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Abstract
Acoustic	surveys	of	vocalizing	animals	are	conducted	to	determine	density,	distribu-
tion,	and	diversity.	Acoustic	surveys	are	traditionally	performed	by	human	listeners,	
but	 automated	 recording	 devices	 (ARD)	 are	 becoming	 increasingly	 popular.	 Signal	
strength	decays,	or	attenuates,	with	increasing	distance	between	source	and	receiver	
and	some	habitat	types	may	differentially	increase	attenuation	beyond	the	effects	of	
distance	alone.	These	combined	effects	are	rarely	accounted	for	in	acoustic	monitor-
ing	programs.	We	evaluated	the	performance	of	three	playback	devices	and	three	
ARD	models	using	the	calls	of	six	anurans,	six	birds,	and	four	pure	tones.	Based	on	
these	evaluations,	we	determined	the	optimal	playback	and	recording	devices.	Using	
these	optimal	devices,	we	broadcast	and	recorded	vocalizations	in	five	habitat	types	
along	1,000	m	transects.	We	used	generalized	 linear	models	 to	 test	 for	effects	of	
habitat,	distance,	species,	environmental,	and	landscape	variables.	We	predicted	de-
tection	probabilities	for	each	vocalization,	in	each	habitat	type,	from	0	to	1,000	m.	
Among	playback	devices,	only	a	remote	predator	caller	simulated	vocalizations	con-
sistently.	 Differences	 of	 ~10	dB	were	 observed	 among	 ARDs.	 For	 all	 species,	 we	
found	differences	 in	 detectability	 between	open	 and	 closed	 canopy	 habitats.	We	
observed	large	differences	in	predicted	detection	probability	among	species	in	each	
habitat	type,	as	well	as	along	1,000	m	transects.	Increases	in	temperature,	baromet-
ric	pressure,	and	wind	speed	significantly	decreased	detection	probability.	However,	
aside	from	differences	among	species,	habitat,	and	distance,	topography	impeding	a	
line‐of‐sight	between	sound	source	and	receiver	had	the	greatest	negative	influence	
on	detections.	Our	results	suggest	researchers	should	model	the	effects	of	habitat,	
distance,	and	frequency	on	detection	probability	when	performing	acoustic	surveys.	
To	 optimize	 survey	 design,	 we	 recommend	 pilot	 measurements	 among	 varying	
habitats.
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1  | INTRODUC TION

Automated	 recording	 devices	 (ARD)	 are	 utilized	 to	 document	 a	
large	variety	of	 vocalizing	 animals.	 Ecologists	use	 these	 systems	
to	 monitor	 the	 behavior	 of	 birds	 (Digby,	 Towsey,	 Bell,	 &	 Teal,	
2013),	bats	(Bader	et	al.,	2015),	anurans	(Aide	et	al.,	2013;	Oseen	
&	 Wassersug,	 2002),	 insects	 (Lehmann,	 Frommolt,	 Lehmann,	 &	
Riede,	2014;	Romer	&	Lewald,	1992),	and	both	terrestrial	(Mielke	
&	 Zuberbühler,	 2013)	 and	 marine	 mammals	 (Selby	 et	 al.,	 2016;	
Wiggins	 &	 Hildebrand,	 2007).	 ARDs	 are	 commonly	 applied	 to	
determine	species	richness	(Hsu,	Kam,	&	Fellers,	2005;	Wimmer,	
Towsey,	 Roe,	 &	 Williamson,	 2013)	 or	 construct	 general	 biodi-
versity	 indices	 (Sueur,	 Farina,	 Gasc,	 Pieretti,	 &	 Pavoine,	 2014;	
Zimmerman,	1994).	Sound	recordings	are	also	used	for	more	spe-
cific	functions,	such	as	assessing	coral	reef	health	(Piercy,	Codling,	
Hill,	 Smith,	 &	 Simpson,	 2014)	 or	 documenting	 changes	 in	 forest	
noise	 via	 soundscapes	 (Pijanowski	 et	 al.,	 2011).	ARDs	may	offer	
advantages	over	human	performed	surveys	when	a	large	number	
of	sites	must	be	visited	multiple	times	to	achieve	adequate	sam-
pling	effort,	when	monitoring	inaccessible	and	inhospitable	envi-
ronments,	 or	 to	 avoid	 bias	 from	 subject	 disturbance	 (Alldredge,	
Pollock,	 et	 al.,	 2007;	Hutto	&	 Stutzman,	 2009).	 The	 commercial	
availability	 of	 ARDs	 has	 grown,	 offering	 a	 variety	 of	 costs	 and	
performance	 capabilities,	 making	 them,	 in	 some	 cases,	 less	 ex-
pensive	 than	 human	 performed	 surveys	 (Charif	 and	 Pitzrick,	
2008;	Rempel,	Francis,	Robinson,	&	Campbell,	2013;	Yip,	Bayne,	
Sólymos,	Campbell,	&	Proppe,	2017).

Effectively	 employing	 acoustic	 surveys	 for	 ecological	 research	
or	biological	monitoring	requires	an	understanding	of	how	the	com-
ponents	of	 survey	design	and	 implementation	affect	 the	probabil-
ity	 of	 detecting	 animal	 vocalizations.	 As	 all	 species	 are	 detected	
imperfectly,	estimates	of	detection	probability	are	essential	for	de-
termining	the	true	presence	or	absence	of	animal	populations	in	oc-
cupancy	studies	(MacKenzie	et	al.,	2002)	and	also	in	the	localization	
of	sources	for	density	estimation	(Marques	et	al.,	2013)	and	acoustic	
telemetry	(Kessel	et	al.,	2014).	Whether	surveyors	detect	a	vocaliza-
tion	depends	on	two	major	factors.	Vocalizations	must	occur	during	
the	survey	period	and	the	signal	strength	of	vocalizations	needs	to	
be	sufficient	to	be	detected	at	the	listening	post.	Heterogeneity	in	
detection	probability	due	to	the	surrounding	environment	is	widely	
recognized	in	aquatic	systems	where	“range‐testing”	is	routinely	car-
ried	out	to	aid	in	localization	of	sources	in	acoustic	telemetry	stud-
ies	(Kessel	et	al.,	2014;	Selby	et	al.,	2016).	Range‐testing	evaluates	
the	 influence	 of	 habitat	 and	 environmental	 factors	 on	 the	 proba-
bility	of	detecting	an	animal’s	acoustic	 signal,	either	a	vocalization	
or	 a	 sound	 emitting	 tag.	 Recent	 studies	 illustrate	 that	 localization	
can	be	effective	in	terrestrial	systems	as	well	(Borchers,	Stevenson,	
Kidney,	Thomas,	&	Marques,	2015;	Dawson	&	Efford,	2009;	Measey,	
Stevenson,	Scott,	Altwegg,	&	Borchers,	2017).	Thus,	understanding	
spatial	effects	on	sound	attenuation,	and	thus	detection	probability,	
are	crucial	at	two	levels.	The	“among‐site”	 level,	which	 is	routinely	
used	to	estimate	occupancy	from	bioacoustic	data,	and	the	“within‐
site”	level	required	for	localization	of	sources.

The	probability	of	detecting	vocalizations	depends,	 in	part,	 on	
the	physical	processes	affecting	sound	traveling	through	a	medium.	
For	example,	a	relationship	exists	between	the	signal	strength	of	a	
vocalization	and	the	distance	from	the	sound	source.	This	is	due	to	
spherical	spreading	of	propagating	sound	pressure	waves	(Embleton,	
1996),	scattering	and	reflection	of	sound	waves	by	structural	objects	
in	 the	 intervening	 habitat	 (Selby	 et	 al.,	 2016;	 Yip,	 Leston,	 Bayne,	
Sólymos,	&	Grover,	 2017),	 atmospheric	 absorption,	 and	 refraction	
from	water	vapor	and	air	temperature	(Lawrence	&	Simmons,	1982;	
Öhlund	 &	 Larsson,	 2015).	 Studies	 using	 human	 observers	 have	
shown	 that	 habitat‐specific	 reverberations	 influence	 sound	 atten-
uation	 (Bibby	&	Buckland,	 1987;	Morton,	 1975;	Richards	&	Wiley,	
1980).	 Detection	 distance	 may	 vary	 between	 open	 and	 closed	
environments	 (Fricke,	 1984),	 sound	 source	 and	 receiver	 heights	
(Kime,	Turner,	&	Ryan,	2000;	Mathevon,	Dabelsteen,	&	Blumenrath,	
2005),	and	among	species	with	different	sound	pressure	 level	and	
frequency	components	 (Llusia,	Márquez,	&	Bowker,	2011;	Nelson,	
2003).	Ambient	background	noise	may	also	vary	among	habitats,	po-
tentially	masking	 vocalizations,	 and	 reducing	detection	probability	
(Bormpoudakis,	Sueur,	&	Pantis,	2013).

When	distance	 is	not	known,	as	 it	may	be	through	experimen-
tation	 (McClintock,	 Bailey,	 Pollock,	 &	 Simons,	 2010)	 or	 localiza-
tion	 (Measey	 et	 al.,	 2017),	 researchers	 have	 attempted	 to	 control	
for	the	confound	of	distance	by	estimating	rate	of	decay	using	the	
half‐normal	 detection	 function	 (Buckland	 et	 al.,	 2001;	 Sólymos	 et	
al.,	2013),fixed‐radius	survey	methods	(Hutto,	2016),	or	by	treating	
sound	 intensity	 (i.e.,	 amplitude)	 as	 a	 function	of	distance	 (Pieretti,	
Farina,	&	Morri,	2011).	Many	species	may	modulate	the	amplitude	
of	their	acoustic	signal	(Rose	&	Brenowitz,	1991;	Stewart	&	Bishop,	
1994),	 further	 confounding	 the	use	of	 this	metric	 as	 a	meaningful	
measure	 of	 true	 distance	 from	 sound	 receiver.	 Additionally,	 re-
searchers	 often	 estimate	 detection	 distance	 using	 non‐empirical	
methods,	such	as	binning	estimated	distance	into	categories	based	
arbitrarily	on	observer	experience	(Vold,	Handel,	&	McNew,	2017).	
Nevertheless,	 these	approaches	 routinely	do	not	account	 for	how	
distance	might	 interact	with	 landscape	or	 species‐specific	effects.	
Without	 explicitly	 examining	 landscape	 effects	 on	 the	 detection	
process,	 specifically	 habitat	 structure,	 researchers	 may	 conclude	
differences	 in	 animal	 occurrence	 or	 abundance	 among	 differing	
habitats	erroneously,	 thus	causing	heterogeneity	 in	attenuation	 to	
affect	patterns	in	animal	occurrence	(Gasc	et	al.,	2018).	Similarly,	the	
effect	of	call	frequency	(Hz)	and	structure	is	routinely	overlooked	in	
assessing	species	richness,	or	biodiversity,	where	detectability	is	as-
sumed	to	be	equal	among	multiple	species	at	the	same	distance	(e.g.,	
fixed‐radius	surveys;	Sadoti,	Johnson,	Smith,	&	Petersen,	2018).

Experimentation	 is	 a	useful	mechanism	 for	understanding	how	
we	 observe	 populations	 and	 environments.	 For	 example,	 Simons,	
Alldredge,	Pollock,	and	Wettroth	(2007)	employed	an	experimental	
system	that	simulates	bird	songs	to	study	sources	of	heterogeneity	
in	detection	and	misidentification	among	human	observers.	Through	
similar	call	reproduction	experiments,	birds	and	anurans	have	been	
shown	to	respond	to	playback	vocalizations	(James,	Stockwell,	Clulow,	
Clulow,	&	Mahony,	2015;	Kearns,	Kwartin,	Brinker,	&	Haramis,	1998;	
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Mannan,	Perry,	Andersen,	&	Boal,	2014).	Mandated	survey	protocols	
sometimes	 require	 researchers	 to	 perform	 playbacks	 when	 moni-
toring	 for	endangered	 species	 (USFWS,	 ).	Nonetheless,	 call	broad-
casting	 devices	 vary	widely	 among	 studies,	making	 comparison	 or	
replication	of	studies	challenging,	and	introducing	a	potential	source	
of	bias.	Given	recent	development	and	usage	of	bioacoustic	technol-
ogy,	experimental	manipulation	of	both	sound	sources	and	receivers	
is	required	to	evaluate	effectiveness	in	field	studies.

Here,	 we	 conduct	 a	 thorough	 terrestrial	 range‐testing	 experi-
ment	 to	 evaluate	 the	effects	of	 varying	habitats	on	 the	detection	
probability	 of	 acoustic	 signals	 of	 two	 major	 groups	 of	 vocalizing	

organisms,	 birds	 and	 anurans.	 Our	 objectives	 were	 to	 determine	
how	distance	and	habitat	 affect	 the	probability	of	detecting	a	va-
riety	 of	 bird	 and	 anuran	 vocalizations.	 A	 priori,	we	 predicted	 that	
differences	among	habitat	types	would	 introduce	heterogeneity	 in	
detection	probability	across	distance,	and	among	different	species.	
These	 sources	 of	 error	 are	 not	 routinely	 incorporated	 into	 acous-
tic	monitoring	programs	and	could	lead	to	biased	inferences	about	
species	 occurrence	 and	 other	 population	 or	 ecological	 quantities.	
Additionally,	 we	 evaluate	 the	 performance	 of	 three	 playback	 de-
vices,	and	compare	sensitivity	among	three	commercially	available	
ARDs.

F I G U R E  1  Aerial	map	of	the	Griffith	
League	Ranch,	Bastrop	County,	TX,	USA.	
Top	left:	Texas,	showing	Bastrop	County	
in	solid	black.	Top	right:	Bastrop	County,	
TX,	with	the	Griffith	League	Ranch	
boundary	in	bold	black	line.	Bottom:	
Satellite	image	of	the	Griffith	League	
Ranch	(outlined	in	black),	with	transect	
points	in	colors,	representing	habitat	
types,	and	red	dots	indicating	automated	
recording	device	locations
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2  | MATERIAL S AND METHODS

2.1 | Study site

We	performed	the	field	work	for	this	study	on	the	Griffith	League	
Ranch	 (GLR),	 a	 1,948	ha	 property	 owned	 by	 the	 Boy	 Scouts	 of	
America,	 located	 in	 Bastrop	County,	 Texas	 (Figure	 1).	 Presently,	
the	GLR	contains	mature	forests	dominated	by	loblolly	pine	(Pinus 
taeda),	post	oak	(Quercus stellate),	blackjack	oak	(Quercus marilan-
dica),	and	eastern	red	cedar	(Juniperus virginiana),	an	area	recover-
ing	from	a	high‐intensity	wildlife	fire	that	occurred	in	2011	(Brown	
et	 al.,	 2014),	 and	 a	 small	 central	 prairie.	Mechanical	 understory	
thinning	 of	 yaupon	 holly	 (Ilex vomitoria),	 American	 beautyberry	
(Callicarpa americana),	 and	 farkleberry	 (Vaccinium arboretum)	 has	
occurred	within	sections	of	the	mature	forests	to	create	firebreaks	
and	reduce	fuel.

2.2 | Playback audio

The	 playback	 file	 consisted	 of	 four	 pure	 tones	 at	 1,	 3,	 5,	 and	
7	kHz,	six	anuran	calls,	and	six	birds	calls	(Supporting	Information	
Audio	 S1	 and	 Table	 S2).	 The	 anuran	 calls	 used	 were	 the	 wood	
frog	(Rana [Lithobates] sylvaticus),	California	red‐legged	frog	(Rana 

[Lithobates] draytonii),	 Houston	 toad	 (Bufo [Anaxyrus] houstonen-
sis),	 Arroyo	 toad	 (Bufo [Anaxyrus] californicus),	 American	 bullfrog	
(Rana [Lithobates] catesbieanus),	and	the	spring	peeper	(Pseudacris 
crucifer).	 The	 bird	 calls	 used	 were	 the	 golden‐cheeked	 warbler	
(Dendroica chrysoparia),	 black‐capped	 vireo	 (Vireo atricapilla),	
red‐cockaded	woodpecker	(Picoides borealis),	black	rail	 (Laterallus 
jamaicensis),	spotted	owl	(Strix occidentalis),	and	the	painted	bunt-
ing	(Passerina ciris).	These	species	were	selected	because	they	are	
rare,	 endangered,	 the	 subject	 of	 audio	monitoring	 to	 determine	
site	occupancy,	or	widely	used	in	acoustics	research.	This	collec-
tion	of	vocalizations	includes	wide	variation	in	call	structure	(e.g.,	
pulses,	 trills,	 number	 of	 syllables),	 duration,	 and	 frequency.	We	
assembled,	 edited,	 and	 volume‐balanced	 playback	 audio	 using	
GarageBand	(Apple	Inc.,	Cupertino,	CA,	USA).

2.3 | Playback devices

We	 selected	 three	 playback	 devices	 representing	 the	 range	 of	
equipment	used	 for	biological	monitoring.	We	used	a	 smartphone	
(iPhone	6	s,	Apple	 Inc.,	Cupertino,	CA,	USA),	 a	Bluetooth	 speaker	
(Swimmer,	Polk	Audio,	Baltimore,	MD,	USA),	and	a	remote	predator	
caller	(Inferno,	FoxPro,	Lewiston,	PA,	USA).	We	broadcast	playback	
audio	 10	 times	 from	 each	 device	 toward	 a	 sound	 level	meter	 set	
to	“A”	weighting	(R8050,	Reed	Instruments,	Wilmington,	NC,	USA)	
from	1	 and	 5	meters	 away.	 The	 sound	 level	meter	was	 calibrated	
with	 a	 1	kHz	 tone	 at	 94	dB	 (re	 20	μPa)	 prior	 to	 use	 (R8090,	 Reed	
Instruments).	We	measured	 the	maximum	 amplitude	 (dB)	 of	 each	
vocalization	broadcast	and	compared	these	values	among	playback	
devices.	To	 judge	device	utility,	we	generated	 frequency	 response	
curves	 by	 plotting	 amplitude	measurements	 for	 each	 vocalization	
from	each	device.

2.4 | Automated recording devices

There	are	many	recording	devices	for	biologists	to	select	from,	 in-
cluding	commercially	available	and	custom	created	units.	We	tested	
three	 generations	 of	 SongMeter	 acoustic	 recorders	 (SM2+,	 SM3,	
and	SM4,	Wildlife	Acoustics,	Maynard	MA,	USA)	because	they	are	
commonly	used	for	monitoring	or	research	(Digby	et	al.,	2013;	Yip,	
Bayne,	et	al.,	2017;	Yip,	Leston,	et	al.,	2017).	We	chose	the	manu-
facturers	default	 settings	 to	 record,	with	 the	exception	of	 sample	
rate,	which	we	set	to	22	kHz.	To	calibrate	SongMeters	we	recorded	
a	1	kHz	tone	at	94	dB	played	directly	into	all	microphones,	then	used	
Raven	 (version	1.5.0)	 to	measure	 the	amplitude	of	 the	1	kHz	 tone	
recorded.	The	difference	in	amplitude	from	94	dB	within	the	record-
ing	represents	the	individual	sensitivity	of	each	microphone	on	each	
device.	We	account	for	this	difference	by	adding	or	subtracting	the	
equivalent	dB	to	the	amplitude	measurements	of	audio	recordings	in	
subsequent	experiments.	For	example,	 the	SM4	microphones	pro-
duced	recordings	of	the	calibration	tone	(1	kHz	at	94	dB)	that	meas-
ured	110.3	dB	(both	left	and	right	channels)	within	Raven.	Thus,	we	
subtracted	16.3	dB	from	that	estimate	of	amplitude	in	all	subsequent	
experiments.	This	is	equivalent	to	removing	the	effect	of	the	default	

F I G U R E  2  Playback	device	frequency	response	curves.	Locally	
weighted	smoothed	scatterplot	of	the	decibel	level	produced	
by	each	of	the	three	playback	devices	tested,	plotted	for	the	six	
anuran	and	six	bird	used	within	this	study.	Sounds	are	arranged	
along	the	x‐axis	according	to	dominant	frequency	from	least	to	
greatest.	Colored	dashed	lines	represent	mean	decibels	produced	
by	each	playback	device	across	all	frequencies.	Solid	colored	
lines	with	gray	envelope	represent	smoothed	regression	line	and	
standard	error
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internal	 amplifier	 (+16	dB	 gain)	 without	 sacrificing	 signal	 to	 noise	
ratio.	We	secured	each	ARD	to	a	structural	object,	then	broadcast	
playback	audio	from	the	remote	predator	caller	mounted	on	a	tripod	
1	m	above	the	ground	10	times	every	50	m	on	a	1	km	unpaved	road	
(n	=	200	playbacks).	We	then	used	Raven	to	measure	the	amplitude	
of	the	recorded	calls	for	comparison	among	species	and	recorders.

2.5 | Effect of habitat on detection

We	 performed	 the	 range‐testing	 experiment	 between	 0,800	 and	
2,200	hr,	25	October	2017	to	27	November	2017.	We	avoided	per-
forming	this	study	during	the	spring	breeding	season	to	reduce	likeli-
hood	that	resident	target	organisms	might	be	calling	coincidentally	
and	be	mistaken	for	broadcast	signals.	We	established	30	1	km	tran-
sects	 using	 a	 geographic	 information	 system	 (GIS)	within	 five	 dif-
ferent	habitat	 types.	We	performed	 six	1	km	 transects	 each	 in	 (a)	
mature	 forest	with	 a	mechanically	 thinned	 understory,	 (b)	mature	
forest	with	 an	 unmanaged	 understory,	 (c)	 post‐wildfire	 recovering	
forest,	(d)	prairie,	and	(e)	unpaved	roads.	Our	previous	experiments	
indicated	the	SM4	and	remote	predator	caller	were	the	most	sensi-
tive	and	least	biased	devices	for	playback	and	detection,	and	thus	we	
utilized	only	these	devices	throughout	the	range‐testing	experiment.	
We	attached	a	SongMeter	(SM4)	to	a	structural	object	at	the	start	
of	 each	 transect	 and	 broadcast	 vocalizations	 twice	 every	 100	m	
(n	=	20	playbacks	per	transect).	Playbacks	were	broadcast	using	the	
remote	predator	caller	mounted	on	a	tripod	1	m	above	the	ground.	
We	used	a	Garmin	64st	handheld	GPS	 (Garmin	 International,	 Inc.,	
Olathe,	 KA,	 USA)	 to	 maintain	 the	 appropriate	 line	 transect	 path	
and	ensure	that	the	remote	predator	caller	was	oriented	toward	the	
ARD.	In	order	to	model	the	effects	of	environmental	variables,	we	
recorded	wind	speed	(kph),	air	temperature	(C),	and	relative	humidity	
(%)	using	a	Kestrel	3000	(Kestrel	Instruments,	Boothwyn,	PA,	USA).	
We	obtained	barometric	pressure	from	the	nearest	weather	station	
(Giddings	Airport,	25	km	east	of	the	GLR).	To	account	for	an	effect	
of	the	rolling	topography	of	the	GLR,	we	determined	if	there	was	an	
unobstructed	 line‐of‐sight	 (LOS)	between	the	playback	device	and	
recorder.	We	projected	each	transect	in	a	GIS	onto	a	digital	elevation	
model	(National	Elevation	Dataset	2013,	U.S.	Geological	Survey)	and	
extracted	the	transect	elevation.	We	calculated	a	linear	regression	
slope	from	the	SM4	to	each	transect	point	and	added	1	m	to	account	
for	source	and	receiver	height,	providing	an	estimate	of	the	eleva-
tion	that	cannot	be	exceeded	to	maintain	LOS.	This	method	approxi-
mates	a	hypothetical	scenario	in	which	the	topography	between	our	
source	and	receiver	is	perfectly	flat.	If	any	elevation	between	source	
and	receiver	exceeded	this	estimate,	we	considered	LOS	to	be	ob-
structed.	We	estimated	this	for	all	10	stops	along	each	transect	and	
scored	LOS	as	0	=	obstructed	or	1	=	unobstructed.

2.6 | Extraction of acoustic measurements

All	acoustic	measurements	and	spectrograms	were	produced	using	
Raven.	 To	 determine	 whether	 the	 call	 was	 detected,	 we	 isolated	
the	 playback	 audio	 from	 each	 distance	 along	 each	 transect.	 We	

visually	examined	spectrograms	and,	 if	needed,	 listened	to	record-
ings	to	determine	the	presence	or	absence	of	each	vocalization.	We	
manipulated	 all	 possible	 spectrogram	 settings	 (e.g.,	 color,	 bright-
ness,	contrast,	etc.)	needed	to	be	confident	of	our	decision.	Visual	
inspections	were	carried	out	by	ARM	and	PSC,	and	detections	were	
only	 recorded	 if	 both	authors	 agreed	 they	were	visible	within	 the	
spectrogram	window.	This	 resulted	 in	9,600	detection/non‐detec-
tion	 events	 (30	 transects,	 10	distances,	 16	calls,	 played	 twice).	 To	
estimate	masking	 effects	 of	 background	 noise	 (dB),	 we	measured	
one	 second	 of	 the	 recording	 immediately	 before	 the	 start	 of	 the	
playback	sequence,	with	frequency	ranges	adjusted	to	match	each	
vocalization.

2.7 | Statistical models

To	 estimate	 detection	 probability,	 we	 used	 generalized	 linear	
models	 (GLMs)	with	 binomial	 response	 distribution	 and	 comple-
mentary	 log	 link	 function	 (Baddeley	 et	 al.,	 2010),	 implemented	
in	 R.3.4.2	 (R	 Core	 Team,	 2018).	We	 treated	 all	 categorical	 vari-
ables	 (LOS,	 habitat,	 and	 species),	 as	well	 as	 scaled	 and	 centered	
continuous	 variables	 (distance,	 air	 temperature,	 relative	 humid-
ity,	 barometric	 pressure,	wind	 speed,	 and	 background	 noise),	 as	
fixed	 covariates.	A	priori	we	developed	 a	 list	 of	 candidate	mod-
els	 to	 examine	 in	 an	 information‐theoretic	 framework	using	AIC	
(Burnham	and	Anderson,	2002).	We	built	a	full	model	containing	
all	measured	variables,	 including	an	 interaction	between	habitat,	
distance,	and	species.	We	then	built	another	21	models	of	reduced	
complexity,	including	an	intercept‐only	model,	to	test	hypotheses	
about	the	importance	of	background	noise,	distance,	habitat,	en-
vironmental,	 and	 landscape	 variables.	 We	 ranked	 models	 using	
Akaike’s	Information	Criteria	(AIC)	using	the	package	AICcmodavg	
(Mazerolle,	2013)	and	considered	models	competitive	if	they	were	
≤2	AIC	points	of	the	top‐ranked	model.	Using	estimates	from	the	
top‐ranked	model,	we	predicted	detection	probabilities	for	all	16	
sounds	among	the	five	habitats	between	0	and	1,000	m,	with	95%	
confidence	intervals.

3  | RESULTS

Among	 the	 three	 playback	 devices	 we	 tested,	 only	 the	 remote	
predator	 caller	 reproduced	 animal	 vocalizations	 at	 the	 volume	 re-
quired	(94	dB),	without	excessive	variance	among	frequencies.	The	
Bluetooth	speaker	 reached	appropriate	volumes,	unlike	the	smart-
phone	which	was	approximately	20	dB	too	quiet	for	our	purposes.	
Yet	both	the	Bluetooth	speaker	and	the	smartphone	were	found	to	
possess	an	inherently	biased	frequency	response	(Figure	2).

Our	 evaluation	 of	 differences	 among	 three	 generations	 of	
SongMeter	 revealed	 that	 the	 SM2+	 measured	 on	 average	 10	dB	
lower	than	the	SM3	and	SM4.	However,	we	observed	a	large	over-
lap	in	standard	deviation	among	all	three	generations	of	SongMeter	
(Figure	3).	We	utilized	the	SM4	for	our	range‐testing	experiment	due	
to	its	acceptable	performance	and	more	convenient	size.
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We	 performed	 a	 total	 of	 9,536	 playbacks,	 of	 which	 4,036	
were	 detectable.	Missing	 data	 (n	=	64	 playbacks)	 occurred	 due	 to	
SongMeters	dividing	continuous	audio	into	multiple	files,	or	because	
property	boundaries	differed	from	those	used	when	designing	tran-
sects.	 Model	 comparison	 indicated	 two	 competitive	 top	 models	
(i.e.,	∆AIC	<	2.0;	Table	1).	The	 full	model	 (AIC	=	5,423.19;	Table	1),	
including	all	measured	variables	and	an	interaction	between	habitat,	
distance,	and	species,	was	found	to	be	 less	parsimonious	than	the	
same	model	minus	humidity	(∆AIC	=	1.60;	AIC	=	5,421.59;	Table	1).	
Humidity	was	not	a	significant	predictor	of	detection	within	the	full	
model.	 It	 was	 expected	 that	 an	 interaction	 between	 habitat	 and	
distance	would	be	important,	and	the	top	seven	models	within	our	
comparison	contain	this	predictor.	The	model	with	distance	as	the	
only	predictor	fit	the	data	better	than	the	model	with	habitat	as	the	
only	predictor,	and	a	model	with	 just	species	out‐performed	both.	
However,	the	model	including	an	interaction	of	these	three	predic-
tors	alone	performed	better	than	any	single	predictor	alone	(Table	1).

A	 high	 degree	 of	 variability	 in	 predicted	 detection	 probability	
was	 found	 among	 species	 and	 habitats	 (Figure	 4).	 In	 general,	 we	
found	 that	 species	 may	 be	 arranged	 by	 probability	 of	 detection	
from	least	to	greatest	according	to	the	dominant	frequency	within	
their	call,	with	high	frequency	calls	being	least	detectable	and	low	
frequency	calls	being	the	most	detectable	(Figure	4).	However,	this	
general	trend	is	not	without	exception,	as	is	exemplified	by	the	in-
teraction	of	species,	habitat,	and	distance	in	our	top	model	(Tables	
1	 and	2).	 The	 greatest	 predicted	 detection	 probability	 at	 1,000	m	
distance	 was	 0.79	 (95%	 CI:	 0.56–0.95)	 for	 the	 Houston	 Toad	

within	prairies,	 and	 then	burned	 forests	 (0.62,	95%	CI:	0.41–0.83;	
Supporting	 Information	 Figure	 S3).	 For	 comparison,	 we	 predicted	
equal	detection	probability	(0.52,	95%CI:	0.32–0.75)	for	the	call	of	
the	Arroyo	Toad	within	both	prairies	and	burned	forests,	illustrating	
that	the	influence	of	habitat	type	is	not	constant	across	all	species	
and	sounds	(Supporting	Information	Figure	S3).	With	the	exception	
of	these	two	calls,	unpaved	roads	were	found	to	attenuate	acoustic	
signals	the	least	(Figure	4;	Supporting	Information	Figure	S3).	That	is,	
unpaved	roads	allowed	vocalizations	to	travel	the	farthest	distance	
before	 predicted	 detection	 probability	 reached	 zero.	Within	 each	
habitat	 type,	 the	species	with	 the	highest	predicted	probability	of	
detection	is	highly	contingent	upon	distance.	With	few	exceptions,	
no	single	species	 remains	 the	most	easily	detected	within	a	 single	
habitat	type	for	the	entirety	of	a	1	km	transect	(Figure	4;	Supporting	
Information	Figure	S3).

Coefficients	 for	 our	 five	 habitat	 types	 decrease	 in	 the	 follow-
ing	 order:	 road	>	prairie	>	burned	>	thinned	>	unthinned	 (Table	 2,	
Supporting	Information	Figure	S3).	Prairie	and	road	treatments	did	
not	differ	from	the	reference	category,	the	burned	treatment,	indi-
cating	open	canopy	habitat	types	attenuate	sound	similarly	(Table	2).	
However,	the	unmanaged	mature	forest	treatment	differed	signifi-
cantly	from	all	other	treatments,	indicating	heterogeneity	between	
our	two	closed	canopy	treatments	as	well.	Further,	as	was	hypothe-
sized,	the	influence	of	distance	upon	these	habitat	types	follows	the	
same	pattern	as	above	 (Table	2).	Aside	 from	categories	of	 species	
and	habitat,	distance	was	the	most	influential	variable	estimated	in	
the	top	model	(Table	2).	Detection	probability	decreased	when	to-
pography	obstructed	a	LOS	between	the	remote	predator	caller	and	
ARD	(Table	2).

4  | DISCUSSION

Detections	 of	 acoustic	 signals	 are	 influenced	 by	 the	 environment	
between	the	sound	source	and	receiver	 (Darras,	Pütz,	Rembold,	&	
Tscharntke,	2016;	Selby	et	al.,	2016).	Our	 results	 indicate	 that	 the	
probability	of	detecting	an	acoustic	signal	by	an	ARD	is	highly	vari-
able	among	different	habitat	types.	Predicted	detection	probability	
was	reduced	in	closed	habitats	(i.e.,	thinned	or	unmanaged	forest).	
Evidently,	these	habitat	types	have	higher	densities	of	physical	struc-
tures	 that	may	 impede	or	 scatter	 sound,	 relative	 to	open	habitats	
(i.e.,	burned,	prairies,	or	 roads),	which	 lack	disruptive	structures	at	
heights	greater	than	1	m.	In	general,	this	is	consistent	with	the	find-
ings	of	previous	studies	of	the	influence	of	habitat	type	on	acoustic	
signals	(Fricke,	1984;	Yip,	Leston,	et	al.,	2017).	Our	results	are	unique	
from	previous	studies	 in	that	they	 illustrate	a	clear	 interaction	be-
tween	habitat,	distance,	and	species.	In	closed	habitats,	where	dis-
ruptive	structures	occur,	as	distance	increases	between	source	and	
receiver	we	observed	sound	attenuation	increase	beyond	the	effects	
attributed	to	distance	alone	(Pacifici,	Simons,	&	Pollock,	2008).	This	
is	seemingly	due	to	an	accumulation	of	disruptive	structures	within	
these	 habitats,	 as	 the	 sound	 source	 becomes	 further	 away	 from	
the	 receiver.	Attenuation	due	 to	 interactions	between	habitat	and	

F I G U R E  3  The	received	sound	levels	of	three	audio	recording	
devices	for	detecting	six	birds,	six	anurans,	and	four	pure	tones	
as	distance	increases.	Sounds	were	played	using	a	FoxPro	Inferno	
remote	predator	caller.	Black	lines	represent	mean	decibel	
detected,	line	type	represents	recorder	type,	and	shaded	regions	
represent	standard	deviation	for	each	device,	respectively
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distance	were	strongest	in	the	unmanaged	mature	forest	treatment,	
and	weakest	along	unpaved	roads.	The	implications	of	these	findings	
are	broadly	applicable	for	biological	monitoring	programs	that	utilize	
acoustic	monitoring	 technology.	 Primarily	 there	 is	 habitat‐induced	
heterogeneity	in	detection	probability,	which	is	relevant	in	any	study	
that	employs	occupancy	models	or	spatial	capture–recapture	mod-
els	to	estimate	source	density.	Therefore,	it	 is	imperative	to	model	
these	habitat	effects	explicitly,	further	emphasizing	the	importance	
of	methods	that	allow	for	the	explicit	modeling	of	detection	prob-
ability.	Without	estimating	the	effect	of	habitat	on	detection	prob-
ability,	researchers	run	the	risk	of	concluding	reduced	occurrence	of	
vocalizing	animals	among	habitats	dense	with	structures	disruptive	
to	traveling	sounds.	While	the	emergence	of	acoustic	sampling	using	

ARDs	offers	observer‐free	monitoring	of	bird	and	anuran	communi-
ties,	they	are	not	a	panacea,	as	illustrated	by	the	clear	influence	of	
habitat	and	distance	on	their	performance.

For	this	study,	we	chose	to	evaluate	the	vocalization	of	species	
that	fall	into	two	broad	categories:	species	of	conservation	concern	
(i.e.,	 federally	endangered,	or	a	candidate	for	 listing),	or	species	of	
ubiquity	whose	call	is	well	studied	(e.g.,	American	bullfrog).	For	rare	
or	endangered	species	that	can	be	surveyed	using	acoustic	methods,	
studies	 evaluating	 the	efficacy	of	 such	 approaches	 are	 imperative	
to	species	conservation	and	recovery.	Predicted	detection	probabil-
ity	varied	widely	among	species	within	and	among	habitats,	when	
measured	at	the	same	distance.	Nonetheless,	all	species	illustrated	a	
clear	and	similar	pattern	of	relative	sound	attenuation	with	respect	

TA B L E  1  Model	output	and	rankings

Model no. Model statement Parameters ∆AIC Weight Log-likelihood

3 y	~	species	*	habitat	*	distance	+	temp.	+	wind	+	pres-
sure	+	LOS	+	noise

165 0.00 0.69 −2,545.8

1 y	~	species	*	habitat	*	dis-
tance	+	temp.	+	hum.	+	wind	+	pressure	+	LOS	+	noise

166 1.60 0.31 −2,545.6

7 y	~	species	*	habitat	*	dis-
tance	+	temp.	+	hum.	+	wind	+	pressure	+	LOS

165 31.93 0.00 −2,561.76

5 y	~	species	*	habitat	*	dis-
tance	+	temp.	+	hum.	+	wind	+	LOS	+	noise

165 44.13 0.00 −2,567.86

4 y	~	species	*	habitat	*	distance	+	temp.	+	hum.	+	pres-
sure	+	LOS	+	noise

165 108.99 0.00 −2,600.29

6 y	~	species	*	habitat	*	dis-
tance	+	temp.	+	hum.	+	wind	+	pressure	+	noise

165 159.57 0.00 −2,625.58

2 y	~	species	*	habitat	*	distance	+	hum.	+	wind	+	pres-
sure	+	LOS	+	noise

165 314.76 0.00 −2,703.17

10 y	~	species	+	habitat	*	dis-
tance	+	temp.	+	hum.	+	wind	+	pressure	+	LOS	+	noise

162 396.38 0.00 −2,746.99

8 y	~	species	*	habitat	*	distance	+	LOS	+	noise 160 507.83 0.00 −2,804.71

9 y	~	species	*	habitat	*	distance 31 539.01 0.00 −2,949.3

11 y	~	species	+	habitat	*	distance	+	LOS	+	noise 27 931.64 0.00 −3,149.61

13 y	~	species	*	habitat	+	dis-
tance	+	temp.	+	hum.	+	wind	+	pressure	+	LOS	+	noise

87 984.28 0.00 −3,115.93

17 y	~	species	+	habitat	+	dis-
tance	+	temp.	+	hum.	+	wind	+	pressure	+	LOS	+	noise

27 1,016.63 0.00 −3,192.11

14 y	~	species	*	habitat	+	distance	+	LOS	+	noise 83 1,433.97 0.00 −3,344.78

18 y	~	species	+	habitat	+	distance	+	LOS	+	noise 23 1,440.81 0.00 −3,408.2

22 y	~	1 1 9,079.56 0.00 −7,249.58

21 y	~	species 16 8,162.25 0.00 −6,775.92

20 y	~	distance 2 3,512.68 0.00 −4,465.13

19 y	~	habitat 5 8,828.17 0.00 −7,119.88

16 y	~	habitat:distance	+	species:distance	+	distance 21 3,233.93 0.00 −4,306.76

15 y	~	species	*	habitat 80 7,937.71 0.00 −6,599.65

12 y	~	habitat	*	distance 10 2,809.28 0.00 −4,105.44

Note.	Generalized	linear	models	(GLM)	tested	with	the	number	of	parameters	in	each	model,	Akaike	information	criterion	(AIC),	difference	in	model	AIC	
(dAIC),	AIC	weight,	and	log‐likelihood;	fixed	categorical	variables	include	line‐of‐sight	(1	or	0),	habitat	(burned,	prairie,	road,	thinned,	unthinned),	and	
species.	 Scaled	 and	 centered	 continuous	 fixed	 variables	 include	 distance	=	distance	 from	 recorder	 and	 source	 (m),	 temp.	=	air	 temperature	 (°C),	
hum.	=	relative	humidity	(%),	pressure	=	barometric	pressure	(mmHg),	wind	=	wind	speed	(kph),	and	noise	=	background	noise	(decibels,	dB)	measured	
1	s	prior	to	recording.



12998  |     MACLAREN Et AL.

to	habitat.	 In	general,	 the	trend	within	our	results	 is	 that	high	fre-
quencies	 (i.e.,	 7	kHz	 tone)	 decay	most	 rapidly,	 traveling	 the	 short-
est	distance	within	all	habitat	types,	and	that	 low	frequencies	(i.e.,	
1	kHz	tone)	travel	further.	Exceptions	to	this	general	trend	occur	for	
the	very	lowest	frequency	sounds	we	broadcast	(i.e.,	California	red‐
legged	 frog	 and	 bullfrog),	which	 showed	 reduced	 detection	 prob-
ability	 at	 distances	 <500	m	 relative	 to	 sounds	with	 slightly	 higher	
dominant	 frequency	 (Figure	4).	We	 initially	 hypothesized	 that	 this	
deviation	may	be	caused	by	sound	masking	due	to	increased	ambient	
noise	occurring	at	lower	frequencies	(Bee	&	Swanson,	2007),	how-
ever	this	was	not	observed	within	our	data.	Rather,	ambient	noise	
showed	no	apparent	pattern	with	respect	to	frequency.	These	find-
ings	are	particularly	pertinent	to	indices	of	biodiversity	that	measure	
the	abundance	multiple	species.	Without	accounting	for	variation	in	
detection	probability	among	species,	researchers	may	conclude	re-
duced	abundances	or	more	restricted	distributions	for	animals	that	
may	simply	be	difficult	to	detect,	relative	to	species	that	are	easy	to	
detect.

The	 pattern	we	 observed	 among	 species	 of	 varying	 dominant	
frequencies	 in	 different	 habitats	may	 support	 the	 hypothesis	 that	
animals	might	evolve	to	vocalize	at	frequencies	that	are	favored	by	

the	surrounding	habitat.	This	has	been	referred	to	as	the	“sound	win-
dow”	hypothesis	(Marten	&	Marler,	1977;	Morton,	1975).	While	our	
study	site	is	home	to	many	species	of	bird	and	anuran,	it	is	primarily	
utilized	 for	 researching	 the	Houston	 toad,	whose	vocalization	car-
ried	 further,	 in	all	 three	open	habitat	 types,	 than	all	other	 species	
considered,	providing	additional	anecdotal	support	for	this	hypoth-
esis	(Ey	&	Fischer,	2009).	One	potential	confound	that	complicates	
our	study	is	that	not	all	calls	broadcast	are	the	same	length.	Based	
on	our	results,	one	could	argue	that	animals	with	the	 longest	calls	
are	more	likely	to	be	detected,	but	to	our	knowledge,	this	hypothesis	
is	yet	to	be	tested.	However,	some	female	anurans	select	for	males	
with	 longer	 calls,	 perhaps	 because	 they	 are	most	 easily	 detected	
(Cocroft	&	Ryan,	1995).

One	complication	with	most	studies	involving	auditory	surveys	of	
vocalizing	fauna	is	observer	bias,	or	an	analogous	example	from	au-
tomated	methods;	bias	among	ARDs	(Miller	et	al.,	2012;	Yip,	Bayne,	
et	al.,	2017).	We	found	differences	between	the	three	generations	of	
SongMeters	to	be	negligible	among	the	SM3	and	SM4,	and	that	the	
SM2+	is	on	average	10	decibels	less	sensitive.	The	manufacturers	of	
these	devices	state	that	improvements	in	signal	to	noise	ratio	have	
occurred	with	the	introduction	of	each	new	model,	from	>62	dB	in	

F I G U R E  4  Predicted	probability	of	
detection	for	16	sounds,	among	five	
habitat	types,	along	a	distance	of	1,000	m.	
Sounds	include	four	pure	sine	waves,	the	
vocalizations	of	six	anurans,	and	six	birds.	
Each	sound	was	broadcast	on	a	private	
ranch	in	Bastrop	Country,	Texas,	USA,	
using	a	FoxPro	Inferno	predator	calling	
device	and	recorded	using	a	SongMeter	
SM4.	Values	of	detection	probability	
were	predicted	using	the	estimates	from	
our	top	generalized	linear	model	with	an	
interaction	between	habitat,	distance,	and	
species
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the	SM2+,	>68	dB	in	the	SM3,	to	~80	dB	in	the	SM4.	Despite	these	
improvements,	we	observed	a	large	amount	of	overlap	in	sensitivity	
along	both	distance	and	frequency	gradients.	Although	we	failed	to	
distinguish	an	optimal	unit	among	the	recording	devices,	we	feel	re-
searchers	 should	 always	 evaluate	 the	 sensitivity	 and	performance	
of	their	devices	through	range‐testing,	prior	to	choosing	a	recording	
platform	 (i.e.,	model	of	 recorder).	Previous	studies	have	 illustrated	
that	 variation	 in	 sensitivity	 exists	 among	 microphones	 of	 varying	
use	and	age,	within	a	single	model	of	ARD,	further	necessitating	the	
need	 for	 calibration	 prior	 to	 deployment	 (Turgeon,	Wilgenburg,	&	
Drake,	2017).	Adoption	of	this	approach	should	provide	researchers	
with	improved	replicability	and	the	ability	to	quantify	error	in	their	
estimates	of	abundance	or	biodiversity	that	might	be	caused	by	ARD	
choice	alone.	By	comparing	popular	devices	used	for	broadcasting	

animal	 vocalizations,	we	 discovered	 remarkable	 differences	 in	 the	
devices’	ability	to	reliably	reproduce	vocalizations	across	a	frequency	
gradient	 at	 a	 constant	 volume.	 Researchers	 utilizing	 this	 method	
vary	widely	in	their	selection	of	playback	device,	and	rarely,	if	ever,	
provide	 readers	with	 precise	 information	 about	 the	 frequency	 re-
sponse	or	volume	capabilities	of	their	respective	device.

Within	our	study,	we	found	temperature,	wind	speed,	and	baro-
metric	pressure	to	be	significant	predictors	of	detection	probability.	
For	these	factors,	variation	is	caused	by	both	prevailing	atmospheric	
conditions	as	well	as	habitat	 type.	For	example,	during	high	winds	
all	surveys	 in	open	habitats	will	be	 impacted,	whereas	closed	hab-
itats	will	 not	 suffer	 additional	 attenuation	due	 to	 increased	winds	
by	 virtue	 of	 their	 inherent	 sound	 interference.	 That	 is	 to	 say,	 the	
same	 disruptive	 structures	 that	 obscure	 sound	 will	 also	 obscure	

Fixed effects Estimate SE z‐Value Pr(>|z|)

(Intercept) −0.139 0.159 −0.870 0.384

Species	effects

3	kHz −1.053 0.298 −3.529 <0.001

5	kHz −4.941 1.068 −4.627 <0.001

7	kHz −61.015 1902.742 −0.032 0.974

Arroyo	toad 0.576 0.215 2.682 0.007

Black‐capped	vireo −1.828 0.440 −4.152 <0.001

Bull	frog −0.616 0.257 −2.393 0.017

Black	rail 0.086 0.223 0.386 0.700

California	red‐legged	
frog

−1.207 0.300 −4.021 <0.001

Golden‐cheeked	warbler −3.028 0.668 −4.530 <0.001

Houston	toad 0.754 0.219 3.448 0.001

Painted	bunting −1.619 0.365 −4.435 <0.001

Red‐cockaded	
woodpecker

−0.503 0.254 −1.977 0.048

Spotted	owl −0.053 0.226 −0.232 0.817

Spring	peeper −0.010 0.229 −0.043 0.965

Wood	frog 0.062 0.217 0.288 0.773

Habitat	effects

Prairie −1.519 0.334 −4.553 <0.001

Road 0.316 0.280 1.128 0.259

Thinned −0.131 0.219 −0.596 0.551

Unthinned −0.253 0.206 −1.224 0.221

Distance −1.233 0.219 −5.632 <0.001

Temperature −0.484 0.026 −18.502 <0.001

Wind −0.262 0.025 −10.653 <0.001

Pressure −0.224 0.027 −8.434 <0.001

Line‐of‐sight 0.664 0.053 12.596 <0.001

Noise −0.169 0.028 −5.930 <0.001

Table	showing	the	estimate,	standard	error,	z‐value,	and	p‐value	for	the	fixed	factors	species,	habi-
tat,	distance,	temperature,	wind,	pressure,	line‐of‐sight,	and	background	noise.	1	kHz,	burned,	and	0	
(impeded)	were	 used	 as	 reference	 categories	 for	 species,	 habitat,	 and	 line‐of‐sight,	 respectively.	
Values	for	interaction	terms	are	given	in	Supporting	Information	Material	S4.

TA B L E  2  Summary	of	the	selected	top	
model
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wind.	With	 respect	 to	variation	due	 to	 temperature	 and	pressure,	
the	broad	scale	atmospheric	impacts	on	sound	dampening	are	well	
understood	(Lawrence	&	Simmons,	1982;	Öhlund	&	Larsson,	2015).	
Within	our	study,	temperature	shares	an	apparent	relationship	with	
transect,	where	 each	 transect	 experiences	 a	 unique	 and	 indepen-
dent	series	of	 temperatures,	and	temperatures	may	not	overlap	at	
all	among	transects.	We	are	unable	to	examine	this	relationship	 in	
detail	because	we	did	not	repeat	surveys	within	the	same	transect	
across	multiple	days,	or	across	a	gradient	of	atmospheric	conditions.

We	chose	to	control	for	effects	related	to	rolling	topography	on	
the	GLR	by	calculating	LOS	for	each	distance	between	sound	source	
and	receiver,	across	all	transects.	In	nature,	animals	have	been	doc-
umented	 to	 overcome	 these	 topographical	 obstacles	 by	 seeking	
perches	 (Kime	 et	 al.,	 2000;	Mathevon	 et	 al.,	 2005).	 Although	 our	
measurements	 reflect	 the	 variation	 that	 practitioners	 might	 con-
sider	 among	 species	 and	 habitats,	we	 caution	 against	 considering	
our	findings	calibration	or	correction	factors	that	could	be	applied	
to	future	studies	for	these	reasons.	Additionally,	the	monitoring	of	
living	animals,	rather	than	technological	homologs	such	as	playback	
devices,	includes	stochasticity	that	cannot	be	controlled	for	in	most	
cases,	 such	 as	 the	 direction,	 volume,	 and	 structure	 of	 real	 animal	
vocalizations.

To	maximize	detection	probability,	researchers	should	minimize	
the	distance	between	sound	source	and	receiver,	especially	within	
habitats	 featuring	 extensive	 disruptive	 structures.	When	monitor-
ing	anuran	populations,	ARDs	are	typically	placed	adjacent	to	water	
bodies	used	for	congregations	of	breeding	adults.	At	small	wetlands	
and	ponds,	 the	minimized	distance	between	sound	source	and	 re-
ceiver	 should	overcome	any	problems	associated	heterogeneity	 in	
detection	probability	caused	by	habitat	or	species.	However,	when	
monitoring	large	wetlands	that	may	sample	a	variable	amount	of	the	
available	anuran	habitat,	 this	may	not	be	 true.	Furthermore,	 avian	
monitoring	is	usually	focused	on	habitat	patches	where	individuals	
are	 less	clustered.	The	effect	of	habitat	type,	species,	and	the	dis-
tance	between	sound	source	and	receiver	on	detection	probability	
is	likely	to	be	more	complicated	in	these	monitoring	scenarios,	and	
caution	should	be	used	when	evaluating	the	underlying	assumptions	
of	equal	detectability.

To	estimate	and	account	for	biases	in	detection	probability	due	
to	distance	and	habitat,	researchers	may	borrow	techniques	used	
in	marine	environments	(Selby	et	al.,	2016).	Detection	of	marked	
individuals	 is	 achieved	 through	 implanted	 or	 attached	 acoustic	
transponders,	 and	calibration	of	acoustic	 signals	with	 respect	 to	
environmental	 conditions	 is	 achieved	 using	 fixed‐location	 senti-
nel	 tags	 (Kessel	 et	 al.,	 2014).	 Researchers	 could	 achieve	 similar	
rigor	 in	 terrestrial	 environments	 using	 call	 or	 tone	 broadcasts	
from	fixed	locations	at	regular	intervals,	as	described	in	this	study.	
Alternatively,	estimation	of	habitat	effects	can	be	achieved	in	situ	
using	methods	of	spatial	capture‐recapture	methods	(Borchers	et	
al.,	2015;	Dawson	&	Efford,	2009;	Measey	et	al.,	2017).	A	subset	
of	prior	research	has	shown	that	human	performed	avian	surveys	
are	more	effective	 than	ARD	surveys	 (Hutto	&	Stutzman,	2009;	
Yip,	 Leston,	 et	 al.,	 2017).	However,	 human	observers	 have	been	

shown	to	produce	biased	estimates	of	density,	as	well	as	detection	
distance,	during	avian	point	counts	(Alldredge,	Simons,	&	Pollock,	
2007;	Simons	et	al.,	2007).	It	has	been	shown	that	the	variability	
we	observed	 in	 detection	 probabilities	 among	different	 habitats	
holds	true	for	human	detection	of	acoustic	signals	as	well,	with	the	
exception	that	detection	radius	can	be	greater	among	human	ob-
servers	than	in	ARDs	(Pacifici	et	al.,	2008;	Yip,	Bayne,	et	al.,	2017).	
Nevertheless,	 the	 assumption	 that	 detection	 probability	may	 be	
equal	for	different	habitat	types	should	likely	be	examined	closely	
by	future	researchers.

Our	 results	 indicate	pilot	 studies	 aimed	directly	 at	 quantifying	
habitat	 and	 species‐specific	 detection	 probabilities	 are	 valuable	
when	attempting	 to	achieve	quality	monitoring	of	avian	or	anuran	
populations,	as	we	have	shown	these	effects	can	create	large	vari-
ation	 in	 detection	 probability.	While	 habitats,	 in	 general,	 may	 be	
open	or	closed,	 fine‐scale	differences	within	each	of	these	groups	
(e.g.,	 roads	and	prairies),	and	potentially	their	constituent	subcate-
gories	are	 responsible	 for	a	 large	amount	of	variation	 in	detection	
probability.	When	 utilizing	well‐established	 survey	 protocols	 (e.g.,	
North	 American	 Amphibian	Monitoring	 Program	 [NAAMP]	 or	 the	
North	American	Breeding	Bird	 Survey	 [BBS]),	 careful	 examination	
and	appreciation	 for	 the	 implicit	assumptions	about	 these	sources	
of	heterogeneity	in	probability	of	detection	may	be	required,	or	re-
searchers	are	at	risk	of	failing	to	detect	targeted	taxa	within	seem-
ingly	uniform	habitats.

ACKNOWLEDG MENTS

We	 thank	 Jack	 Terhune,	 Butch	 Weckerly,	 Tim	 Simons,	 and	 the	
three	anonymous	reviewers	for	providing	comments	and	sugges-
tions	 on	 this	 manuscript.	 For	 supplying	 materials	 and	 audio	 we	
thank	 Austin	 Bohannon,	 Gary	 Nafis,	 Carlos	 Davidson,	 and	 the	
Macaulay	 Library	 at	 the	 Cornell	 Lab	 of	 Ornithology.	 Finally,	 we	
thank	 the	 Boy	 Scouts	 of	 America	 Capitol	 Area	 Council	 for	 site	
access.

CONFLIC T OF INTERE S TS

We	declare	we	have	no	competing	interests.

AUTHOR CONTRIBUTIONS

Andrew	 R.	MacLaren	 and	 Paul	 S.	 Crump	 conceived	 of	 the	 study,	
performed	the	field	components,	wrote	all	R	code,	and	drafted	the	
manuscript.	J.	Andrew	Royle	contributed	to	R	coding	and	conception	
of	statistical	framework.	Michael	R.J.	Forstner	and	J.	Andrew	Royle	
additionally	contributed	to	manuscript	editing.	All	authors	approve	
submission.

E THIC AL S TATEMENT

The	 research	 complies	 with	 all	 national	 and	 international	 ethical	
requirements.



     |  13001MACLAREN Et AL.

DATA ACCE SSIBILIT Y

Data	and	R	scripts	are	included	as	Supporting	Information.

ORCID

Andrew R. MacLaren  https://orcid.org/0000‐0002‐9793‐7240 

Paul S. Crump  https://orcid.org/0000‐0002‐0495‐4771 

J. Andrew Royle  https://orcid.org/0000‐0003‐3135‐2167 

R E FE R E N C E S

Aide,	T.,	Corrada‐Bravo,	C.,	Campos‐Cerqueira,	M.,	Milan,	C.,	Vega,	G.,	
&	 Alvarez,	 R.	 (2013).	 Real‐time	 bioacoustics	monitoring	 and	 auto-
mated	species	identification.	PeerJ,	1,	e103.	https://doi.org/10.7717/
peerj.103

Alldredge,	M.,	Pollock,	K.,	Simons,	T.,	Collazo,	J.,	Shriner,	S.,	&	Johnson,	
D.	(2007).	Time‐of‐detection	method	for	estimating	abundance	from	
point‐count	surveys.	The Auk,	124(2),	653–664.a.	https://doi.org/10.
1642/0004‐8038(2007)124[653:TMFEAF]2.0.CO;2

Alldredge,	 M.,	 Simons,	 T.,	 &	 Pollock,	 K.	 (2007).	 A	 field	 evaluation	 of	
distance	 measurement	 error	 in	 auditory	 avian	 point	 count	 sur-
veys.	Journal of Wildlife Management,	71(8),	2759–2766.	https://doi.
org/10.2193/2006‐161

Baddeley,	 A.,	 Berman,	 M.,	 Fisher,	 N.,	 Hardegen,	 A.,	 Milne,	 R.,	
Schuhmacher,	D.,	…	Turner,	R.	(2010).	Spatial	logistic	regression	and	
change‐of‐support	 in	Poisson	point	processes.	Electronic Journal of 
Statistics,	4,	1151–1201.	https://doi.org/10.1214/10‐EJS581

Bader,	E.,	Jung,	K.,	Kalko,	E.,	Page,	R.,	Rodriguez,	R.,	&	Sattler,	T.	(2015).	
Mobility	explains	the	response	of	aerial	insectivorous	bats	to	anthro-
pogenic	 habitat	 change	 in	 the	 Neotropics.	 Biological Conservation,	
186,	97–106.	https://doi.org/10.1016/j.biocon.2015.02.028

Bee,	M.,	&	Swanson,	E.	 (2007).	Auditory	masking	of	anuran	advertise-
ment	calls	by	road	traffic	noise.	Animal Behaviour,	74(6),	1765–1776.	
https://doi.org/10.1016/j.anbehav.2007.03.019

Bibby,	C.,	&	Buckland,	S.	(1987).	Bias	of	bird	census	results	due	to	detect-
ability	varying	with	habitat.	Acta Oecologica,	8(2),	103–112.

Borchers,	D.,	Stevenson,	B.,	Kidney,	D.,	Thomas,	L.,	&	Marques,	T.	(2015).	
A	 unifying	 model	 for	 capture–recapture	 and	 distance	 sampling	
surveys	 of	 wildlife	 populations.	 Journal of the American Statistical 
Association,	110(509),	195–204.	https://doi.org/10.1080/01621459.
2014.893884

Bormpoudakis,	 D.,	 Sueur,	 J.,	 &	 Pantis,	 J.	 (2013).	 Spatial	 heterogeneity	
of	 ambient	 sound	at	 the	habitat	 type	 level:	 Ecological	 implications	
and	 applications.	 Landscape Ecology,	 28(3),	 495–506.	 https://doi.
org/10.1007/s10980‐013‐9849‐1

Brown,	 D.,	 Nowlin,	 W.,	 Ozel,	 E.,	 Mali,	 I.,	 Episcopo,	 D.,	 Jones,	 M.,	 &	
Forstner,	M.	 (2014).	Comparison	of	 short	 term	 low,	moderate,	 and	
high	severity	fire	impacts	to	aquatic	and	terrestrial	ecosystem	com-
ponents	 of	 a	 southern	 USA	 mixed	 pine/hardwood	 forest.	 Forest 
Ecology and Management,	 312,	 179–192.	 https://doi.org/10.1016/j.
foreco.2013.10.006

Buckland,	 S.	 T.,	 Anderson,	 D.,	 Burnham,	 K.,	 Laake,	 J.,	 Borchers,	 D.,	 &	
Thomas,	L.	(2001).	Introduction to distance sampling: Estimating abun-
dance of biological populations.	Oxford,	UK:	Oxford	University	Press.

Burnham,	 K.	 P.,	 &	 Anderson,	 D.	 R.	 (2002).	Model selection and multi-
model inference: a practical information-theoretic approach,	 2nd	 ed..	
Secaucus,	NJ:	Springer.

Charif,	 R.,	 &	 Pitzrick,	 M.	 (2008).	 Automated	 detection	 of	 Cerulean	
Warbler	 songs	 using	 XBAT	 data	 template	 detector	 software.	
Preliminary	 Report.	 Bioacoustics	 Research	 Program	 Cornell	
Laboratory	of	Ornithology	Technical	Report,	08‐12.

Cocroft,	R.,	&	Ryan,	M.	(1995).	Patterns	of	advertisement	call	evolution	
in	toads	and	chorus	frogs.	Animal Behaviour,	49(2),	283–303.	https://
doi.org/10.1006/anbe.1995.0043

Darras,	 K.,	 Pütz,	 P.,	 Rembold,	 K.,	 &	 Tscharntke,	 T.	 (2016).	 Measuring	
sound	detection	spaces	for	acoustic	animal	sampling	and	monitoring.	
Biological Conservation,	201,	29–37.

Dawson,	D.,	&	Efford,	M.	(2009).	Bird	population	density	estimated	from	
acoustic	signals.	Journal of Applied Ecology,	46(6),	1201–1209.	https://
doi.org/10.1111/j.1365‐2664.2009.01731.x

Digby,	 A.,	 Towsey,	M.,	 Bell,	 B.,	 &	 Teal,	 P.	 (2013).	 A	 practical	 compar-
ison	 of	 manual	 and	 autonomous	 methods	 for	 acoustic	 monitor-
ing.	 Methods in Ecology and Evolution,	 4(7),	 675–683.	 https://doi.
org/10.1111/2041‐210X.12060

Embleton,	T.	(1996).	Tutorial	on	sound	propagation	outdoors.	The Journal 
of the Acoustical Society of America,	 100(1),	 31–48.	 https://doi.
org/10.1121/1.415879

Ey,	E.,	&	Fischer,	J.	 (2009).	The	“acoustic	adaptation	hypothesis”—a	re-
view	of	the	evidence	from	birds,	anurans	and	mammals.	Bioacoustics,	
19(1–2),	21–48.

Fricke,	F.	(1984).	Sound	attenuation	in	forests.	Journal of Sound and Vibration,	
92(1),	149–158.	https://doi.org/10.1016/0022‐460X(84)90380‐8

Gasc,	A.,	Gottesman,	B.,	Francomano,	D.,	Jung,	J.,	Durham,	M.,	Mateljak,	
J.,	&	Pijanowski,	B.	(2018).	Soundscapes	reveal	disturbance	impacts:	
Biophonic	 response	 to	wildfire	 in	 the	Sonoran	Desert	 Sky	 Islands.	
Landscape Ecology,	 33(8),	 1399–1415.	 https://doi.org/10.1007/
s10980‐018‐0675‐3

Hsu,	M.,	Kam,	Y.,	&	Fellers,	G.	(2005).	Effectiveness	of	amphibian	monitor-
ing	techniques	in	a	Taiwanese	subtropical	forest.	The Herpetological 
Journal,	15,	73–79.

Hutto,	 R.	 (2016).	 Should	 scientists	 be	 required	 to	 use	 a	 model‐based	
solution	 to	 adjust	 for	 possible	 distance‐based	 detectability	 bias?	
Ecological Applications,	 26(5),	 1287–1294.	 https://doi.org/10.1002/
eap.1385

Hutto,	R.,	&	Stutzman,	R.	(2009).	Humans	versus	autonomous	recording	
units:	A	comparison	of	point‐count	results.	Journal of Field Ornithology,	
80(4),	387–398.	https://doi.org/10.1111/j.1557‐9263.2009.00245.x

James,	M.,	 Stockwell,	M.,	Clulow,	 J.,	 Clulow,	 S.,	&	Mahony,	M.	 (2015).	
Investigating	 behaviour	 for	 conservation	 goals:	 Conspecific	 call	
playback	can	be	used	to	alter	amphibian	distributions	within	ponds.	
Biological Conservation,	 192,	 287–293.	 https://doi.org/10.1016/j.
biocon.2015.10.001

Kearns,	G.,	Kwartin,	N.,	Brinker,	D.,	&	Haramis,	G.	 (1998).	Digital	play-
back	and	 improved	 trap	design	enhances	capture	of	migrant	Soras	
and	Virginia	rails.	Journal of Field Ornithology,	69(3),	466–473.

Kessel,	 S.,	 Cooke,	 S.,	 Heupel,	 M.,	 Hussey,	 N.,	 Simpfendorfer,	 C.,	
Vagle,	 S.,	 &	 Fisk,	 A.	 (2014).	 A	 review	 of	 detection	 range	 testing	
in	 aquatic	 passive	 acoustic	 telemetry	 studies.	 Reviews in Fish 
Biology and Fisheries,	 24(1),	 199–218.	 https://doi.org/10.1007/
s11160‐013‐9328‐4

Kime,	N.,	Turner,	W.,	&	Ryan,	M.	(2000).	The	transmission	of	advertise-
ment	calls	in	Central	American	frogs.	Behavioral Ecology,	11(1),	71–83.	
https://doi.org/10.1093/beheco/11.1.71

Lawrence,	B.,	&	Simmons,	 J.	 (1982).	Measurements	of	 atmospheric	 at-
tenuation	at	ultrasonic	frequencies	and	the	significance	for	echolo-
cation	by	bats.	The Journal of the Acoustical Society of America,	71(3),	
585–590.	https://doi.org/10.1121/1.387529

Lehmann,	 G.,	 Frommolt,	 K.,	 Lehmann,	 A.,	 &	 Riede,	 K.	 (2014).	
Baseline	 data	 for	 automated	 acoustic	 monitoring	 of	 Orthoptera	
in	 a	Mediterranean	 landscape,	 the	 Hymettos,	 Greece.	 Journal of 
Insect Conservation,	 18(5),	 909–925.	 https://doi.org/10.1007/
s10841‐014‐9700‐2

Llusia,	 D.,	Márquez,	 R.,	 &	 Bowker,	 R.	 (2011).	 Terrestrial	 sound	mon-
itoring	 systems,	 a	 methodology	 for	 quantitative	 calibration.	
Bioacoustics,	 20(3),	 277–286.	 https://doi.org/10.1080/09524622.
2011.9753651

https://orcid.org/0000-0002-9793-7240
https://orcid.org/0000-0002-9793-7240
https://orcid.org/0000-0002-0495-4771
https://orcid.org/0000-0002-0495-4771
https://orcid.org/0000-0003-3135-2167
https://orcid.org/0000-0003-3135-2167
https://doi.org/10.7717/peerj.103
https://doi.org/10.7717/peerj.103
https://doi.org/10.1642/0004-8038(2007)124[653:TMFEAF]2.0.CO;2
https://doi.org/10.1642/0004-8038(2007)124[653:TMFEAF]2.0.CO;2
https://doi.org/10.2193/2006-161
https://doi.org/10.2193/2006-161
https://doi.org/10.1214/10-EJS581
https://doi.org/10.1016/j.biocon.2015.02.028
https://doi.org/10.1016/j.anbehav.2007.03.019
https://doi.org/10.1080/01621459.2014.893884
https://doi.org/10.1080/01621459.2014.893884
https://doi.org/10.1007/s10980-013-9849-1
https://doi.org/10.1007/s10980-013-9849-1
https://doi.org/10.1016/j.foreco.2013.10.006
https://doi.org/10.1016/j.foreco.2013.10.006
https://doi.org/10.1006/anbe.1995.0043
https://doi.org/10.1006/anbe.1995.0043
https://doi.org/10.1111/j.1365-2664.2009.01731.x
https://doi.org/10.1111/j.1365-2664.2009.01731.x
https://doi.org/10.1111/2041-210X.12060
https://doi.org/10.1111/2041-210X.12060
https://doi.org/10.1121/1.415879
https://doi.org/10.1121/1.415879
https://doi.org/10.1016/0022-460X(84)90380-8
https://doi.org/10.1007/s10980-018-0675-3
https://doi.org/10.1007/s10980-018-0675-3
https://doi.org/10.1002/eap.1385
https://doi.org/10.1002/eap.1385
https://doi.org/10.1111/j.1557-9263.2009.00245.x
https://doi.org/10.1016/j.biocon.2015.10.001
https://doi.org/10.1016/j.biocon.2015.10.001
https://doi.org/10.1007/s11160-013-9328-4
https://doi.org/10.1007/s11160-013-9328-4
https://doi.org/10.1093/beheco/11.1.71
https://doi.org/10.1121/1.387529
https://doi.org/10.1007/s10841-014-9700-2
https://doi.org/10.1007/s10841-014-9700-2
https://doi.org/10.1080/09524622.2011.9753651
https://doi.org/10.1080/09524622.2011.9753651


13002  |     MACLAREN Et AL.

MacKenzie,	D.,	Nichols,	J.,	Lachman,	G.,	Droege,	S.,	Royle,	J.,	&	Langtimm,	
C.	 (2002).	 Estimating	 site	 occupancy	 rates	 when	 detection	 prob-
abilities	 are	 less	 than	 one.	 Ecology,	 83(8),	 2248–2255.	 https://doi.
org/10.1890/0012‐9658(2002)083[2248:ESORWD]2.0.CO;2

Mannan,	R.,	Perry,	G.,	Andersen,	D.,	&	Boal,	C.	(2014).	Call	broadcasting	
and	 automated	 recorders	 as	 tools	 for	 anuran	 surveys	 in	 a	 subarc-
tic	 tundra	 landscape.	The Journal of North American Herpetology,	1,	
47–52.

Marques,	T.	A.,	Thomas,	L.,	Martin,	S.	W.,	Mellinger,	D.	K.,	Ward,	D.	J.,	
Moretti,	J.	A.,	 ...	 	Tyack,	P.	L.,	 	 (2013).	Estimating	animal	population	
density	using	passive	acoustics.	Biological Reviews,	88,	287–309.

Marten,	K.,	&	Marler,	P.	(1977).	Sound	transmission	and	its	significance	
for	animal	vocalization.	Behavioral Ecology and Sociobiology,	2(3),	271–
290.	https://doi.org/10.1007/BF00299740

Mathevon,	N.,	Dabelsteen,	T.,	&	Blumenrath,	S.	(2005).	Are	high	perches	
in	 the	 blackcap	 Sylvia	 atricapilla	 song	 or	 listening	 posts?	 A	 sound	
transmission	study.	The Journal of the Acoustical Society of America,	
117(1),	442–449.

Mazerolle,	M.	(2013).	AICcmodavg:	Model	selection	and	multimodel	in-
ference	based	on	(Q)	AIC	(c).	R	Package	Version,	1,	35.

McClintock,	B.,	Bailey,	L.,	Pollock,	K.,	&	Simons,	T.	(2010).	Experimental	
investigation	 of	 observation	 error	 in	 anuran	 call	 surveys.	 The 
Journal of Wildlife Management,	 74(8),	 1882–1893.	 https://doi.
org/10.2193/2009‐321

Measey,	 G.,	 Stevenson,	 B.,	 Scott,	 T.,	 Altwegg,	 R.,	 &	 Borchers,	
D.	 (2017).	 Counting	 chirps:	 Acoustic	 monitoring	 of	 cryptic	
frogs.	 Journal of Applied Ecology,	 54(3),	 894–902.	 https://doi.
org/10.1111/1365‐2664.12810

Mielke,	 A.,	 &	 Zuberbühler,	 K.	 (2013).	 A	 method	 for	 automated	 in-
dividual,	 species	 and	 call	 type	 recognition	 in	 free‐ranging	 ani-
mals.	 AnimalBehaviour,	 86(2),	 475–482.	 https://doi.org/10.1016/j.
anbehav.2013.04.017

Miller,	 D.,	 Weir,	 L.,	 McClintock,	 B.,	 Grant,	 E.,	 Bailey,	 L.,	 &	 Simons,	 T.	
(2012).	Experimental	investigation	of	false	positive	errors	in	auditory	
species	occurrence	surveys.	Ecological Applications,	22,	1665–1674.	
https://doi.org/10.1890/11‐2129.1

Morton,	 E.	 (1975).	 Ecological	 sources	 of	 selection	 on	 avian	
sounds.	 The American Naturalist,	 109(965),	 17–34.	 https://doi.
org/10.1086/282971

Nelson,	B.	(2003).	Reliability	of	sound	attenuation	in	Florida	scrub	hab-
itat	and	behavioral	implications.	The Journal of the Acoustical Society 
of America,	113(5),	2901–2911.	https://doi.org/10.1121/1.1564817

Öhlund,	O.,	&	 Larsson,	C.	 (2015).	Meteorological	 effects	 on	wind	 tur-
bine	 sound	 propagation.	 Applied Acoustics,	 89,	 34–41.	 https://doi.
org/10.1016/j.apacoust.2014.09.009

Oseen,	 K.,	 &	Wassersug,	 R.	 (2002).	 Environmental	 factors	 influencing	
calling	in	sympatric	anurans.	Oecologia,	133(4),	616–625.	https://doi.
org/10.1007/s00442‐002‐1067‐5

Pacifici,	K.,	 Simons,	T.,	&	Pollock,	K.	 (2008).	Effects	of	 vegetation	and	
background	noise	on	the	detection	process	 in	auditory	avian	point	
count	 surveys.	 The Auk,	 125,	 600–607.	 https://doi.org/10.1525/
auk.2008.07078

Piercy,	 J.,	Codling,	E.,	Hill,	A.,	 Smith,	D.,	&	Simpson,	S.	 (2014).	Habitat	
quality	affects	sound	production	and	likely	distance	of	detection	on	
coral	 reefs.	Marine Ecology Progress Series,	516,	 35–47.	 https://doi.
org/10.3354/meps10986

Pieretti,	N.,	Farina,	A.,	&	Morri,	D.	(2011).	A	new	methodology	to	infer	
the	singing	activity	of	an	avian	community:	The	Acoustic	Complexity	
Index	 (ACI).	 Ecological Indicators,	 11(3),	 868–873.	 https://doi.
org/10.1016/j.ecolind.2010.11.005

Pijanowski,	B.,	Villanueva‐Rivera,	L.,	Dumyahn,	S.,	Farina,	A.,	Krause,	B.,	
Napoletano,	B.,	…	Pieretti,	N.	(2011).	Soundscape	ecology:	The	sci-
ence	of	sound	in	the	landscape.	BioScience,	61(3),	203–216.	https://
doi.org/10.1525/bio.2011.61.3.6

R	Core	 Team	 (2018).	R: A language and environment for statistical com-
puting.	 Vienna,	 Austria:	 R	 Foundation	 for	 Statistical	 Computing.	
Retrieved	from	https://www.R‐project.org/

Rempel,	R.,	Francis,	C.,	Robinson,	J.,	&	Campbell,	M.	(2013).	Comparison	
of	audio	recording	system	performance	for	detecting	and	monitor-
ing	songbirds.	Journal of Field Ornithology,	84(1),	86–97.	https://doi.
org/10.1111/jofo.12008

Richards,	D.,	&	Wiley,	R.	(1980).	Reverberations	and	amplitude	fluctua-
tions	in	the	propagation	of	sound	in	a	forest:	Implications	for	animal	
communication.	 The American Naturalist,	 115(3),	 381–399.	 https://
doi.org/10.1086/283568

Romer,	 H.,	 &	 Lewald,	 J.	 (1992).	 High‐frequency	 sound	 transmission	 in	
natural	 habitats:	 Implications	 for	 the	 evolution	 of	 insect	 acoustic	
communication.	Behavioral Ecology and Sociobiology,	29(6),	437–444.	
https://doi.org/10.1007/BF00170174

Rose,	 G.,	 &	 Brenowitz,	 E.	 (1991).	 Aggressive	 thresholds	 of	 male	
Pacific	 treefrogs	 for	 advertisement	 calls	 vary	 with	 ampli-
tude	 of	 neighbors'	 calls.	 Ethology,	 89(3),	 244–252.	 https://doi.
org/10.1111/j.1439‐0310.1991.tb00307.x

Sadoti,	G.,	Johnson,	K.,	Smith,	J.,	&	Petersen,	N.	(2018).	Influences	of	spa-
tial	variation	in	vegetation	on	avian	richness	and	abundance	vary	by	
season	in	the	Chihuahuan	Desert.	Journal of Arid Environments,	151,	
49–57.	https://doi.org/10.1016/j.jaridenv.2017.10.007

Selby,	 T.,	Hart,	K.,	 Fujisaki,	 I.,	 Smith,	B.,	 Pollock,	C.,	Hillis‐Starr,	 Z.,	…	
Oli,	M.	(2016).	Can	you	hear	me	now?	Range‐testing	a	submerged	
passive	 acoustic	 receiver	 array	 in	 a	 Caribbean	 coral	 reef	 habitat.	
Ecology and Evolution,	6(14),	4823–4835.	https://doi.org/10.1002/
ece3.2228

Simons,	 T.,	 Alldredge,	 M.,	 Pollock,	 K.,	 &	 Wettroth,	 J.	 (2007).	
Experimental	 analysis	 of	 the	 auditory	 detection	 process	 on	
avian	 point	 counts.	 The Auk,	 124(3),	 986–999.	 https://doi.
org/10.1642/0004‐8038(2007)124[986:EAOTAD]2.0.CO;2

Sólymos,	 P.,	 Matsuoka,	 S.,	 Bayne,	 E.,	 Lele,	 S.,	 Fontaine,	 P.,	 Cumming,	
S.,	…	Song,	S.	(2013).	Calibrating	indices	of	avian	density	from	non‐
standardized	 survey	 data:	 Making	 the	 most	 of	 a	 messy	 situation.	
Methods in Ecology and Evolution,	 4(11),	 1047–1058.	 https://doi.
org/10.1111/2041‐210X.12106

Stewart,	M.,	&	Bishop,	P.	(1994).	Effects	of	increased	sound	level	of	adver-
tisement	calls	on	calling	male	frogs,	Eleutherodactylus coqui. Journal 
of Herpetology,	28(1),	46–53.	https://doi.org/10.2307/1564679

Sueur,	J.,	Farina,	A.,	Gasc,	A.,	Pieretti,	N.,	&	Pavoine,	S.	(2014).	Acoustic	
indices	 for	 biodiversity	 assessment	 and	 landscape	 investigation.	
Acta Acustica United with Acustica,	 100(4),	 772–781.	 https://doi.
org/10.3813/AAA.918757

Turgeon,	P.,	Van	Wilgenburg,	S.,	&	Drake,	K.	(2017).	Microphone	variabil-
ity	and	degradation:	Implications	for	monitoring	programs	employing	
autonomous	recording	units.	Avian Conservation and Ecology,	12(1),	9.	
https://doi.org/10.5751/ACE‐00958‐120109

U.S.	Fish	and	Wildlife	Service	(2007).	Section 10(a)(1)(A) Scientific permit 
requirements for conducting Houston Toad presence/absence surveys. 
Austin,	TX:	U.S.	Fish	and	Wildlife	Service.

Vold,	 S.,	 Handel,	 C.,	 &	McNew,	 L.	 (2017).	 Comparison	 of	 acoustic	 re-
corders	and	field	observers	for	monitoring	tundra	bird	communities.	
Wildlife Society Bulletin,	 41(3),	 566–576.	 https://doi.org/10.1002/
wsb.785

Wiggins,	 S.,	 &	 Hildebrand,	 J.	 (2007).	 High‐frequency	 Acoustic	
Recording	 Package	 (HARP)	 for	 broad‐band,	 long‐term	 marine	
mammal	 monitoring.	 In	 Underwater Technology and Workshop 
on Scientific Use of Submarine Cables and Related Technologies 
Symposium	(pp.	551–557).

Wimmer,	 J.,	 Towsey,	 M.,	 Roe,	 P.,	 &	 Williamson,	 I.	 (2013).	 Sampling	
environmental	 acoustic	 recordings	 to	 determine	 bird	 species	
richness.	 Ecological Applications,	 23(6),	 1419–1428.	 https://doi.
org/10.1890/12‐2088.1

https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1007/BF00299740
https://doi.org/10.2193/2009-321
https://doi.org/10.2193/2009-321
https://doi.org/10.1111/1365-2664.12810
https://doi.org/10.1111/1365-2664.12810
https://doi.org/10.1016/j.anbehav.2013.04.017
https://doi.org/10.1016/j.anbehav.2013.04.017
https://doi.org/10.1890/11-2129.1
https://doi.org/10.1086/282971
https://doi.org/10.1086/282971
https://doi.org/10.1121/1.1564817
https://doi.org/10.1016/j.apacoust.2014.09.009
https://doi.org/10.1016/j.apacoust.2014.09.009
https://doi.org/10.1007/s00442-002-1067-5
https://doi.org/10.1007/s00442-002-1067-5
https://doi.org/10.1525/auk.2008.07078
https://doi.org/10.1525/auk.2008.07078
https://doi.org/10.3354/meps10986
https://doi.org/10.3354/meps10986
https://doi.org/10.1016/j.ecolind.2010.11.005
https://doi.org/10.1016/j.ecolind.2010.11.005
https://doi.org/10.1525/bio.2011.61.3.6
https://doi.org/10.1525/bio.2011.61.3.6
https://www.R-project.org/
https://doi.org/10.1111/jofo.12008
https://doi.org/10.1111/jofo.12008
https://doi.org/10.1086/283568
https://doi.org/10.1086/283568
https://doi.org/10.1007/BF00170174
https://doi.org/10.1111/j.1439-0310.1991.tb00307.x
https://doi.org/10.1111/j.1439-0310.1991.tb00307.x
https://doi.org/10.1016/j.jaridenv.2017.10.007
https://doi.org/10.1002/ece3.2228
https://doi.org/10.1002/ece3.2228
https://doi.org/10.1642/0004-8038(2007)124[986:EAOTAD]2.0.CO;2
https://doi.org/10.1642/0004-8038(2007)124[986:EAOTAD]2.0.CO;2
https://doi.org/10.1111/2041-210X.12106
https://doi.org/10.1111/2041-210X.12106
https://doi.org/10.2307/1564679
https://doi.org/10.3813/AAA.918757
https://doi.org/10.3813/AAA.918757
https://doi.org/10.5751/ACE-00958-120109
https://doi.org/10.1002/wsb.785
https://doi.org/10.1002/wsb.785
https://doi.org/10.1890/12-2088.1
https://doi.org/10.1890/12-2088.1


     |  13003MACLAREN Et AL.

Yip,	D.,	Bayne,	E.,	Sólymos,	P.,	Campbell,	J.,	&	Proppe,	D.	(2017).	Sound	
attenuation	 in	 forest	 and	 roadside	 environments:	 Implications	 for	
avian	point‐count	surveys.	The Condor,	119(1),	73–84.b.	https://doi.
org/10.1650/CONDOR‐16‐93.1

Yip,	 D.,	 Leston,	 L.,	 Bayne,	 E.,	 Sólymos,	 P.,	 &	 Grover,	 A.	 (2017).	
Experimentally	 derived	 detection	 distances	 from	 audio	 recordings	
and	human	observers	enable	integrated	analysis	of	point	count	data.	
Avian Conservation and Ecology,	12(1),	 11.	 https://doi.org/10.5751/
ACE‐00997‐120111

Zimmerman,	B.	 (1994).	Audio	strip	transects.	 In	R.	Heyer,	M.	Donnelly,	
M.	Foster,	&	R.	Mcdiarmid	(Eds.),	Measuring and monitoring biological 
diversity: Standard methods for amphibians	(pp.	xxx–xxx).	Washington,	
DC:	Smithsonian	Institution.

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.				

How to cite this article:	MacLaren	AR,	Crump	PS,	Royle	JA,	
Forstner	MRJ.	Observer‐free	experimental	evaluation	of	
habitat	and	distance	effects	on	the	detection	of	anuran	and	
bird	vocalizations.	Ecol Evol. 2018;8:12991–13003. https://doi.
org/10.1002/ece3.4752

https://doi.org/10.1650/CONDOR-16-93.1
https://doi.org/10.1650/CONDOR-16-93.1
https://doi.org/10.5751/ACE-00997-120111
https://doi.org/10.5751/ACE-00997-120111
https://doi.org/10.1002/ece3.4752
https://doi.org/10.1002/ece3.4752

