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Abstract
Acoustic surveys of vocalizing animals are conducted to determine density, distribu-
tion, and diversity. Acoustic surveys are traditionally performed by human listeners, 
but automated recording devices (ARD) are becoming increasingly popular. Signal 
strength decays, or attenuates, with increasing distance between source and receiver 
and some habitat types may differentially increase attenuation beyond the effects of 
distance alone. These combined effects are rarely accounted for in acoustic monitor-
ing programs. We evaluated the performance of three playback devices and three 
ARD models using the calls of six anurans, six birds, and four pure tones. Based on 
these evaluations, we determined the optimal playback and recording devices. Using 
these optimal devices, we broadcast and recorded vocalizations in five habitat types 
along 1,000 m transects. We used generalized linear models to test for effects of 
habitat, distance, species, environmental, and landscape variables. We predicted de-
tection probabilities for each vocalization, in each habitat type, from 0 to 1,000 m. 
Among playback devices, only a remote predator caller simulated vocalizations con-
sistently. Differences of ~10 dB were observed among ARDs. For all species, we 
found differences in detectability between open and closed canopy habitats. We 
observed large differences in predicted detection probability among species in each 
habitat type, as well as along 1,000 m transects. Increases in temperature, baromet-
ric pressure, and wind speed significantly decreased detection probability. However, 
aside from differences among species, habitat, and distance, topography impeding a 
line‐of‐sight between sound source and receiver had the greatest negative influence 
on detections. Our results suggest researchers should model the effects of habitat, 
distance, and frequency on detection probability when performing acoustic surveys. 
To optimize survey design, we recommend pilot measurements among varying 
habitats.
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1  | INTRODUC TION

Automated recording devices (ARD) are utilized to document a 
large variety of vocalizing animals. Ecologists use these systems 
to monitor the behavior of birds (Digby, Towsey, Bell, & Teal, 
2013), bats (Bader et al., 2015), anurans (Aide et al., 2013; Oseen 
& Wassersug, 2002), insects (Lehmann, Frommolt, Lehmann, & 
Riede, 2014; Romer & Lewald, 1992), and both terrestrial (Mielke 
& Zuberbühler, 2013) and marine mammals (Selby et al., 2016; 
Wiggins & Hildebrand, 2007). ARDs are commonly applied to 
determine species richness (Hsu, Kam, & Fellers, 2005; Wimmer, 
Towsey, Roe, & Williamson, 2013) or construct general biodi-
versity indices (Sueur, Farina, Gasc, Pieretti, & Pavoine, 2014; 
Zimmerman, 1994). Sound recordings are also used for more spe-
cific functions, such as assessing coral reef health (Piercy, Codling, 
Hill, Smith, & Simpson, 2014) or documenting changes in forest 
noise via soundscapes (Pijanowski et al., 2011). ARDs may offer 
advantages over human performed surveys when a large number 
of sites must be visited multiple times to achieve adequate sam-
pling effort, when monitoring inaccessible and inhospitable envi-
ronments, or to avoid bias from subject disturbance (Alldredge, 
Pollock, et al., 2007; Hutto & Stutzman, 2009). The commercial 
availability of ARDs has grown, offering a variety of costs and 
performance capabilities, making them, in some cases, less ex-
pensive than human performed surveys (Charif and Pitzrick, 
2008; Rempel, Francis, Robinson, & Campbell, 2013; Yip, Bayne, 
Sólymos, Campbell, & Proppe, 2017).

Effectively employing acoustic surveys for ecological research 
or biological monitoring requires an understanding of how the com-
ponents of survey design and implementation affect the probabil-
ity of detecting animal vocalizations. As all species are detected 
imperfectly, estimates of detection probability are essential for de-
termining the true presence or absence of animal populations in oc-
cupancy studies (MacKenzie et al., 2002) and also in the localization 
of sources for density estimation (Marques et al., 2013) and acoustic 
telemetry (Kessel et al., 2014). Whether surveyors detect a vocaliza-
tion depends on two major factors. Vocalizations must occur during 
the survey period and the signal strength of vocalizations needs to 
be sufficient to be detected at the listening post. Heterogeneity in 
detection probability due to the surrounding environment is widely 
recognized in aquatic systems where “range‐testing” is routinely car-
ried out to aid in localization of sources in acoustic telemetry stud-
ies (Kessel et al., 2014; Selby et al., 2016). Range‐testing evaluates 
the influence of habitat and environmental factors on the proba-
bility of detecting an animal’s acoustic signal, either a vocalization 
or a sound emitting tag. Recent studies illustrate that localization 
can be effective in terrestrial systems as well (Borchers, Stevenson, 
Kidney, Thomas, & Marques, 2015; Dawson & Efford, 2009; Measey, 
Stevenson, Scott, Altwegg, & Borchers, 2017). Thus, understanding 
spatial effects on sound attenuation, and thus detection probability, 
are crucial at two levels. The “among‐site” level, which is routinely 
used to estimate occupancy from bioacoustic data, and the “within‐
site” level required for localization of sources.

The probability of detecting vocalizations depends, in part, on 
the physical processes affecting sound traveling through a medium. 
For example, a relationship exists between the signal strength of a 
vocalization and the distance from the sound source. This is due to 
spherical spreading of propagating sound pressure waves (Embleton, 
1996), scattering and reflection of sound waves by structural objects 
in the intervening habitat (Selby et al., 2016; Yip, Leston, Bayne, 
Sólymos, & Grover, 2017), atmospheric absorption, and refraction 
from water vapor and air temperature (Lawrence & Simmons, 1982; 
Öhlund & Larsson, 2015). Studies using human observers have 
shown that habitat‐specific reverberations influence sound atten-
uation (Bibby & Buckland, 1987; Morton, 1975; Richards & Wiley, 
1980). Detection distance may vary between open and closed 
environments (Fricke, 1984), sound source and receiver heights 
(Kime, Turner, & Ryan, 2000; Mathevon, Dabelsteen, & Blumenrath, 
2005), and among species with different sound pressure level and 
frequency components (Llusia, Márquez, & Bowker, 2011; Nelson, 
2003). Ambient background noise may also vary among habitats, po-
tentially masking vocalizations, and reducing detection probability 
(Bormpoudakis, Sueur, & Pantis, 2013).

When distance is not known, as it may be through experimen-
tation (McClintock, Bailey, Pollock, & Simons, 2010) or localiza-
tion (Measey et al., 2017), researchers have attempted to control 
for the confound of distance by estimating rate of decay using the 
half‐normal detection function (Buckland et al., 2001; Sólymos et 
al., 2013),fixed‐radius survey methods (Hutto, 2016), or by treating 
sound intensity (i.e., amplitude) as a function of distance (Pieretti, 
Farina, & Morri, 2011). Many species may modulate the amplitude 
of their acoustic signal (Rose & Brenowitz, 1991; Stewart & Bishop, 
1994), further confounding the use of this metric as a meaningful 
measure of true distance from sound receiver. Additionally, re-
searchers often estimate detection distance using non‐empirical 
methods, such as binning estimated distance into categories based 
arbitrarily on observer experience (Vold, Handel, & McNew, 2017). 
Nevertheless, these approaches routinely do not account for how 
distance might interact with landscape or species‐specific effects. 
Without explicitly examining landscape effects on the detection 
process, specifically habitat structure, researchers may conclude 
differences in animal occurrence or abundance among differing 
habitats erroneously, thus causing heterogeneity in attenuation to 
affect patterns in animal occurrence (Gasc et al., 2018). Similarly, the 
effect of call frequency (Hz) and structure is routinely overlooked in 
assessing species richness, or biodiversity, where detectability is as-
sumed to be equal among multiple species at the same distance (e.g., 
fixed‐radius surveys; Sadoti, Johnson, Smith, & Petersen, 2018).

Experimentation is a useful mechanism for understanding how 
we observe populations and environments. For example, Simons, 
Alldredge, Pollock, and Wettroth (2007) employed an experimental 
system that simulates bird songs to study sources of heterogeneity 
in detection and misidentification among human observers. Through 
similar call reproduction experiments, birds and anurans have been 
shown to respond to playback vocalizations (James, Stockwell, Clulow, 
Clulow, & Mahony, 2015; Kearns, Kwartin, Brinker, & Haramis, 1998; 
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Mannan, Perry, Andersen, & Boal, 2014). Mandated survey protocols 
sometimes require researchers to perform playbacks when moni-
toring for endangered species (USFWS, ). Nonetheless, call broad-
casting devices vary widely among studies, making comparison or 
replication of studies challenging, and introducing a potential source 
of bias. Given recent development and usage of bioacoustic technol-
ogy, experimental manipulation of both sound sources and receivers 
is required to evaluate effectiveness in field studies.

Here, we conduct a thorough terrestrial range‐testing experi-
ment to evaluate the effects of varying habitats on the detection 
probability of acoustic signals of two major groups of vocalizing 

organisms, birds and anurans. Our objectives were to determine 
how distance and habitat affect the probability of detecting a va-
riety of bird and anuran vocalizations. A priori, we predicted that 
differences among habitat types would introduce heterogeneity in 
detection probability across distance, and among different species. 
These sources of error are not routinely incorporated into acous-
tic monitoring programs and could lead to biased inferences about 
species occurrence and other population or ecological quantities. 
Additionally, we evaluate the performance of three playback de-
vices, and compare sensitivity among three commercially available 
ARDs.

F I G U R E  1  Aerial map of the Griffith 
League Ranch, Bastrop County, TX, USA. 
Top left: Texas, showing Bastrop County 
in solid black. Top right: Bastrop County, 
TX, with the Griffith League Ranch 
boundary in bold black line. Bottom: 
Satellite image of the Griffith League 
Ranch (outlined in black), with transect 
points in colors, representing habitat 
types, and red dots indicating automated 
recording device locations
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2  | MATERIAL S AND METHODS

2.1 | Study site

We performed the field work for this study on the Griffith League 
Ranch (GLR), a 1,948 ha property owned by the Boy Scouts of 
America, located in Bastrop County, Texas (Figure 1). Presently, 
the GLR contains mature forests dominated by loblolly pine (Pinus 
taeda), post oak (Quercus stellate), blackjack oak (Quercus marilan-
dica), and eastern red cedar (Juniperus virginiana), an area recover-
ing from a high‐intensity wildlife fire that occurred in 2011 (Brown 
et al., 2014), and a small central prairie. Mechanical understory 
thinning of yaupon holly (Ilex vomitoria), American beautyberry 
(Callicarpa americana), and farkleberry (Vaccinium arboretum) has 
occurred within sections of the mature forests to create firebreaks 
and reduce fuel.

2.2 | Playback audio

The playback file consisted of four pure tones at 1, 3, 5, and 
7 kHz, six anuran calls, and six birds calls (Supporting Information 
Audio S1 and Table S2). The anuran calls used were the wood 
frog (Rana [Lithobates] sylvaticus), California red‐legged frog (Rana 

[Lithobates] draytonii), Houston toad (Bufo [Anaxyrus] houstonen-
sis), Arroyo toad (Bufo [Anaxyrus] californicus), American bullfrog 
(Rana [Lithobates] catesbieanus), and the spring peeper (Pseudacris 
crucifer). The bird calls used were the golden‐cheeked warbler 
(Dendroica chrysoparia), black‐capped vireo (Vireo atricapilla), 
red‐cockaded woodpecker (Picoides borealis), black rail (Laterallus 
jamaicensis), spotted owl (Strix occidentalis), and the painted bunt-
ing (Passerina ciris). These species were selected because they are 
rare, endangered, the subject of audio monitoring to determine 
site occupancy, or widely used in acoustics research. This collec-
tion of vocalizations includes wide variation in call structure (e.g., 
pulses, trills, number of syllables), duration, and frequency. We 
assembled, edited, and volume‐balanced playback audio using 
GarageBand (Apple Inc., Cupertino, CA, USA).

2.3 | Playback devices

We selected three playback devices representing the range of 
equipment used for biological monitoring. We used a smartphone 
(iPhone 6 s, Apple Inc., Cupertino, CA, USA), a Bluetooth speaker 
(Swimmer, Polk Audio, Baltimore, MD, USA), and a remote predator 
caller (Inferno, FoxPro, Lewiston, PA, USA). We broadcast playback 
audio 10 times from each device toward a sound level meter set 
to “A” weighting (R8050, Reed Instruments, Wilmington, NC, USA) 
from 1 and 5 meters away. The sound level meter was calibrated 
with a 1 kHz tone at 94 dB (re 20 μPa) prior to use (R8090, Reed 
Instruments). We measured the maximum amplitude (dB) of each 
vocalization broadcast and compared these values among playback 
devices. To judge device utility, we generated frequency response 
curves by plotting amplitude measurements for each vocalization 
from each device.

2.4 | Automated recording devices

There are many recording devices for biologists to select from, in-
cluding commercially available and custom created units. We tested 
three generations of SongMeter acoustic recorders (SM2+, SM3, 
and SM4, Wildlife Acoustics, Maynard MA, USA) because they are 
commonly used for monitoring or research (Digby et al., 2013; Yip, 
Bayne, et al., 2017; Yip, Leston, et al., 2017). We chose the manu-
facturers default settings to record, with the exception of sample 
rate, which we set to 22 kHz. To calibrate SongMeters we recorded 
a 1 kHz tone at 94 dB played directly into all microphones, then used 
Raven (version 1.5.0) to measure the amplitude of the 1 kHz tone 
recorded. The difference in amplitude from 94 dB within the record-
ing represents the individual sensitivity of each microphone on each 
device. We account for this difference by adding or subtracting the 
equivalent dB to the amplitude measurements of audio recordings in 
subsequent experiments. For example, the SM4 microphones pro-
duced recordings of the calibration tone (1 kHz at 94 dB) that meas-
ured 110.3 dB (both left and right channels) within Raven. Thus, we 
subtracted 16.3 dB from that estimate of amplitude in all subsequent 
experiments. This is equivalent to removing the effect of the default 

F I G U R E  2  Playback device frequency response curves. Locally 
weighted smoothed scatterplot of the decibel level produced 
by each of the three playback devices tested, plotted for the six 
anuran and six bird used within this study. Sounds are arranged 
along the x‐axis according to dominant frequency from least to 
greatest. Colored dashed lines represent mean decibels produced 
by each playback device across all frequencies. Solid colored 
lines with gray envelope represent smoothed regression line and 
standard error
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internal amplifier (+16 dB gain) without sacrificing signal to noise 
ratio. We secured each ARD to a structural object, then broadcast 
playback audio from the remote predator caller mounted on a tripod 
1 m above the ground 10 times every 50 m on a 1 km unpaved road 
(n = 200 playbacks). We then used Raven to measure the amplitude 
of the recorded calls for comparison among species and recorders.

2.5 | Effect of habitat on detection

We performed the range‐testing experiment between 0,800 and 
2,200 hr, 25 October 2017 to 27 November 2017. We avoided per-
forming this study during the spring breeding season to reduce likeli-
hood that resident target organisms might be calling coincidentally 
and be mistaken for broadcast signals. We established 30 1 km tran-
sects using a geographic information system (GIS) within five dif-
ferent habitat types. We performed six 1 km transects each in (a) 
mature forest with a mechanically thinned understory, (b) mature 
forest with an unmanaged understory, (c) post‐wildfire recovering 
forest, (d) prairie, and (e) unpaved roads. Our previous experiments 
indicated the SM4 and remote predator caller were the most sensi-
tive and least biased devices for playback and detection, and thus we 
utilized only these devices throughout the range‐testing experiment. 
We attached a SongMeter (SM4) to a structural object at the start 
of each transect and broadcast vocalizations twice every 100 m 
(n = 20 playbacks per transect). Playbacks were broadcast using the 
remote predator caller mounted on a tripod 1 m above the ground. 
We used a Garmin 64st handheld GPS (Garmin International, Inc., 
Olathe, KA, USA) to maintain the appropriate line transect path 
and ensure that the remote predator caller was oriented toward the 
ARD. In order to model the effects of environmental variables, we 
recorded wind speed (kph), air temperature (C), and relative humidity 
(%) using a Kestrel 3000 (Kestrel Instruments, Boothwyn, PA, USA). 
We obtained barometric pressure from the nearest weather station 
(Giddings Airport, 25 km east of the GLR). To account for an effect 
of the rolling topography of the GLR, we determined if there was an 
unobstructed line‐of‐sight (LOS) between the playback device and 
recorder. We projected each transect in a GIS onto a digital elevation 
model (National Elevation Dataset 2013, U.S. Geological Survey) and 
extracted the transect elevation. We calculated a linear regression 
slope from the SM4 to each transect point and added 1 m to account 
for source and receiver height, providing an estimate of the eleva-
tion that cannot be exceeded to maintain LOS. This method approxi-
mates a hypothetical scenario in which the topography between our 
source and receiver is perfectly flat. If any elevation between source 
and receiver exceeded this estimate, we considered LOS to be ob-
structed. We estimated this for all 10 stops along each transect and 
scored LOS as 0 = obstructed or 1 = unobstructed.

2.6 | Extraction of acoustic measurements

All acoustic measurements and spectrograms were produced using 
Raven. To determine whether the call was detected, we isolated 
the playback audio from each distance along each transect. We 

visually examined spectrograms and, if needed, listened to record-
ings to determine the presence or absence of each vocalization. We 
manipulated all possible spectrogram settings (e.g., color, bright-
ness, contrast, etc.) needed to be confident of our decision. Visual 
inspections were carried out by ARM and PSC, and detections were 
only recorded if both authors agreed they were visible within the 
spectrogram window. This resulted in 9,600 detection/non‐detec-
tion events (30 transects, 10 distances, 16 calls, played twice). To 
estimate masking effects of background noise (dB), we measured 
one second of the recording immediately before the start of the 
playback sequence, with frequency ranges adjusted to match each 
vocalization.

2.7 | Statistical models

To estimate detection probability, we used generalized linear 
models (GLMs) with binomial response distribution and comple-
mentary log link function (Baddeley et al., 2010), implemented 
in R.3.4.2 (R Core Team, 2018). We treated all categorical vari-
ables (LOS, habitat, and species), as well as scaled and centered 
continuous variables (distance, air temperature, relative humid-
ity, barometric pressure, wind speed, and background noise), as 
fixed covariates. A priori we developed a list of candidate mod-
els to examine in an information‐theoretic framework using AIC 
(Burnham and Anderson, 2002). We built a full model containing 
all measured variables, including an interaction between habitat, 
distance, and species. We then built another 21 models of reduced 
complexity, including an intercept‐only model, to test hypotheses 
about the importance of background noise, distance, habitat, en-
vironmental, and landscape variables. We ranked models using 
Akaike’s Information Criteria (AIC) using the package AICcmodavg 
(Mazerolle, 2013) and considered models competitive if they were 
≤2 AIC points of the top‐ranked model. Using estimates from the 
top‐ranked model, we predicted detection probabilities for all 16 
sounds among the five habitats between 0 and 1,000 m, with 95% 
confidence intervals.

3  | RESULTS

Among the three playback devices we tested, only the remote 
predator caller reproduced animal vocalizations at the volume re-
quired (94 dB), without excessive variance among frequencies. The 
Bluetooth speaker reached appropriate volumes, unlike the smart-
phone which was approximately 20 dB too quiet for our purposes. 
Yet both the Bluetooth speaker and the smartphone were found to 
possess an inherently biased frequency response (Figure 2).

Our evaluation of differences among three generations of 
SongMeter revealed that the SM2+ measured on average 10 dB 
lower than the SM3 and SM4. However, we observed a large over-
lap in standard deviation among all three generations of SongMeter 
(Figure 3). We utilized the SM4 for our range‐testing experiment due 
to its acceptable performance and more convenient size.
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We performed a total of 9,536 playbacks, of which 4,036 
were detectable. Missing data (n = 64 playbacks) occurred due to 
SongMeters dividing continuous audio into multiple files, or because 
property boundaries differed from those used when designing tran-
sects. Model comparison indicated two competitive top models 
(i.e., ∆AIC < 2.0; Table 1). The full model (AIC = 5,423.19; Table 1), 
including all measured variables and an interaction between habitat, 
distance, and species, was found to be less parsimonious than the 
same model minus humidity (∆AIC = 1.60; AIC = 5,421.59; Table 1). 
Humidity was not a significant predictor of detection within the full 
model. It was expected that an interaction between habitat and 
distance would be important, and the top seven models within our 
comparison contain this predictor. The model with distance as the 
only predictor fit the data better than the model with habitat as the 
only predictor, and a model with just species out‐performed both. 
However, the model including an interaction of these three predic-
tors alone performed better than any single predictor alone (Table 1).

A high degree of variability in predicted detection probability 
was found among species and habitats (Figure 4). In general, we 
found that species may be arranged by probability of detection 
from least to greatest according to the dominant frequency within 
their call, with high frequency calls being least detectable and low 
frequency calls being the most detectable (Figure 4). However, this 
general trend is not without exception, as is exemplified by the in-
teraction of species, habitat, and distance in our top model (Tables 
1 and 2). The greatest predicted detection probability at 1,000 m 
distance was 0.79 (95% CI: 0.56–0.95) for the Houston Toad 

within prairies, and then burned forests (0.62, 95% CI: 0.41–0.83; 
Supporting Information Figure S3). For comparison, we predicted 
equal detection probability (0.52, 95%CI: 0.32–0.75) for the call of 
the Arroyo Toad within both prairies and burned forests, illustrating 
that the influence of habitat type is not constant across all species 
and sounds (Supporting Information Figure S3). With the exception 
of these two calls, unpaved roads were found to attenuate acoustic 
signals the least (Figure 4; Supporting Information Figure S3). That is, 
unpaved roads allowed vocalizations to travel the farthest distance 
before predicted detection probability reached zero. Within each 
habitat type, the species with the highest predicted probability of 
detection is highly contingent upon distance. With few exceptions, 
no single species remains the most easily detected within a single 
habitat type for the entirety of a 1 km transect (Figure 4; Supporting 
Information Figure S3).

Coefficients for our five habitat types decrease in the follow-
ing order: road > prairie > burned > thinned > unthinned (Table 2, 
Supporting Information Figure S3). Prairie and road treatments did 
not differ from the reference category, the burned treatment, indi-
cating open canopy habitat types attenuate sound similarly (Table 2). 
However, the unmanaged mature forest treatment differed signifi-
cantly from all other treatments, indicating heterogeneity between 
our two closed canopy treatments as well. Further, as was hypothe-
sized, the influence of distance upon these habitat types follows the 
same pattern as above (Table 2). Aside from categories of species 
and habitat, distance was the most influential variable estimated in 
the top model (Table 2). Detection probability decreased when to-
pography obstructed a LOS between the remote predator caller and 
ARD (Table 2).

4  | DISCUSSION

Detections of acoustic signals are influenced by the environment 
between the sound source and receiver (Darras, Pütz, Rembold, & 
Tscharntke, 2016; Selby et al., 2016). Our results indicate that the 
probability of detecting an acoustic signal by an ARD is highly vari-
able among different habitat types. Predicted detection probability 
was reduced in closed habitats (i.e., thinned or unmanaged forest). 
Evidently, these habitat types have higher densities of physical struc-
tures that may impede or scatter sound, relative to open habitats 
(i.e., burned, prairies, or roads), which lack disruptive structures at 
heights greater than 1 m. In general, this is consistent with the find-
ings of previous studies of the influence of habitat type on acoustic 
signals (Fricke, 1984; Yip, Leston, et al., 2017). Our results are unique 
from previous studies in that they illustrate a clear interaction be-
tween habitat, distance, and species. In closed habitats, where dis-
ruptive structures occur, as distance increases between source and 
receiver we observed sound attenuation increase beyond the effects 
attributed to distance alone (Pacifici, Simons, & Pollock, 2008). This 
is seemingly due to an accumulation of disruptive structures within 
these habitats, as the sound source becomes further away from 
the receiver. Attenuation due to interactions between habitat and 

F I G U R E  3  The received sound levels of three audio recording 
devices for detecting six birds, six anurans, and four pure tones 
as distance increases. Sounds were played using a FoxPro Inferno 
remote predator caller. Black lines represent mean decibel 
detected, line type represents recorder type, and shaded regions 
represent standard deviation for each device, respectively
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distance were strongest in the unmanaged mature forest treatment, 
and weakest along unpaved roads. The implications of these findings 
are broadly applicable for biological monitoring programs that utilize 
acoustic monitoring technology. Primarily there is habitat‐induced 
heterogeneity in detection probability, which is relevant in any study 
that employs occupancy models or spatial capture–recapture mod-
els to estimate source density. Therefore, it is imperative to model 
these habitat effects explicitly, further emphasizing the importance 
of methods that allow for the explicit modeling of detection prob-
ability. Without estimating the effect of habitat on detection prob-
ability, researchers run the risk of concluding reduced occurrence of 
vocalizing animals among habitats dense with structures disruptive 
to traveling sounds. While the emergence of acoustic sampling using 

ARDs offers observer‐free monitoring of bird and anuran communi-
ties, they are not a panacea, as illustrated by the clear influence of 
habitat and distance on their performance.

For this study, we chose to evaluate the vocalization of species 
that fall into two broad categories: species of conservation concern 
(i.e., federally endangered, or a candidate for listing), or species of 
ubiquity whose call is well studied (e.g., American bullfrog). For rare 
or endangered species that can be surveyed using acoustic methods, 
studies evaluating the efficacy of such approaches are imperative 
to species conservation and recovery. Predicted detection probabil-
ity varied widely among species within and among habitats, when 
measured at the same distance. Nonetheless, all species illustrated a 
clear and similar pattern of relative sound attenuation with respect 

TA B L E  1  Model output and rankings

Model no. Model statement Parameters ∆AIC Weight Log-likelihood

3 y ~ species * habitat * distance + temp. + wind + pres-
sure + LOS + noise

165 0.00 0.69 −2,545.8

1 y ~ species * habitat * dis-
tance + temp. + hum. + wind + pressure + LOS + noise

166 1.60 0.31 −2,545.6

7 y ~ species * habitat * dis-
tance + temp. + hum. + wind + pressure + LOS

165 31.93 0.00 −2,561.76

5 y ~ species * habitat * dis-
tance + temp. + hum. + wind + LOS + noise

165 44.13 0.00 −2,567.86

4 y ~ species * habitat * distance + temp. + hum. + pres-
sure + LOS + noise

165 108.99 0.00 −2,600.29

6 y ~ species * habitat * dis-
tance + temp. + hum. + wind + pressure + noise

165 159.57 0.00 −2,625.58

2 y ~ species * habitat * distance + hum. + wind + pres-
sure + LOS + noise

165 314.76 0.00 −2,703.17

10 y ~ species + habitat * dis-
tance + temp. + hum. + wind + pressure + LOS + noise

162 396.38 0.00 −2,746.99

8 y ~ species * habitat * distance + LOS + noise 160 507.83 0.00 −2,804.71

9 y ~ species * habitat * distance 31 539.01 0.00 −2,949.3

11 y ~ species + habitat * distance + LOS + noise 27 931.64 0.00 −3,149.61

13 y ~ species * habitat + dis-
tance + temp. + hum. + wind + pressure + LOS + noise

87 984.28 0.00 −3,115.93

17 y ~ species + habitat + dis-
tance + temp. + hum. + wind + pressure + LOS + noise

27 1,016.63 0.00 −3,192.11

14 y ~ species * habitat + distance + LOS + noise 83 1,433.97 0.00 −3,344.78

18 y ~ species + habitat + distance + LOS + noise 23 1,440.81 0.00 −3,408.2

22 y ~ 1 1 9,079.56 0.00 −7,249.58

21 y ~ species 16 8,162.25 0.00 −6,775.92

20 y ~ distance 2 3,512.68 0.00 −4,465.13

19 y ~ habitat 5 8,828.17 0.00 −7,119.88

16 y ~ habitat:distance + species:distance + distance 21 3,233.93 0.00 −4,306.76

15 y ~ species * habitat 80 7,937.71 0.00 −6,599.65

12 y ~ habitat * distance 10 2,809.28 0.00 −4,105.44

Note. Generalized linear models (GLM) tested with the number of parameters in each model, Akaike information criterion (AIC), difference in model AIC 
(dAIC), AIC weight, and log‐likelihood; fixed categorical variables include line‐of‐sight (1 or 0), habitat (burned, prairie, road, thinned, unthinned), and 
species. Scaled and centered continuous fixed variables include distance = distance from recorder and source (m), temp. = air temperature (°C), 
hum. = relative humidity (%), pressure = barometric pressure (mmHg), wind = wind speed (kph), and noise = background noise (decibels, dB) measured 
1 s prior to recording.
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to habitat. In general, the trend within our results is that high fre-
quencies (i.e., 7 kHz tone) decay most rapidly, traveling the short-
est distance within all habitat types, and that low frequencies (i.e., 
1 kHz tone) travel further. Exceptions to this general trend occur for 
the very lowest frequency sounds we broadcast (i.e., California red‐
legged frog and bullfrog), which showed reduced detection prob-
ability at distances <500 m relative to sounds with slightly higher 
dominant frequency (Figure 4). We initially hypothesized that this 
deviation may be caused by sound masking due to increased ambient 
noise occurring at lower frequencies (Bee & Swanson, 2007), how-
ever this was not observed within our data. Rather, ambient noise 
showed no apparent pattern with respect to frequency. These find-
ings are particularly pertinent to indices of biodiversity that measure 
the abundance multiple species. Without accounting for variation in 
detection probability among species, researchers may conclude re-
duced abundances or more restricted distributions for animals that 
may simply be difficult to detect, relative to species that are easy to 
detect.

The pattern we observed among species of varying dominant 
frequencies in different habitats may support the hypothesis that 
animals might evolve to vocalize at frequencies that are favored by 

the surrounding habitat. This has been referred to as the “sound win-
dow” hypothesis (Marten & Marler, 1977; Morton, 1975). While our 
study site is home to many species of bird and anuran, it is primarily 
utilized for researching the Houston toad, whose vocalization car-
ried further, in all three open habitat types, than all other species 
considered, providing additional anecdotal support for this hypoth-
esis (Ey & Fischer, 2009). One potential confound that complicates 
our study is that not all calls broadcast are the same length. Based 
on our results, one could argue that animals with the longest calls 
are more likely to be detected, but to our knowledge, this hypothesis 
is yet to be tested. However, some female anurans select for males 
with longer calls, perhaps because they are most easily detected 
(Cocroft & Ryan, 1995).

One complication with most studies involving auditory surveys of 
vocalizing fauna is observer bias, or an analogous example from au-
tomated methods; bias among ARDs (Miller et al., 2012; Yip, Bayne, 
et al., 2017). We found differences between the three generations of 
SongMeters to be negligible among the SM3 and SM4, and that the 
SM2+ is on average 10 decibels less sensitive. The manufacturers of 
these devices state that improvements in signal to noise ratio have 
occurred with the introduction of each new model, from >62 dB in 

F I G U R E  4  Predicted probability of 
detection for 16 sounds, among five 
habitat types, along a distance of 1,000 m. 
Sounds include four pure sine waves, the 
vocalizations of six anurans, and six birds. 
Each sound was broadcast on a private 
ranch in Bastrop Country, Texas, USA, 
using a FoxPro Inferno predator calling 
device and recorded using a SongMeter 
SM4. Values of detection probability 
were predicted using the estimates from 
our top generalized linear model with an 
interaction between habitat, distance, and 
species
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the SM2+, >68 dB in the SM3, to ~80 dB in the SM4. Despite these 
improvements, we observed a large amount of overlap in sensitivity 
along both distance and frequency gradients. Although we failed to 
distinguish an optimal unit among the recording devices, we feel re-
searchers should always evaluate the sensitivity and performance 
of their devices through range‐testing, prior to choosing a recording 
platform (i.e., model of recorder). Previous studies have illustrated 
that variation in sensitivity exists among microphones of varying 
use and age, within a single model of ARD, further necessitating the 
need for calibration prior to deployment (Turgeon, Wilgenburg, & 
Drake, 2017). Adoption of this approach should provide researchers 
with improved replicability and the ability to quantify error in their 
estimates of abundance or biodiversity that might be caused by ARD 
choice alone. By comparing popular devices used for broadcasting 

animal vocalizations, we discovered remarkable differences in the 
devices’ ability to reliably reproduce vocalizations across a frequency 
gradient at a constant volume. Researchers utilizing this method 
vary widely in their selection of playback device, and rarely, if ever, 
provide readers with precise information about the frequency re-
sponse or volume capabilities of their respective device.

Within our study, we found temperature, wind speed, and baro-
metric pressure to be significant predictors of detection probability. 
For these factors, variation is caused by both prevailing atmospheric 
conditions as well as habitat type. For example, during high winds 
all surveys in open habitats will be impacted, whereas closed hab-
itats will not suffer additional attenuation due to increased winds 
by virtue of their inherent sound interference. That is to say, the 
same disruptive structures that obscure sound will also obscure 

Fixed effects Estimate SE z-Value Pr(>|z|)

(Intercept) −0.139 0.159 −0.870 0.384

Species effects

3 kHz −1.053 0.298 −3.529 <0.001

5 kHz −4.941 1.068 −4.627 <0.001

7 kHz −61.015 1902.742 −0.032 0.974

Arroyo toad 0.576 0.215 2.682 0.007

Black‐capped vireo −1.828 0.440 −4.152 <0.001

Bull frog −0.616 0.257 −2.393 0.017

Black rail 0.086 0.223 0.386 0.700

California red‐legged 
frog

−1.207 0.300 −4.021 <0.001

Golden‐cheeked warbler −3.028 0.668 −4.530 <0.001

Houston toad 0.754 0.219 3.448 0.001

Painted bunting −1.619 0.365 −4.435 <0.001

Red‐cockaded 
woodpecker

−0.503 0.254 −1.977 0.048

Spotted owl −0.053 0.226 −0.232 0.817

Spring peeper −0.010 0.229 −0.043 0.965

Wood frog 0.062 0.217 0.288 0.773

Habitat effects

Prairie −1.519 0.334 −4.553 <0.001

Road 0.316 0.280 1.128 0.259

Thinned −0.131 0.219 −0.596 0.551

Unthinned −0.253 0.206 −1.224 0.221

Distance −1.233 0.219 −5.632 <0.001

Temperature −0.484 0.026 −18.502 <0.001

Wind −0.262 0.025 −10.653 <0.001

Pressure −0.224 0.027 −8.434 <0.001

Line-of-sight 0.664 0.053 12.596 <0.001

Noise −0.169 0.028 −5.930 <0.001

Table showing the estimate, standard error, z‐value, and p‐value for the fixed factors species, habi-
tat, distance, temperature, wind, pressure, line‐of‐sight, and background noise. 1 kHz, burned, and 0 
(impeded) were used as reference categories for species, habitat, and line‐of‐sight, respectively. 
Values for interaction terms are given in Supporting Information Material S4.

TA B L E  2  Summary of the selected top 
model
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wind. With respect to variation due to temperature and pressure, 
the broad scale atmospheric impacts on sound dampening are well 
understood (Lawrence & Simmons, 1982; Öhlund & Larsson, 2015). 
Within our study, temperature shares an apparent relationship with 
transect, where each transect experiences a unique and indepen-
dent series of temperatures, and temperatures may not overlap at 
all among transects. We are unable to examine this relationship in 
detail because we did not repeat surveys within the same transect 
across multiple days, or across a gradient of atmospheric conditions.

We chose to control for effects related to rolling topography on 
the GLR by calculating LOS for each distance between sound source 
and receiver, across all transects. In nature, animals have been doc-
umented to overcome these topographical obstacles by seeking 
perches (Kime et al., 2000; Mathevon et al., 2005). Although our 
measurements reflect the variation that practitioners might con-
sider among species and habitats, we caution against considering 
our findings calibration or correction factors that could be applied 
to future studies for these reasons. Additionally, the monitoring of 
living animals, rather than technological homologs such as playback 
devices, includes stochasticity that cannot be controlled for in most 
cases, such as the direction, volume, and structure of real animal 
vocalizations.

To maximize detection probability, researchers should minimize 
the distance between sound source and receiver, especially within 
habitats featuring extensive disruptive structures. When monitor-
ing anuran populations, ARDs are typically placed adjacent to water 
bodies used for congregations of breeding adults. At small wetlands 
and ponds, the minimized distance between sound source and re-
ceiver should overcome any problems associated heterogeneity in 
detection probability caused by habitat or species. However, when 
monitoring large wetlands that may sample a variable amount of the 
available anuran habitat, this may not be true. Furthermore, avian 
monitoring is usually focused on habitat patches where individuals 
are less clustered. The effect of habitat type, species, and the dis-
tance between sound source and receiver on detection probability 
is likely to be more complicated in these monitoring scenarios, and 
caution should be used when evaluating the underlying assumptions 
of equal detectability.

To estimate and account for biases in detection probability due 
to distance and habitat, researchers may borrow techniques used 
in marine environments (Selby et al., 2016). Detection of marked 
individuals is achieved through implanted or attached acoustic 
transponders, and calibration of acoustic signals with respect to 
environmental conditions is achieved using fixed‐location senti-
nel tags (Kessel et al., 2014). Researchers could achieve similar 
rigor in terrestrial environments using call or tone broadcasts 
from fixed locations at regular intervals, as described in this study. 
Alternatively, estimation of habitat effects can be achieved in situ 
using methods of spatial capture‐recapture methods (Borchers et 
al., 2015; Dawson & Efford, 2009; Measey et al., 2017). A subset 
of prior research has shown that human performed avian surveys 
are more effective than ARD surveys (Hutto & Stutzman, 2009; 
Yip, Leston, et al., 2017). However, human observers have been 

shown to produce biased estimates of density, as well as detection 
distance, during avian point counts (Alldredge, Simons, & Pollock, 
2007; Simons et al., 2007). It has been shown that the variability 
we observed in detection probabilities among different habitats 
holds true for human detection of acoustic signals as well, with the 
exception that detection radius can be greater among human ob-
servers than in ARDs (Pacifici et al., 2008; Yip, Bayne, et al., 2017). 
Nevertheless, the assumption that detection probability may be 
equal for different habitat types should likely be examined closely 
by future researchers.

Our results indicate pilot studies aimed directly at quantifying 
habitat and species‐specific detection probabilities are valuable 
when attempting to achieve quality monitoring of avian or anuran 
populations, as we have shown these effects can create large vari-
ation in detection probability. While habitats, in general, may be 
open or closed, fine‐scale differences within each of these groups 
(e.g., roads and prairies), and potentially their constituent subcate-
gories are responsible for a large amount of variation in detection 
probability. When utilizing well‐established survey protocols (e.g., 
North American Amphibian Monitoring Program [NAAMP] or the 
North American Breeding Bird Survey [BBS]), careful examination 
and appreciation for the implicit assumptions about these sources 
of heterogeneity in probability of detection may be required, or re-
searchers are at risk of failing to detect targeted taxa within seem-
ingly uniform habitats.
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