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Abstract. This article concerns the heat equation with a memory term in

the form of a time-convolution of a kernel with the time-derivative of the state.

This problem appears in oil recovery simulation in fractured rock reservoir. It
models the fluid flow in a fissured media where the history of the flow must

be taken into account. Most of the existing papers on related works treat
only (in addition to the well-posedness which is by now well understood in

various spaces) the convergence of solutions to the equilibrium state without

establishing any decay rate. In the present work we shall improve and extend
the existing results. In addition to weakening the conditions on the kernel

leading to exponential decay, we extend the decay rate to a general one.

1. Introduction

In this article we consider the problem

ut(x, t) +
∫ t

0

k(t− s)ut(x, s)ds = ∆u(x, t), (x, t) ∈ Ω× I

u(x, t) = 0, (x, t) ∈ ∂Ω× I,
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is an open bounded subset of Rd (d ≥ 1), with smooth boundary ∂Ω
and I = (0, T ), T > 0. This problem models the flow of a fluid in a fissured
media when the history of the flow is taken into account. This is the case of some
oil reservoirs where the media is formed by a matrix of porous blocks isolated by
a well-developed system of fissures. Problem (1.1) has been derived by Hornung
and Showalter [21]. This problem appears also in the heat conduction theory with
memory term according to the theory of Gurtin-Pipkin. It is also known as the
Basset problem when k(t) = t−1/2

Γ(1/2) (see Basset [7]). In this case the convolution
term represents a fractional derivative of order 1/2.

The literature is very rich in results on well-possedness for similar problems (see
the section below). In fact, there are numerous works on existence and uniqueness
as well as regularity in different spaces like: Lp space, Hölder spaces, Sobolev spaces
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and Besov spaces. There are also several generalizations of this problem to other
linear as well as nonlinear cases encompassing other applications in other fields. The
assumptions on the kernels in the memory terms are now reasonable (for the well-
posedness). For this reason we shall not work on this issue and assume existence,
uniqueness and enough regularity for our solutions to justify the computation. In
contrast, we could not find many papers on the asymptotic behavior of solutions
(see Section 3 below). Most of the existing papers treat rather the convergence of
solutions (to the equilibrium state) without specifying the decay rate. It is exactly
this last issue which we want to address here. We intend to shed some light on this
matter of speed of convergence.

The next section contains a reminder of some results related to well-posedness.
We recall the few results, we are aware of, on the asymptotic behavior of solutions
in Section 3. In Section 4 we present some useful inequalities we need in our proof.
Section 5 is devoted to our main result on the explicit decay rate of solutions.

2. Well-possedness

In the previous fifteen years a fairly large number of papers appeared in the
literature with a large number of results on well-posedness for general problems.
The main tools are several kinds of fixed point theorems and the semi-group theory.
We shall not discuss these works here. We will restrict ourselves to the following
ones just to give the reader a flavor of these generalizations.

In 1990, Hornung and Showalter [21] proved that problem (1.1) has a unique
solution in the space of absolutely continuous functions with square summable
derivatives provided that: k ∈ L1(0, T )∩C1(0, T ), k ≥ 0, k′ ≤ 0, k′ is nondecreasing
and not equal to a constant. In the same year, Clément and Da Prato [10] proved
the existence and uniqueness of a mild solution in the space of continuous functions
for a similar problem, namely

d

dt
(u(t) + (k ∗ u)(t)) = Au(t). (2.1)

They assumed that the Laplace transform k̂(σ) of k(t) admits an analytic extension
in

Sν,θ = {σ ∈ C \ {0} : | arg(σ − ν)| < θ}

and there exists C > 0, α ∈ (0, 1), ν ∈ R, θ ∈ (π2 , π) such that ‖k̂(σ)‖ ≤ C
|σ−ν|α , for

all σ ∈ Sν,θ. These conditions are satisfied by k(t) = e−βttα−1, β > 0. They also
considered the existence of a nonlinear source in the equation.

In 1995, Sforza [32] proved global existence and Hölder regularity of the solu-
tion when the kernel is nonnegative nondecreasing and summable for a little more
general problem than (2.1)(with a nonlinear source).

For the same problem (with an external source term f(x, t)), Peszynska [31]
presented a convergent method for fully-discrete approximation of solutions. They
assumed that the kernel in (1.1) is nonnegative, monotone increasing and in L1(I)∩
C(I). The well-posedness being shown already in Peszynska [31]. The work of
Hornung and Showalter [21] and Peszynska [31] was extended the following year
by Slodicka [33]. The author established well-posedness in C ((0, π);L2(Ω)) ∩
L∞

(
(0, T );H1

0 (Ω)
)

(with square summable time derivative) for weakly singular
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kernels (k(t) ≤ ct−α, α ∈ (0, 1)). The problem

d

dt
[u(t)− a

∫ t

−∞
k(t− s)u(s)ds] = Au(t) + a

∫ t

−∞
l(t− s)u(s)ds− p(t) + q(t), (2.2)

which arises in the study of dynamics of income and employment, has been treated
in Dos Santos and Hernandez [17]. Existence and uniqueness of (continuous) mild
solutions is established for continuous (matrices) k under a condition on the Laplace
transform of k satisfied by tαe−βt, β > 0, α ∈ (0, 1). For continuous kernels
the existence and uniqueness of Hölder continuous solutions has been discussed in
Hernandez, Preto and O’Regan [20].

For more results one has to look into the abstract problem

u(t) +
∫ t

0

b(t− s)Au(s)ds 3 f(t), u(0) = u0. (2.3)

This problem is shown to be equivalent to

a
du

dt
+
d

dt

∫ t

0

k(t− s)u(s)ds+Au(t) 3 u0k(t) + g(t),

u(0) = f(0) = u0.

(2.4)

where g = af + k ∗ f . As an application, one may consider

∂

∂t
[αu+

∫ t

−∞
b(t− s)u(s)ds]− βσ(ux)x = h(t, x), x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0, t > 0.
(2.5)

This well-posedness (existence of generalized and strong solutions) of these problems
is established in Clément and Nohel [9] for completely positive kernels b; a general
definition satisfied, for instance, by

(i) b ∈ L1(0, T ) nonnegative, non-increasing and log convex, or
(ii) (Special case of (i)), b ∈ L1(0, T ) and is completely monotone on (0, T ).

The nonlinear case is treated in Crandall and Nohel [15] for b ∈ AC[0, T ]∩BV [0, T ],
b(0) > 0 in addition to (i). Baillon and Clément [4] considered the same (abstract
and application) problem and established existence and uniqueness under the as-
sumption b ≥ 0, b nonincreasing and b ∈ BVloc[0,∞). This work has been extended
from Hilbert spaces to Banach spaces by Kato, Kobayasi and Miyadera [23].

Clément and Nohel [9] also considered problem (2.3) with f(t) = u0 + (b ∗ g)(t)
and completely positive kernels.

A nonlinear version of (2.5) is investigated in Jakubowski and Wittbold [22],
namely

∂

∂t
[α(ψ(u(t, x))− ψ(u0(x)) +

∫ t

0

k(t− s)(ψ(u(s, x))− ψ(u0(x)))ds)]

= div σ(x,∇u(t, , x)) + f(t, x) .

Entropy solutions are sought in L1(Ω) (a space which does not enjoy the Radon-
Nikodyn property) and continuity of generalized solutions is proved when k ∈
L1

loc(0,∞) and α +
∫ t

0
k(s)ds > 0, for all t ≥ 0. Digging deeper we are lead to

the theory of rigid heat-conductors with memory. Indeed, MacCamy [28], Nunziato



4 N. TATAR, S. KERBAL, A. AL-GHASSANI EJDE-2017/303

[30], Coleman and Gurtin [13], developed a theory for heat flow in materials with
fading memory based on the balance of heat law

et = −qx + h, (2.6)

where

e(t, x) = αu(t, x) +
∫ t

0

k(t− s)u(s, x)dx, t ≥ 0, 0 ≤ x ≤ 1. (2.7)

is the internal energy,

q(t, x) = −βux(t, x) +
∫ t

0

l(t− s)ux(s, x)ds, t ≥ 0, 0 ≤ x ≤ 1, (2.8)

is the heat flux and h(t, x) is the extended heat supply. For the remaining parame-
ters and kernels, we note that α is the heat capacity, β is the thermal conductivity,
k is the internal energy relation function, and l is the heat flux relaxation function.
Taking into account (2.7) and (2.8) in (2.6) we find

∂

∂t
[αu(t, x) +

∫ t

0

k(t− s)u(s, x)dx]

= βuxx(t, x)−
∫ t

0

l(t− s)uxx(s, x)ds+ h(t, x), t ≥ 0, 0 ≤ x ≤ 1

u(t, 0) = u(t, 1) = 0, u(0, x) = u0.

(2.9)

Many existing results in the literature, apply to this problem directly or indirectly
through some transformations. Barbu and Malik [6] discussed the problem

u′(t) +Bu(t) +
∫ t

0

l(t− s)Au(s)ds+
∫ t

0

k(t− s)u(s)ds 3 f(t),

u(0) = u0.

They proved existence and uniqueness in the space of (weakly) continuous functions
with the assumption k, k′ ∈ L1

loc ([0,∞]; R).
A couple of years later Clément and Nohel [9] gave problem (2.9) as an applica-

tion of the abstract equation (2.3) after transforming it into the Volterra equation

u(t) + (k ∗ u)(t) + (ψ ∗Au)(t) = F (t),

for some F (t), and then into the simple form

u(t) + (ψ ∗Au)(t) = G(t) = F (t)− (r(k) ∗ F )(t).

In 1982, Londen and Nohel [26] investigated the problem

du

dt
(t) +Bu(t) + (l ∗Au)(t) +

d

dt
(k ∗ u(t)) 3 f(t)

u(0) = u0 a.e. in R+

generalizing the work of Crandall, Lunardi and Nohel [14] where k = 0. They
assumed that k is a locally absolutely continuous function on [0,∞) to prove exis-
tence (without uniqueness) in the space of continuous functions. A few years later,
Da Prato and Lunardi [16] established the existence, uniqueness and regularity of
solutions in some spaces of continuous functions under some assumptions on the
kernel satisfied by e−βttα−1, β > 0, α ∈ (0, 1).

In the same year, Clément and Da Prato published the paper [10] where they
proved regularity in Hölder spaces, Sobolev spaces and spaces of bounded uniformly
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continuous functions. The kernel is assumed to be summable, nonnegative and
nonincreasing. See also Keyantuo and Lizama [24] for regularity in Lp spaces,
Hölder spaces and Besov space.

The same authors examined regularity in Hölder spaces for locally summable
and 2-regular kernels on R in Keyantuo and Lizama [25]. For the same type of
kernels we note that existence and uniqueness has been established in Lp space in
Clément and Prüss [11] as well.

A slightly more general problem is treated in Grasselli and Lorenzi [18]. It is
proved that a solution u ∈ L∞((0, T ); L2(Ω)) ∩ L2((0, T ); H1

0(Ω)) such that ut ∈
L2((0, T ); H−1(Ω)) in case k ∈ L1(0,∞).

The well-posedness in the space of continuous functions is shown also for sum-
mable kernels satisfying λk̃(λ) ≥ 0, for all λ ∈ R where k̃(λ) is the Fourier sine
transform of k. This condition is satisfied by summable nonincreasing functions.
Before going to the more recent works, we pause to note that problem (1.1) with

k(t) =
t−α

Γ(1− α)
, α ∈ (0, 1)

becomes the fractionally damped heat equation

ut +Dαu = ∆u

where Dα is the Caputo fractional derivative operator. The well-posedness of par-
abolic fractional equations is established in Ashyralyev [3].

We refer the reader to the work of Yin [34] for the general problem

ut = a(t, x, u, ux)uxx + b(t, x, u, ux) +
∫ t

0

k(s, x, u, ux)ds

and to the book [19] for more details.
In the context of neutral differential equations, equations of the form

d

dt
[u(t)−f(t, ut,

∫ t

0

k(t, s, ut)ds)] = Au(t)+
∫ t

0

l(t, s, us)ds+g(t, ut,
∫ t

0

m(t, s, us)ds)

have been investigated by many authors: Balachandran, Annapoorani and Kim [5],
Akiladevi, Balachandran and Kim [2].

3. Asymptotic behavior

Regarding the long time behavior of solutions to problem (2.1) we could not
find results on this precise form, so we moved to similar problems, namely problem
(2.9). Barbu and Malik in [6] proved the convergence of solutions to zero when k,
k′ ∈ L1

loc([0,∞); R) and k is completely positive (k ∈ C2(0,∞)∩C[0,∞), k(0) > 0,
(−1)nkn(t) ≥ 0, n = 0, 1, 2), see also Clement, MacCamy and Nohel [12]. The same
result is found in Kato, Kobayasi and Miyadera in [23] with k ∈ BVloc[0,∞) and
without the convexity assumption.

Londen and Nohel in [26] proved the convergence in case k ∈ LAC(R+), k ≥
0, k′ ≤ 0 on R+, and |k′(t)| ≤ ct−α, t ∈ [1,∞), c > 0, α > 3/2. A similar result is
achieved in Aizicovici [1], but without this l ast condition on the growth of k′(t).
In these works (and many others which appeared in the same period and after
that) the limit u∞ is the equilibrium of the system. For instance, for the problem
(2.9), we have u∞(x) = α

(
β −

∫∞
0
h(s)ds

)−1
v(x), where v is the unique solution of

−vxx = h∞ with v(0) = v(1) = 0 and h∞(x) = limt→∞ h(t, x) (assumed to exist).



6 N. TATAR, S. KERBAL, A. AL-GHASSANI EJDE-2017/303

Further, u∞ = 0 if lim
∫ t
t−1
|h(s)|2ds = 0, see Londen and Nohel [26]. These results

hold for higher dimensions as well. In this case, for h 6= 0, another condition on k

is added, namely k′(t) + h(0)
β k(t) ≤ 0, t ≥ 0. This condition has been removed later

by Lunardi [27].
In our presentation above, while surveying some results, we focussed only on

the assumptions on the kernel k and somewhat on the underlying spaces. This
is intentional as we are concerned by problem (2.1) which corresponds to h = 0.
We shall seek conditions on k which will ensure some specific decay rates of the
solutions.

Of concern to us is the work of Nachlinger and Nunziato [29], where a similar
problem to (2.9) is studied (with −h(t) instead of h(t) and an infinite history)

∂

∂t
[αu(t, x) +

∫ ∞
0

k(s)u(s, x)ds] = β∆u(t, x) +
∫ ∞

0

l(s)∆u(t− s, x)ds. (3.1)

It is proved there that solutions decay exponentially to zero in the L2-norm provided
that k(0) ≥ 0, k ≥ 0, k(t) → 0 as t → ∞, and supt∈[0,∞) |

∫ t
0
eδµsk′(s)ds| <

αµ(1− δ)δ for some 0 < δ < 2/3, µ = 1
α [k(0) +λβ] where λ is the smallest positive

eigenvalue of the problem

−∆v = λv,

v|∂Ω = 0

and same condition on l. It is our intention here to improve this work.

4. Preliminaries

In this section we shall present some material we will need in our paper later.

Lemma 4.1 (Young inequality). For all a, b ∈ R, we have ab ≤ δa2 + b2

4δ , δ > 0.

In the next lemma, ‖ · ‖p denotes the Lp-norm (where Lp is the usual Lebesgue
space). The norm ‖ · ‖ will stand for ‖ · ‖2.

Lemma 4.2 (Young inequality for convolution, see [8]). If f ∈ Lp(Rd), g ∈ Lq(Rd)
and 1

p + 1
q = 1

r + 1 with 1 ≤ p, q, r ≤ ∞, then

‖f ? g‖r ≤ ‖f‖p ‖g‖q ,

where (f ? g)(x) =
∫

Rd f(x− y)g(y)dy.

We will also use the well-known Poincaré inequality given in the following lemma.

Lemma 4.3. Let Ω be a sufficiently regular domain in Rd. Then, there exists a
positive constant Cp such that, for every u ∈ H1

0 (Ω)

Cp‖u‖2 ≤ ‖∇u‖2

where H1
0 (Ω) is the Sobolev space of all functions u ∈ H1(Ω) which vanish along

the boundary of Ω.
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5. Main results

Here we shall be concerned by weak and strong solutions.

Definition 5.1. A function u : [0, T ] → H1
0 (Ω) is called weak solution of (1.1) if

u ∈ L2(0, T ;H1
0 (Ω)), ut ∈ L2(0, T ;H−1(Ω)) and for every v ∈ H1

0 (Ω) we have

〈ut(t), v〉+
〈 ∫ t

0

k(t− s)ut(s)ds, v
〉

+ 〈∇u(t),∇v)〉 = 0

a.e. in [0, T ]. Moreover u(0) = u0. Here, 〈·, ·〉 denotes the duality pairing between
H−1(Ω) and H1

0 (Ω).

By the above considerations, if u0 ∈ H1
0 (Ω), then there exists a unique weak

solution to problem (1.1). In case u0 ∈ H1
0 (Ω)∩H2(Ω) (which is the domain of our

operator), there exists a unique strong solution of problem (1.1) which is a more
regular function that satisfies the equation pointwise. These definitions justify our
computation below.

The following functionals will be useful in order to cancel out some undesirable
terms which will appear in the estimations:

φ(t) =
∫ t

0

(∫ ∞
t

|k′(σ − s)|dσ
)
‖u‖2ds, t ≥ 0,

ψ(t) =
∫ t

0

(∫ ∞
t

k(σ − s)dσ
)
‖ut‖2ds, t ≥ 0.

Our main assumption on the kernel k is

(H1) k ∈ C1[0,∞) ∩ L1(0,∞), k ≥ 0 and there exists a continuous function
µ(t) such that limt→∞ µ(t) exists and |k′|(t − s) ≥ µ(t)

∫∞
t
|k′(σ − s)|dσ,

t ≥ s ≥ 0.

Theorem 5.2. Assume that (H1) holds, u0 ∈ H1
0 (Ω), k′ ∈ L1(0,∞) and ‖k′‖1 <

C2
p + k(0). We have

(a) If limt→∞ µ(t) = 0, then ‖u‖2 ≤ Me−α
R t
0 µ(s)ds for some M,α > 0 and

t ≥ 0 provided that
∫∞

0
k2(s)eC2

R s
0 µ(σ)dσds is bounded.

(b) If limt→∞ µ(t) 6= 0, then ‖u‖2 ≤ Ne−βt f or some N, β > 0 and t ≥ 0
provided that

∫∞
0
k2(s)eC4sds is bounded

where C4 and C2 are constants, determined in the proof.

Proof. Let us multiply the equation in (1.1) by u and integrate over Ω,

1
2
d

dt

∫
Ω

|u|2dx+
∫

Ω

u

∫ t

0

k(t− s)ut(s) ds dx = −
∫

Ω

|∇u|2dx, t > 0. (5.1)

Note that we have used Green’s formula in the right-hand side and the homogeneous
Dirichlet boundary condition. The second term in the left-hand side of (5.1) may
be written as∫

Ω

u{k(0)u(t)− k(t)u(0) +
∫ t

0

k′(t− s)u(s)ds}dx

= k(0)
∫

Ω

u2dx− k(t)
∫

Ω

u0(x)udx+
∫

Ω

u

∫ t

0

k′(t− s)u(s) ds dx,
(5.2)
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for t > 0. The last two terms in the right-hand side of (5.2) are estimated as follows:

k(t)
∫

Ω

u0udx ≤ δ1
∫

Ω

|u|2dx+
k2(t)
4δ1

∫
Ω

|u0|2dx, δ1 > 0;

and using Young and Cauchy-Schwarz inequalities∫
Ω

u

∫ t

0

k′(t− s)u(s) ds dx

≤ δ2
∫

Ω

|u|2dx+
1

4δ2

(∫ t

0

|k′|ds
)∫ t

0

|k′|(t− s)
∫

Ω

|u2(s)| dx ds, δ2 > 0.

On the other hand, we have

φ′(t) =
(∫ ∞

t

|k′|(σ − t)dσ
)∫

Ω

|u|2dx−
∫ t

0

|k′|(t− s)
∫

Ω

|u|2(s) dx ds

=
(∫ ∞

0

|k′|ds
)∫

Ω

|u|2dx−
∫ t

0

|k′|(t− s)
∫

Ω

|u|2(s) ds dx, t ≥ 0.

By the assumption (H1), we see that for 0 < δ3 < 1,

φ′(t) ≤
(∫ ∞

0

|k′|ds
)
‖u‖2 − δ3

∫ t

0

|k′|(t− s)‖u‖2ds

− (1− δ3)
∫ t

0

|k′|(t− s)‖u‖2ds

≤
(∫ ∞

0

|k′|ds
)
‖u‖2 − δ3

∫ t

0

|k′|(t− s)‖u‖2ds− (1− δ3)µ(t)φ(t),

(5.3)

for t > 0. Therefore, the derivative of

L(t) :=
1
2
‖u‖2 + λφ(t), λ > 0, t ≥ 0

along solutions of (1.1), is estimated, using (5.2) and (5.3) as follows

L′(t) =
1
2
d

dt
‖u‖2 + λφ′(t)

≤ −‖∇u‖2 − k(0)‖u‖2 + δ1‖u‖2 +
k2(t)
4δ1
‖u0‖2

+ δ2‖u‖2 +
1

4δ2

(∫ ∞
0

|k′|ds
)∫ t

0

|k′(t− s)|‖u(s)‖2ds

+ λ
(∫ ∞

0

|k′|ds
)
‖u‖2 − λδ3

∫ t

0

|k′|(t− s)‖u(s)‖2ds

− λ(1− δ3)µ(t)φ(t), t ≥ 0

or simply, using Poincaré inequality with constant Cp,

L′(t) ≤ −
(
C2
p + k(0)− δ1 − δ2 − λ‖k′‖1

)
‖u‖2

−
(
λδ3 −

1
4δ2
‖k′‖1

)∫ t

0

|k′|(t− s)‖u‖2ds

− λ(1− δ3)µ(t)φ(t) +
k2(t)
4δ1
‖u0‖2, t ≥ 0.

(5.4)
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If

C2
p + k(0)− δ1 − δ2 − λ‖k′‖1 > 0 and λδ3 −

‖k′‖1
4δ2

≥ 0 (5.5)

then

L′(t) ≤ −C1‖u‖2 − λ(1− δ3)µ(t)φ(t) +
k2(t)
4δ1
‖u0‖2, t ≥ 0. (5.6)

Let us first ignore δ1 in (5.5) as it may be very small and will not affect the decay.
Combining both relations in (5.5) shows that we may find λ > 0 provided that

δ2 +
‖k′‖21
4δ2δ3

< C2
p + k(0) or δ2

2 − [C2
p + k(0)]δ2 +

‖k′‖21
4δ3

< 0.

Solving this quadratic inequality shows that δ2 exists if ‖k′‖21 < δ3[C2
p + k(0)]2. In

turn, under our assumption ‖k′‖1 < C2
p +k(0) we may pick δ3 close enough to (but

smaller than) one. Now back to (5.6), we discuss two cases:
case 1: If limt→∞ µ(t) = 0, then for any M > 0, there exits a tM > 0 such that
µ(t) ≤ M , ∀t ≥ tM . Therefore, this applies in particular to C1 and we get a first
order linear differential inequality in L

L′(t) ≤ −C2µ(t)L(t) +
k2(t)
4δ1
‖u0‖2

for some C2 > 0 and t ≥ tC1 . Clearly

L(t) ≤ L(0)e−C2
R t
0 µ(s)ds +

‖u0‖2

4δ1
e−C2

R t
0 µ(s)ds

∫ t

0

k2(s)eC2
R s
0 µ(σ)dσds,

for t ≥ tC1 . If ∫ ∞
0

k2(s)eC2
R s
0 µ(σ)dσds ≤ A for some A > 0,

then

L(t) ≤
(
L(0) +

‖u0‖2A
4δ1

)
e−C2

R t
0 µ(s)ds, t ≥ tC1 . (5.7)

case 2: If limt→∞ µ(t) 6= 0, then there exists t? > 0 and C3 > 0 such that
µ(t) ≥ C3, for all t ≥ t?. We deduce that

L′(t) ≤ −C4L(t) +
k2(t)
4δ1
‖u0‖2, t ≥ t?

for some C4 > 0. We obtain

d

dt
[L(t)eC4t] ≤ k2(t)‖u0‖2

4δ1
eC4t, t ≥ t?

or

L(t)eC4t ≤ L(t?)eC4t
?

+
∫ t?

0

k2(s)‖u0‖2

4δ1
eC4sds, t ≥ t?.

Hence,

L(t) ≤ L(t?)e−C4(t−t?) + e−C4t
‖u0‖2

4δ1

∫ t?

0

k2(s)eC4sds, t ≥ t?.

If
∫∞

0
k2(s)eC4sds ≤ B for some finite positive number B, we find

L(t) ≤ C5e
−C4t, t ≥ t?, c5 ≥ 0. (5.8)



10 N. TATAR, S. KERBAL, A. AL-GHASSANI EJDE-2017/303

By continuity we may extend the relation (5.7) and (5.8) to [0, tC1 ] and [0, t?] (with
different coefficients). �

Remark 5.3. It is important to emphasize the following observations:
(1) Note that the assumption (H1) is satisfied by many functions and in par-

ticular by exponential (with negative powers) functions. Polynomially decaying
functions are also there but do not satisfy the assumptions in Nachlinger and Nun-
ziato [29]. Therefore, we have different kinds of decay corresponding to different
classes of kernels including as special kernels those which are exponentially decaying
functions.

(2) Our assumption ‖k′‖1 < C2
p + k(0) is not a very restrictive condition. If for

instance, k is a non-increasing function then∫ ∞
0

|k′(s)|ds = −
∫ ∞

0

k′(s)ds = −k(∞) + k(0) ≤ k(0).

This means that ‖k′‖1 < C2
p + k(0) is trivially satisfied.

(3) Note also that this condition on k′ is not tested against an exponential
function as in Nachlinger and Nunziato [29].

(4) It is worth noting also that in the conditions∫ ∞
0

k2(s)ec2
R s
0 µ(σ)dσds ≤ A,

∫ ∞
0

k2(s)eC4sds ≤ B

A and B do not have to take specific values and therefore are arbitrary (we need
them only to be finite). Again, these conditions are on k.

(5) In fact, we do not really need the boundedness of the expressions in the
previous remark. We just need to ensure that they do not grow (with integrals
from 0 to t) faster than the expressions: eC2

R t
0 µ(s)ds and eC4t, respectively.

In the next theorem, we drop the conditions on the derivative of the kernel. We
need, however, the initial data and the solution to be smoother. We shall assume
that the initial data is in the domain of the operator and the solution to be a
strong one. The multiplication of the equation in (1.1) by ut and integration over
Ω, taking into account the boundary conditions, yields∫

Ω

u2
tdx+

∫
Ω

ut

∫ t

0

k(t− s)ut(s) ds dx = −1
2
d

dt

∫
Ω

|∇u|2dx,

or
1
2
d

dt

∫
Ω

|∇u|2dx = −
∫

Ω

u2
tdx−

∫
Ω

ut

∫ t

0

k(t− s)ut ds dx, t ≥ 0. (5.9)

Clearly, this gives rise to a nice term, namely −
∫

Ω
u2
tdx and suggests considering

‖∇u‖2 together with the first energy functional. That is, we let

E(t) =
1
2

(‖u‖2 + ‖∇u‖2), t ≥ 0.

For our kernel we shall assume that k satisfies the condition
(H2) k ∈ C(0,∞)∩L1(0,∞), k ≥ 0 and there exists a continuous function η such

that limt→∞ η(t) exists and k(t− s) ≥ η(t)
∫∞
t
k(σ − s)dσ for t ≥ s ≥ 0.

Theorem 5.4. Assume (H2) holds, ‖k‖21 <
2C2

p

1+2C2
p

, and u0 ∈ H1
0 (Ω)∩H2(Ω). Then

(a) If limt→∞ η(t) = 0, then E(t) ≤ E(0)e−γ
R t
0 η(s)ds, for some γ > 0, t ≥ 0
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(b) If limt→∞ η(t) 6= 0, then E(t) ≤ E(0)e−ξt, for some ξ > 0, t ≥ 0.

Proof. In view of (5.1) and (5.9), we have

E′(t) = −
∫

Ω

u

∫ t

0

k(t− s)ut(s) ds dx−
∫

Ω

|∇u|2dx

−
∫

Ω

u2
tdx−

∫
Ω

ut

∫ t

0

k(t− s)ut(s) ds dx, t ≥ 0.
(5.10)

Here, unlike in the first proof, we do not integrate by parts in the first term ap-
pearing in the right hand side of (5.10). We rather estimate it as follows∫

Ω

u

∫ t

0

k(t− s)ut(s) ds dx

≤ δ1‖u‖2 +
1

4δ1

(∫ t

0

kds
)∫

Ω

∫ t

0

k(t− s)u2
t (s) ds dx, δ1 > 0, t ≥ 0.

(5.11)

Similarly,∫
Ω

ut

∫ t

0

k(t− s)ut(s) ds dx

≤ δ2‖ut‖2 +
1

4δ2

(∫ t

0

kds
)∫

Ω

∫ t

0

k(t− s)u2
t (s) ds dx, δ2 > 0, t ≥ 0.

(5.12)

To deal with the last two terms in (5.11) and (5.12), we introduce the functional

ψ(t) =
∫ t

0

(∫ ∞
t

k(σ − s)dσ
)
‖ut(s)‖2ds, t ≥ 0. (5.13)

Its derivative is given by

ψ′(t) =
(∫ ∞

0

k(s)ds
)
‖ut(s)‖2 −

∫ t

0

k(t− s)‖ut‖2ds, t ≥ 0. (5.14)

Now, we differentiate the expression

V (t) = E(t) + γψ(t) t ≥ 0, (5.15)

for some γ > 0 to be determined, along solutions of (1.1). We find

V ′(t) ≤ −‖∇u‖2 − ‖ut‖2 + δ1‖u‖2 + δ2‖ut‖2

+
‖k‖1

4
(

1
δ1

+
1
δ2

)
∫ t

0

k(t− s)‖ut(s)‖2ds

+ γ‖k‖1‖ut‖2 − γ
∫ t

0

k(t− s)‖ut(s)‖2ds, t ≥ 0.

(5.16)

or

V ′(t) ≤ −(δ3C2
p − δ1)‖u‖2 − (1− δ3)‖∇u‖2 − [1− (δ2 + γ‖k‖1)]‖ut‖2

−
[
δ4γ −

‖k‖1
4

(
1
δ1

+
1
δ2

)
] ∫ t

0

k(t− s)‖ut(s)‖2ds

− (1− δ4)γ
∫ t

0

k(t− s)‖ut(s)‖2ds, t ≥ 0,

(5.17)
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for some δ3 and δ4 satisfying 0 < δ3 < 1 and 0 < δ4 < 1. We shall select the
different parameters as follows:

δ3C
2
p − δ1 > 0,

δ2 + γ‖k‖1 < 1,

δ4γ −
‖k‖1

4
( 1
δ1

+
1
δ2

)
≥ 0.

(5.18)

Note that δ3 and δ4 may be selected if δ1 < C2
p and ‖k‖14 ( 1

δ1
+ 1

δ2
) < γ.

To fix ideas, we pick δ2 = 1/2. Then, it is possible to choose γ so that the last
two relations are fulfilled if

‖k‖1
4

( 1
δ1

+ 2
)
<

1
2‖k‖1

.

This necessitates

‖k‖21 <
2C2

p

2C2
p + 1

.

We are lead to

V ′(t) ≤ −C1‖u‖2 − C2‖∇u‖2 − (1− δ4)γ
∫ t

0

k(t− s)‖ut(s)‖2ds, t ≥ 0.

By Assumption (H2) on the kernel k, we obtain

V ′(t) ≤ −C1‖u‖2 − C2‖∇u‖2 − (1− δ4)γη(t)ψ(t), t ≥ 0.

At this stage we may proceed as in the proof of Theorem 5.2 and discuss two cases:

(a) If limt→∞ η(t) = 0, then there exists t1 > 0 such that

V ′(t) ≤ −C3η(t)V (t), t ≥ t1

for some C3 > 0. This implies that

V (t) ≤ V (0)e−C3
R t
0 η(s)ds, t ≥ t1.

(b) If limt→∞ η(t) 6= 0, then there exists t2 > 0 and C4 > 0 such that

V (t) ≤ V (0)e−C4t, t ≥ t2.

By continuity, this estimation (as well as the previous one in (a)) may be extended
to the interval [0, t2]. This completes the proof. �

The result in Theorem 5.4 may be improved further if we assume

‖eαtk‖1 ≤
2C2

p

1 + 2C2
p

for some α > 0 instead of

‖k‖21 <
2C2

p

1 + 2C2
p

.

Theorem 5.5. If k is a nonnegative continuous function such that with ‖eαtk‖1 ≤
2C2

p

1+2C2
p

for some 0 < α ≤ C2
p

2(1+C2
p) , then E(t) ≤ E(0)e−2αt, t ≥ 0.
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Proof. Let us consider the functional

U(t) :=
e2αt

2

∫
Ω

(
|u|2 + |∇u|2

)
dx, t ≥ 0

for some 0 < α < 1. Differentiating this expression along solution of (1.1), we
obtain

U ′(t) = 2αU(t) + e2αt

∫
Ω

(utu+∇ut · ∇u)dx

= 2αU(t)− e2αt

∫
Ω

u

∫ t

0

k(t− s)ut(s) ds dx

− e2αt

∫
Ω

|∇u|2dx− e2αt

∫
Ω

u2
tdx

− e2αt

∫
Ω

ut

∫ t

0

k(t− s)ut(s) ds dx, t ≥ 0.

An integration over (0, t), gives

U(t) = U(0) + 2α
∫ t

0

U(s)ds−
∫

Ω

∫ t

0

eαsu(s)
∫ s

0

eα(s−σ) · k(s− σ)eασut(σ)dσ ds dx

−
∫ t

0

e2αs

∫
Ω

|∇u|2 dx ds−
∫ t

0

e2αs

∫
Ω

u2
t dx ds

−
∫

Ω

∫ t

0

eαsut(s)
∫ s

0

k(s− σ)eα(s−σ) · eασut(σ)dσ ds dx, t ≥ 0.

(5.19)
By Young inequality, we can estimate∫

Ω

∫ t

0

eαsu(s)
∫ s

0

eα(s−σ)k(s− σ)eασut(σ)dσ ds dx

≤
∫

Ω

(∫ t

0

e2αsu2(s)ds
)1/2[ ∫ t

0

(∫ s

0

eα(s−σ)k(s− σ)eασut(σ)dσ
)2

ds
]1/2

dx

≤
∫

Ω

(∫ t

0

e2αsu2(s)ds
)1/2(∫ t

0

eαsk(s)ds
)(∫ t

0

e2ασu2
t (σ)dσ

)1/2

dx

≤ δ1
∫ t

0

e2αs‖u(s)‖2ds+
‖eαtk‖21

4δ1

∫ t

0

e2ασ‖ut(σ)‖2dσ, t ≥ 0.

(5.20)
Similarly, ∫

Ω

∫ t

0

eαsut(s)
∫ s

0

eα(s−σ)k(s− σ)eασut(σ)dσ ds dx

≤
(∫ t

0

eαsk(s)ds
)∫

Ω

∫ t

0

e2αsu2
t (s) ds dx, t ≥ 0.

(5.21)

Taking into account (5.20) and (5.21) in (5.19), we find

U(t) ≤ U(0) + 2α
∫ t

0

U(s)ds−
∫ t

0

e2αs‖∇u‖2ds−
∫ t

0

e2αs‖ut(s)‖2ds

+ δ1

∫ t

0

e2αs‖u(s)‖2ds+
‖eαtk‖21

4δ1

∫ t

0

e2αs‖ut(s)‖2ds



14 N. TATAR, S. KERBAL, A. AL-GHASSANI EJDE-2017/303

+
(∫ t

0

eαsk(s)ds
)∫ t

0

e2αs‖ut(s)‖2ds, t ≥ 0,

or

U(t) ≤ U(0) + (α+ δ1)
∫ t

0

e2αs‖u(s)‖2ds+ (α− 1)
∫ t

0

e2αs‖∇u‖2ds

+
(
‖eαtk‖1 +

‖eαtk‖21
4δ1

− 1
)∫ t

0

e2αs‖ut(s)‖2ds, t ≥ 0.

As 0 < α < 1, we get

U(t) ≤ U(0) + [α+ δ1 + (α− 1)C2
p ]
∫ t

0

e2αs‖u(s)‖2ds

+
[
(1 +

1
4δ1

)‖eαtk‖1 − 1
] ∫ t

0

e2αs‖ut(s)‖2ds.

We need to select different parameters in such a manner that

α+ δ1 + (α− 1)C2
p ≤ 0,

(1 +
1

4δ1
)‖eαtk‖1 − 1 ≤ 0.

Let δ1 = C2
p/2 and α ≤ C2

p

2(1+C2
p) , then these relations are satisfied if

‖eαtk‖1 ≤
2C2

p

2C2
p + 1

.

Under these conditions, we obtain

U(t) ≤ U(0), t ≥ 0

and hence from the expression of the functional U(t) , we have

E(t) ≤ e−2αtE(0), t ≥ 0.

This completes the proof. �

Acknowledgements. The authors acknowledge financial support from Sultan Qa-
boos University, Oman. This work is funded by internal grant no. IG/SCI/DOMS/15/02.

References

[1] S. Aizicovici; Asymptotic properties of solutions of time-dependent Volterra integral equa-
tions. J. Math. Anal. Appl., 131 (2) (1988), 421-440.

[2] K. S. Akiladevi, K. Balachandran, J. K. Kim; Existence of solutions of nonlinear neutral

integrodifferential equations of Sobolev type in Banach spaces. Nonlinear funct. anal. appl.,
18 (3) (2013), 359-381.

[3] A. Ashyralyev; Well-posedness of fractional parabolic equations. Bound. Value Probl., 31
(2013), 1-18.

[4] J. B. Baillon, P. Clement; Ergodic theorems for non-linear Volterra equations in Hilbert space.

Nonlinear Anal., 5 (7) (1981), 789-801.

[5] K. Balachandran, N. Annapoorani, J. K. Kim; Existence of mild solutions of neutral evolution
integrodifferential equations. Nonlinear funct. anal. appl., 16 (2) (2011), 141-153.

[6] V. Barbu, M. A. Malik; Semilinear integro-differential equations in Hilbert space. J. Math.
Anal. Appl., 67(2) (1979), 452-475.

[7] A. B. Basset; On the descent of a sphere in a viscous liquid. Quart. J. Math., 41 (1910),

369-381.
[8] H. Brezis; Functional analysis, Sobolev spaces and partial differential equations. Universitext.

Springer, New York, (2011). xiv+599 pp. ISBN: 978-0-387-70913-0



EJDE-2017/303 STABILITY OF SOLUTIONS 15

[9] Ph. Clément, J. A. Nohel; Asymtotic behavior of solutions of nonlinear Volterra equations

with completly positive kernels. SIAM J. Math. Anal., 1(4) (1981), 514-535.

[10] Ph. Clément, G. Da Prato; Some results on nonlinear heat equations for materials of fading
memory type. J. Integral Equations Appl., 2(3) (1990), 375-391.

[11] Ph. Clément; J. Prüss; Global existence for a semilinear parabolic Volterra equation. Math.

Z., 209 (1) (1992), 17-26.
[12] Ph. Clément, R. C. MacCamy, J. A. Nohel; Asymptotic properties of solutions of nonlinear

abstract Volterra equations. J. Integral Equations, 3 (1981), 185-216.

[13] B. D. Coleman, M. E. Gurtin; Equipresence and constitutive equations for rigid heat con-
ductors. Z. Angew. Math. Phys., 18 (1967), 199-208.

[14] M. G. Crandall, S. O. Londen, J. A. Nohel; An abstract nonlinear Volterra integrodifferential

equation. J. Math. Anal. Appl., 64 (3) (1978), 701–735.
[15] M. G. Crandall, J. A. Nohel; An abstract functional differential equation and a related

nonlinear Volterra equation. Israel J. Math., 29 (1978), 313-328.
[16] G. Da Prato, A. Lunardi; Solvability on the real line of a class of linear Volterra integro-

differential equations of parabolic type. Ann. Mat. Pura Appl., 4 (150) (1988), 67-117.
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