥ ‖y‖.

Therefore, by the first part of the Fixed Point Theorem, it follows that A has
a fixed point in K ∩ (Ω2 \ Ω1), such that H1 ≤ ‖u‖ ≤ H2. This completes the
superlinear part of the theorem.
Sublinear case. Suppose next that f0 =∞ and f∞ = 0. We first choose H3 > 0

such that f(y) ≥My for 0 < y < H3, where

Mγ(
η

1− αη
)

∫ 1
η

(1− s)a(s)ds ≥ 1. (3.8)

By using the method to get (3.7), we can get that

Ay(η) =−

∫ η
0

(η − s)a(s)f(y(s))dt−
αη

1− αη

∫ η
0

(η − s)a(s)f(y(s))ds

+
η

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

≥
η

1− αη

∫ 1
η

(1− s)a(s)f(y(s))ds

≥
η

1− αη

∫ 1
η

(1− s)a(s)My(s)ds

≥
η

1− αη

∫ 1
η

(1− s)a(s)Mγds‖y‖

≥H3

(3.9)
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Thus,we may let Ω3 = {y ∈ C[0, 1] | ‖y‖ < H3} so that

‖Ay‖ ≥ ‖y‖, y ∈ K ∩ ∂Ω3.

Now,since f∞ = 0, there exists Ĥ4 > 0 so that f(y) ≤ λy for y ≥ Ĥ4,where
λ > 0 satisfies

λ

1− αη
[

∫ 1
0

(1− s)a(s)ds] ≤ 1. (3.10)

We consider two cases:
Case (i). Suppose f is bounded, say f(y) ≤ N for all y ∈ [0,∞). In this case choose

H4 = max{2H3,
N

1− αη

∫ 1
0

(1− s)a(s)ds}

so that for y ∈ K with ‖y‖ = H4 we have

Ay(t) =−

∫ t
0

(t− s)a(s)f(y(s))ds−
αt

1− αη

∫ η
0

(η − s)a(s)f(y(s))ds

+
t

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

≤
t

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

≤
1

1− αη

∫ 1
0

(1− s)a(s)Nds

≤H4

and therefore ‖Ay‖ ≤ ‖y‖.

Case (ii). If f is unbounded, then we know from (A1) that there is H4 : H4 >

max{2H3,
1
γ
Ĥ4} such that

f(y) ≤ f(H4) for 0 < y ≤ H4.

(We are able to do this since f is unbounded). Then for y ∈ K and ‖y‖ = H4 we
have

Ay(t) =−

∫ t
0

(t− s)a(s)f(y(s))ds−
αt

1− αη

∫ η
0

(η − s)a(s)f(y(s))ds

+
t

1− αη

∫ 1
0

(1− s)a(s)f(y(s))ds

≤
t

1− αη

∫ 1
0

(1− s)a(s)f(H4)ds

≤
1

1− αη

∫ 1
0

(1− s)a(s)λH4ds

≤H4.

Therefore, in either case we may put

Ω4 = {y ∈ C[0, 1] | ‖y‖ < H4},

and for y ∈ K ∩ ∂Ω4 we may have ‖Ay‖ ≤ ‖y‖. By the second part of the Fixed
Point Theorem, it follows that BVP (1.1)-(1.2) has a positive solution. Therefore,
we have completed the proof of Theorem 1.
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