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ABSTRACT 

Recreational usage is one of the largest impacts to the endemic Texas wild-rice 

(TWR) on the San Marcos river (SMR). During the summer of 2020, the restricted use of 

public access points to the river systems allowed a unique view of how aquatic vegetation 

responds with little intervention from river users. This thesis utilized small unmanned 

aerial surveillance (sUAS) to capture ultra-high resolution imagery of the SMR. The 

method used for classification featured an object-based image analysis using random 

forest, an AI algorithm to classify the data. The classified data had an accuracy 

assessment done which indicated an accuracy range 75.72% - 80.57% with a Kappa 

range of .59 - .70. The classified imagery was then used in a change detection from July 

to August, August to September and July to September to determine the change in 

vegetation composition during the summer months. During the study period, there was 

expansion of stands that were identified as exclusively TWR, and the expansion of mixed 

vegetation stands, indicating the growth of the aquatic vegetation system. This study 

provided a continuous coverage of aquatic vegetation from a planar view using sUAS 

during a unique period where normally the river would have experienced its highest 

usage. 
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I. INTRODUCTION 

Background 

 The spring-fed San Marcos River (SMR) begins within the city of San Marcos, 

Texas where it flows from the Edwards Aquifer Balcones fault zone and is one of the 

main groundwater discharges of the Edwards Aquifer (Musgrove and Crow, 2011; 

Ewing, 2008). In the past several years, the City of San Marcos has experienced a 4.4% 

average population growth per year, which is above the national average rate of 1.5% 

(Colby and Ortman, 2015; U.S. Census Bureau, 2017). The number of residents and 

tourists using the river for recreation continues to grow, fueling concerns that the activity 

may lead to degradation of the aquatic habitats and impacts to endangered species such as 

Texas wild rice (Zizania texana) (TWR) (Bradsby, 1994; Breslin, 1998; Mora et al., 

2013).  

Tubing is a popular recreational activity in central Texas and some cities with river 

systems that experience high usage have undertaken efforts to reduce littering and other 

damage from recreational impacts. Neighboring cities like New Braunfels, Texas have 

increased restrictions on commonly littered items (i.e., can ban; City of New Braunfels, 

2020) while simultaneously increasing parking fees to $20 during the summer when 

usage is at its peak. As a result of these restrictions and parking costs, the SMR has 

experienced an additional increase in river use (TXP, 2017). This increased usage has 

directly impacted ongoing efforts to minimize negative effects on aquatic vegetation such 

as TWR (EAHCP, 2019). While the summer season is normally the busiest time of the 

year for recreation on the SMR, because of the COVID-19 pandemic, the SMR’s public 

access points were closed which severely limited the presence of river users for two 
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extended periods during 2020. It is hypothesized TWR may have expanded in the 

absence of heavy recreational usage during the summer of 2020.  

The unique conditions of the SMR allows for the proliferation of endemic aquatic 

species. One of the most regularly monitored aquatic plant species is TWR which is 

found within the upper five kilometers of the San Marcos River and has been federally 

listed as an endangered species since 1978 (Terrell et al. 1978). As such, monitoring of 

the SMR is conducted on an annual and frequent basis. One way monitoring has been 

done is through small, unmanned aerial systems (sUAS). In the past several years, 

scientists have used sUAS to monitor aquatic vegetation growth over time in shallow, 

non-turbid waters (Chapra, 2014). sUAS have been utilized within the SMR to model 

habitat suitability of TWR and invasive, non-native aquatic species as well as to 

document aquatic habitat restoration work as part of the Edwards Aquifer Habitat 

Conservation Plan (EAHCP) (EAHCP, 2019). This study will use sUAS data to map 

aquatic vegetation in the San Marcos River with a focus on TWR and perform change 

detection analyses to determine if vegetation distribution expanded or contracted in the 

absence of public access to the river between July and September 2020. The unique 

circumstances resulting in restricted public access to the river due to COVID-19 provides 

an opportunity to document the SMR’s aquatic vegetation in the absence of previous 

volumes of summer recreational usage, 

 

Problem Statement 

 During the summer recreational season aquatic vegetation could be negatively 

affected due to the high density of river users. Previous studies have identified the 
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distribution and dispersal of aquatic vegetation in the San Marcos River (Owens et al. 

2001, Tolman 2013). In 2009, Hardy et al. (2010) documented stand-based percent cover 

of aquatic vegetation by using kayaks to collect geographic information system (GIS) 

data with a Global Positioning System (GPS) at high positional accuracy. They used the 

field data to create one-meter polygon shapefiles of aquatic vegetation (Hardy et al., 

2010). Since 2009, as part of the Edwards Aquifer Recovery Implementation Plan 

(EARIP) and later beginning in 2012, the MCWE habitat conservation crew, aquatic 

vegetation monitoring in the river has been conducted on an annual and bi-annual basis 

for select reaches. While vegetation is being mapped yearly this is not done as a 

continuous set of data. The data collected is primarily point and polygon data 

representing discrete sampling of the SMR. This research consists of a sequence of sUAS 

mapped vegetation and provides information on the relationship of the aquatic vegetation 

community at a centimeter resolution in the study area over a set period of time. 

 

Objectives 

The goal of this research is to map the aquatic vegetation from sUAS imagery 

acquired between July and September 2020. The sUAS data will be classified using an 

Object-Based Image Analysis (OBIA) method to create a series of vegetation maps that 

document TWR presence and distribution. The vegetation maps will be used to conduct a 

post-classification change detection. This will provide a snapshot of the state of 

vegetation during an otherwise peak recreation season. Specifically, the research 

objectives include: 

1. Acquire sUAS imagery between July and September 2020. 
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2. Classify/quantify the composition of vegetation stands as three classes; Mono 

(TWR only), Mixed (stands of TWR and other aquatic vegetation), and Non-TWR 

(stands that do not include any TWR). 

3. Provide comparisons of vegetation stand distribution between data collection 

dates to characterize vegetation expansion/contraction from July-September 2020. 

 

Justification 

 The results from this study will contribute to the ongoing effort of mapping TWR 

distribution in the SMR. This research could provide the City of San Marcos and 

conservation entities with useful data that describes the state of TWR distribution 

considering limited recreational usage.  

Currently, the EAHCP has goals in place that focus on maintaining the health and 

growth of native aquatic vegetation including the removal of non-native species. Texas 

State University has implemented a sustained and systematic effort since 2013 for non-

native aquatic vegetation removal and planting of native species with an emphasis on 

TWR. These efforts include on-going monitoring and maintenance of restored areas. This 

study will provide a time series of mapped vegetation expansion/contraction over three 

months when normally the river would experience the highest concentration of visitors. 

During the summer of 2020, river usage was extremely limited due to lack of public 

access points. Finally, the study area for this research has been designated an area of 

biological interest to the EAHCP and this data can be useful in further monitoring 

studies. 
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II. LITERATURE REVIEW 

 

Historic Instances of Mapping Zizania Texana 

TWR (Zizania texana) has been documented since 1892 when G. C. Nealy 

collected the first instance of TWR and labeled the species incorrectly as Zizania aquatica 

(Terrell et al., 1978). In July 1921, the second instance of the aquatic species was 

collected under the assumption that the plant was Zizania aquatica after collecting 

samples from the San Marcos River (Terrell et al., 1978) Ultimately, it was not until 1932 

when an amateur botanist in San Antonio, W.A. Silveus, became the first person to define 

TWR as a distinct species (Silveus, 1933; Terrell et al., 1978). Since its discovery, TWR 

is still the only Zizania species to be found in Texas (Terrell et al., 1978). Consistent 

documentation of TWR by government entities did not begin until the late 1960s into the 

early 1970s with the Texas Water Development Board collecting data on TWR in 1968, 

the U.S. Department of the Interior conducting their own study from 1967-1971, and 

lastly with the U.S. Fish and Wildlife Service investigating TWR to be considered as an 

endangered species in 1976. TWR was eventually listed as an endangered species in 

1978.  

In 1973, Young et al. (1973) found that approximately 80% of the native plants in 

the river had been replaced by exotic species since 1930. This decline was mainly due to 

anthropogenic causes such as harvesting species for commercial aquarium plant 

suppliers, the creation of dams, competition from introduced invasive species like Indian 

Hygrophila (Hygrophila polysperma), and habitat destruction from dredging, erosion, 

dams, and pollution (Young et al., 1973). The decline in native vegetation included TWR, 
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with a noticed decline in abundance from the 1930s with Silveus’ observations well into 

the 1990s from Power et al.’s (1996) research on TWR (Power et al., 1996). 

 

Recent Mapping Efforts 

The research conducted from the 1990s to the present reflect changes in mapping 

methodologies associated with increased efforts to restore the aquatic plant species into a 

more native habitat by planting native species and removing invasive aquatic plants. In 

the early 1990s, Powers (1992, 1996, 1997, 1998) and Poole (1992, 1993, 1995, 1996) 

spent several years documenting the habitat characteristics of TWR. 

In 1994 and 1997, Bradsby (1994) and Breslin (1996) published studies that evaluated the 

recreational usage of the San Marcos River system. Their studies found that the highest 

usage occurred during the summer and that groups who knew about TWR were less 

likely to cause damage compared to river users with limited or no knowledge of TWR 

ecology. Additionally, research found that key recreational activities such as playing with 

dogs, kayaks, and tubing contributed to the destruction of aquatic vegetation (Bradsby, 

1994; Breslin, 1996).   

By 1999, Poole and Bowels (1999) published a comprehensive habitat 

characterization of TWR with the Texas Parks and Wildlife under a grant through the 

U.S. Fish and Wildlife Service. This included the location, preferred soils, composition of 

stands, and preferred water depth and velocity of TWR. In the same year, Hardy et al. 

(1999) published a multi-year study mapping the aquatic vegetation of the river system 

using GIS and developing a habitat suitability model of the endangered species within the 

San Marcos River. This research has been expanded upon and now includes research on 
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water quality monitoring, stand composition, and in situ vegetation measurements, many 

of these activities are included as a part of the EAHCP.  

In 2001, Owens et al. (2001) published the dispersal of aquatic vegetation that 

was mapped during 2000, which noted an increase in biomass in the river. Saunders et al. 

(2001) quantified depth, velocity, and substrate to define a habitat suitability model of the 

TWR. They found that TWR preferred shallower depths of < 1 m and the macrophyte 

thrives in a velocity of 0.125 to 0.457 m/s (Poole and Bowles, 1999; Saunders et al., 

2001). The shallow depth preference of TWR and historically low turbidity of the river 

system makes this an optimal setting when attempting to employ sUAS imagery to map 

aquatic vegetation. Hardy et al. (2009) extended the work of Saunders et al. (2001) and 

utilized a more precise approach to measuring depth and velocity. Hardy et al. (2009) 

mapped the spatial distribution of TWR in more detail by using 1 m polygons which 

included composition of vegetation stands using GPS; this greatly improved the spatial 

resolution of the previous mapping.  

Tolman (2013) characterized TWR habitat by incorporating riparian shade in the 

habitat classification model. Under the assumption that light affects the location and 

growth of TWR, they identified suitable habitat areas using GIS modeling based on 

integrating hydraulic modeling, Light Detection and Ranging (LiDAR), densitometer 

readings, and field observations of TWR spatial locations. Tolman (2013) found that the 

presence of TWR is highly dependent on its accessibility to sunlight and that shade 

should be a factor when considering the habitat characterizations of TWR.   

 Since 2012, the EAHCP has published yearly reports detailing restoration of the 

San Marcos River and TWR. This is a multi-organizational effort, with teams from 
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different partnerships, such as the City of San Marcos and the Meadows Center for the 

Environment to map and monitor keystone species and both the expansion and removal 

of aquatic vegetation in rivers like the San Marcos and the Comal. The EAHCP has a 

section dedicated to the enhancement and restoration of TWR which included on-going 

yearly monitoring (EAHCP, 2019). 

 

Background on the EAHCP 

The Edwards Aquifer Authority (EAA) is a water district that was established in 

1993 by the Texas legislature. The EAA poses as the regulatory agency overseeing 

groundwater in the Edwards Aquifer (Patoski, 2021). Although the EAA was initially 

created to ensure flows in the Comal and San Marcos springs as part of a plan to ensure 

Texans have access to clean water through 2050, the EAA has grown into a much more 

involved organization. For the first 20 years since its establishment, the EAA spent time 

documenting, collecting and synthesizing data regarding the state of the habitats overseen 

by the EAA and the quantity of groundwater availability. In 2013, the Edwards Aquifer 

Habitat Conservation Plan was permitted and approved for habitat conservation in the 

area. This plan protects the endangered species that live in the Edwards Aquifer spring 

systems according to federal law while also ensuring that there is a reliable source of 

water in the area (Gulley, 2017).  

Currently, the EAHCP operates with three main measures in place: habitat 

protection measures, flow protection measures and supporting measures. The focus of 

this research has more to do with EAHCPs supporting protection and habitat protection 

measures so those will be discussed more in depth. Flow protection measures include 
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working with both residential and commercial communities to prevent over pumping of 

groundwater and to ensure the minimum flow is maintained for each endangered species 

in the area (EAHCP, 2020). Habitat protection measures cover conservation and 

restoration of a given river system to a more native habitat. The city of San Marcos and 

Texas State University signatory partners to the EAHCP and take part in implementing 

the habitat conservation plan and monitoring the species in the SMR. Habitat 

conservation measures include Texas wild rice Enhancement and Restoration (EAHCP 

§§ 5.3.1/5.4.1) through the planting of TWR, Management of Recreation in Key Areas 

(EAHCP §§ 5.3.2/5.4.2) by monitoring and documenting areas of biological importance, 

and Control of Harmful Non-Native and Predator Species (EAHCP §§ 5.3.9/5.4.13) by 

removing invasive, non-native species and vegetation mats on the river (EAHCP, 2019). 

A full list of the habitat protection conservation measures can be found in Appendix 5 of 

the EAHCP. Supporting measures are maintained through applied research, ecological 

modeling, and biological monitoring. The work done in this thesis will contribute to 

applied research and biological monitoring of an area on the SMR that has been 

considered biologically diverse, featuring an endemic species (TWR) and thus an area of 

importance.  

Aquatic vegetation monitoring is done by BIO-WEST, Inc. using a 10-foot sit-in 

kayak with a plexiglass window for visual observations, a Trimble GPS and an external 

Tempest antenna set on the bow of the kayak for high accuracy (10-60 cm) data (BIO-

WEST, 2020) The SMR was mapped by vegetation patches, with discrete dimensions 

being determined by the dominant species being identified within a patch compared to 

the surrounding vegetation. After this the kayak then maneuvered around the perimeter of 
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the patch to create a vegetation polygon. (BIO-WEST, 2020) Only patches one-meter in 

diameter and greater were registered as a polygon, however all TWR is recorded with 

individual TWR plants too small to be delineated as polygons being recorded as discrete 

points. 

 

TWR Characteristics 

Texas Wild rice or Zizania texana is a perennial, aquatic macrophyte endemic to 

the upper 8 km of the San Marcos River (Oxley, Pendergrass and Power, 2004). 

Historically, since its discovery there had been severe decline of the species found in the 

river due to invasive species and lack of habitat conservation. Since the 1990s there has 

been significant expansion of the plant, with some of the largest populations occurring 

after habitat management was implemented. Characteristics of the species are defined by 

pollination, seeding, preferences, and a description of the macrophyte.  

TWR can produce both sexually and asexually. TWR pollinates through wind 

streams with male anthers that release pollen and are carried by the wind to the stigmas of 

female flowers (Oxley and Power, 2004). TWR pollen is viable for a short period of time 

with decreased viability by the 10-minute mark from its release. The optimal time of its 

release is during pre-dawn hours, between approximately 2am-4am, when temperatures 

are cooler and the humidity is higher relative to the daytime (Oxley and Power, 2004). 

Another way TWR reproduces is through asexual reproduction. This occurs along the 

long grassy strands of the plant tillers, which are roots that grow after the initial seed’s 

germination. Tillers become large enough to break off from the nodes along the culm of 

the plant and sink to the bottom of the river (Oxley, Power, 2004). These are referred to 
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as root clumps or root balls and form a large portion of the TWR population. Due to the 

nature of its reproductive patterns, it is best if TWR grows in groups with greater 

pollination release occurring within plants of 40 or more with less than one meter in gaps 

between plants (Oxley, Pendergrass and Power, 2004).  

Historically, it was assumed that TWR was in decline due to its lack of successful 

reproduction but upon further analysis additional factors have been considered barriers to 

successful reproduction. Habitat modification of the area creates fragmented, widely 

spaced stands. Floating vegetation mats, debris and non-native fauna create competition 

as well (Oxley, Pendergrass and Power, 2004). 

Seed production is another essential component to the population of TWR. Peak 

production of seeds occurs during March to June. March to June was identified as having 

the greatest seed production, but this does not necessarily guarantee every seed will be a 

successful producer (Power, 2004). Successful seeds are indicated by their ability to sink. 

Heavier or more dense seeds can reach the floor of the riverbed and sprouting while 

floating seeds will not have the necessary resources to successfully germinate. This 

phenomenon is also influenced by seasonal variation, with 79% and 77% of seeds during 

the months of April and May respectively sank. For context, during the remainder of the 

year, more than half of all seeds floated when dropped in water (Power, 2004). While 

TWR can flower during every month in a year, the peak reproductive period is April, 

May, and June (Oxley, Power, 2004). Because of this, March through June is the most 

important time of the year to protect TWR from disturbance which directly interferes 

with reproduction but also happens to be the period where river users start going in large 

numbers.  



 

12 

TWR preferences include a large range of velocity, being found anywhere from 

0.05 m3/s -.75 m3/s (Power 2004). There is no unsuitable location regarding velocity 

preferences in the study area. The depth preferences of TWR can have a relatively large 

range as well. TWR can grow as low as sunlight will penetrate. As Tolman (2013) 

indicated, light attenuation is a key-factor in the presence and growth of TWR. TWR has 

an optimal preference of 0.46-0.69 m (Saunders, 2001), but can be found up to 4.5-6 m in 

depth. After 1-2 m in depth TWR will no longer flower but it can reproduce asexually, in 

addition to this the growth of TWR will not be as dense as it would be closer to the 

surface with a greater availability of light. There is no location in the study area where 

the depth is too deep for TWR to be able to grow.  One of the few constraints in the study 

area is the substrate preferences of TWR. TWR prefers fine to coarse substrate and will 

struggle to root in areas where the bedrock is primarily made of clay. It has been 

documented that TWR substrate preferences are towards sand and fine to small gravel 

also referred to as coarse to coarse-sandy soils (Saunders et al., 2001). There are some 

pockets of clay bedrock areas in the study area, in those locations TWR has difficulty 

rooting and growing. 

 

Remote Sensing for Aquatic Vegetation 

The use of sUAS to study aquatic vegetation stems from the mapping of wetlands, 

with the development of different vegetation indices that facilitate mapping emergent 

vegetation in shallow waters (Chabot et al., 2018). A review of classification methods 

highlights a transition between applications used in mapping wetland and agricultural 

vegetation and how they can be optimized for use in shallow waters with low turbidity 
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(Ma et al., 2017). For classifying aquatic vegetation, methods have been developed that 

implement pixel-based approaches for instances like mapping invasive species on lake 

shorelines (Hill et al., 2017). A frequently used method when classifying coverage is the 

object-based image analysis (OBIA). OBIA involves clustering of spectrally similar 

pixels to optimize spatial and spectral detail (Chabot et al., 2016). Due to its growing 

popularity, a template for mapping river landscapes using sUAS-derived high-resolution 

imagery was created by Rusnak et al. (2017). 

 

OBIA for Mapping Aquatic Vegetation 

Alternative and emerging methods to map aquatic vegetation include the use of 

satellite imagery such as Landsat (Song et al., 2018), MODIS (Liu et al., 2015), and 

Sentinel-2 (Katja et al., 2019). Another remote sensing approach includes utilizing high 

resolution imagery through Aerial Photography (Marshall and Lee, 1994). However, the 

focus for this research will utilize use of sUAS for data collection. Over the last decade, 

there has been an increased use of sUAS to map aquatic vegetation. Segmentation is the 

first step in the OBIA classification method. Pande-Chetri et al. (2017) used a multi-

resolution segmentation approach with high-resolution imagery from a sUAS to define 

classes from more generalized features to specific plant types based on the utilization of 

machine learning classifiers such as support vector machine (SVM) and artificial neural 

networking (ANN). Overall, their SVM classification method had the highest accuracy of 

70.78%. Visser et al. (2016) also took a multi-resolution segmentation approach. 

However, they used expert knowledge to manually define habitat locations and focused 

on a smaller area with an emphasis on defining diverse genetic species in small locations 
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on rivers. The results showed a 61% accuracy using the OBIA method and supervised 

classification. 

The utilization of vegetation indices may improve classification accuracy. Chabot 

et al. (2018) incorporated the use of an infrared sensor on the sUAS flight, which helped 

improve accuracy to 80-90% depending on the vegetation class. Jing et al. (2017) used a 

total of seven indices as part of a comparative study to determine which index is best at 

identifying differences in submerged aquatic vegetation. These included the Normalized 

Green-Red Difference Index (NGDRI), an index that is modeled after the Normalized 

Difference Vegetation Index (NDVI) which can separate aquatic plants from water and 

soils. The Excess Green Vegetation Index (ExG) doubles the values of the green band to 

highlight the difference between the red and blue bands in order to help further define 

vegetation that is present underwater. The results showed an overall accuracy of ~89% 

and a Kappa coefficient of 0.86 which is a statistical method that measures agreement 

between two rasters. In this case, the Kappa coefficient determines agreement of the 

classification of an image to ground truth data taken as a reference to how accurately the 

image was classified. Landis and Koch (1977) outlined the interpretation of a Kappa 

coefficient as: 0.01-0.20 slight; 0.21-0.40 fair; 0.41-0.60 moderate; 0.61-0.80 substantial; 

0.81-1.00 almost perfect (Landis and Koch, 1977). 

Husson, Ecke and Reese (2016) compared two classification algorithms, Random 

Forests (RF) and threshold classification in eCognition to map emergent vegetation at 

five sites. They found that more complex vegetation compositions resulted in lower 

accuracy. They also compared manual versus automated mapping and found that the 

manual mapping was more accurate due to user input. Flynn and Chapra (2014) 
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compared classification systems for defining algal river coverage in shallow non-turbid 

rivers. They used the Adaptive Cosine Estimator (ACE) and Spectral Angle Mapper 

(SAM) algorithms. ACE was used by the researchers with the hypothesis that it would 

help differentiate green spectral responses associated with algae and SAM makes direct 

comparisons of predefined spectra with known classes. The results showed an accuracy 

of 90% for ACE and 92% for SAM. 
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III. METHODOLOGY 

 

Study Area 

The San Marcos River is a spring-fed system that has low turbidity, a mean flow 

rate of 4 m³/s, and a mean temperature of 22˚C. These conditions provide suitable habitat 

for TWR. The study area includes the lower boundary of Sewell Park and extends 

downstream through City Park within the City of San Marcos to the first pedestrian 

walking bridge (Figure 1).  The study area experiences high density recreational use and 

includes the Lions Club tube rental facilities on the left bank of the river and Dog Beach 

on the right bank with focused river access from both banks. 
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Figure 1. Study area within the San Marcos River. Launch point of the DJI 

Phantom 3 is denoted by a green star. 
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Data Collection 

Field Data Collection 

On July 3, 2020 ground control points (GCP) were collected which are locations 

in the study area that can be easily identified on the imagery and located accurately on a 

map (Jensen, 2004). When working with GCPs, two distinct sets of coordinates can be 

derived: image coordinates and map coordinates. The paired coordinates from multiple 

GCPs are used to derive geometric transformations to geometrically rectify the data into a 

given datum and map projection (Jensen, 2004). Image rectification may not remove all 

the distortion present from the orthomosaic but can significantly reduce the distortion and 

improves the positional accuracy of the data. Information on the positional accuracy for 

each orthomosaic image is provided in Table 2. Twenty-eight GCPs were collected in the 

field using a Trimble GeoXH GPS receiver. Each position was assigned a name, given a 

brief description, and was drawn with a notebook in the field. The points were uploaded 

into Microsoft Excel and a .CSV file was created and imported into Agisoft Metashape 

for image processing. 

 

Image Data Collection 

sUAS imagery was processed on three dates during summer 2020; July 13, 

August 24, and September 25, using a Phantom 3 DJI RGB sUAS were used in this 

study. Imagery was collected between the hours of 3:30-4:30 pm to prevent sun glare and 

to account for similar spectral responses. Each mission consisted of two flights; the first 

flight collected imagery from Dog Beach going upriver towards Sewell Park and the 

second flight launched from Dog Beach and extended downriver to the first pedestrian 
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bridge within City Park (Figure 1).  

  During the month of September 2020, the city parks were re-opened for public 

access and the study area became difficult to capture due to increased river users (Table 

1). Although multiple weeks of imagery were available from July and August, changes in 

expansion and contraction of aquatic vegetation occurs during longer time scales, as 

observed by Hardy et al. (2009). Due to this, and because each flight did not produce 

optimal imagery mainly due to dynamic weather causing spectral differences when 

creating orthomosaics, I determined one flight would be processed from each month. The 

flights selected for processing optimized image quality as determined by uniform 

illumination conditions for classification of the aquatic vegetation. 

Table 1. Timeline of river access for the City of San Marcos from March-September 

2020 and chosen flight classification date. 

Date Action 

March 23, 2020 
Public river access is closed for the first time due 

to COVID-19 

May 22, 2020 

Access to public river points is restored, people 

are allowed on the river through public access 

points. 

June 25, 2020 

Public river access on the San Marcos River is 

closed again due to an increase in COVID-19 

cases. 

July, 2020 
Flights began July 3rd. 

Selected flight for classification: July 13th, 2020. 

August, 2020 
Selected flight for classification: August 24th, 

2020. 

September 16, 2020 
Public river access is reinstated due to declining 

cases in the area. 

September 25, 2020 
Final flight for this thesis and flight selected for 

classification: September 25th, 2020 

 

Reference Data 

Reference data were obtained from BIO-WEST, an environmental planning and 

consulting firm that is partnered with the EAA to monitor the aquatic vegetation in the 
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SMR. Reference data were used during the accuracy assessment point creation to act as a 

guideline when determining accurately defined points. As an example if an object was 

classified as mixed, but the reference data determined that the object was a mono stand, 

the accuracy assessment point would then be classified as mono and the classified 

imagery would be considered incorrectly classified. Data attributes included the 

percentage of TWR coverage for each polygon and the associated aquatic vegetation 

found within the stands. The data were collected using a GPS receiver and stored as point 

and polygon shapefiles. Two data sets included 68 data points found in the study area 

collected August 6, 8, and 9 in 2019 and 159 polygon shapefiles with an average size of 

35.92 m2 and a standard deviation of 192.85 m2 collected during August 3, 4, 5 in 2019. 

An additional 121 polygons were collected during August 3, 4, 5 in 2020 with an average 

size of 63.67 m2 and a standard deviation of 283.15 m2. Since 2019 data may not 

accurately represent vegetation in the river during this study period due to recreational 

usage, I only used vegetation polygons for reference if the polygon corresponded with 

vegetation visible in the sUAS imagery. The August 2019 data had greater change and 

the removal of polygons since over a year had passed after the data were collected. The 

August 2020 data were collected during the study period, this created an accurate 

representation to use when classifying the data and checking for accuracy and served as a 

great point of reference.  

Additional reference data were created from in-person interviews with Dr. 

Meitzen over video conference on March 4, 2021, and at the study area on March 16th, 

2021, and members of the MCWE habitat conservation crew at the study area on April 

22, 2021, over email on May 4, 2021. In addition to the BIO-WEST data and on-site 
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visits, reference data were also created by email communications discussing the nature of 

the orthomosaics though clarifying whether an area might have been defined as mixed or 

mono with the vegetation that can be identified through a planar view taken by the sUAS. 

 

Data Analysis and Techniques 

Image Processing 

After each flight was completed, I transferred the data to a workstation to perform 

the orthorectification process. Orthorectification was completed in Agisoft Metashape 

(AM) using a batch process that aligned the photos, optimized the alignment, and built a 

dense point cloud. The imagery was georeferenced to the GCPs collected in the field on 

July 3, 2020. The points taken from the GCP collection were uploaded as XYZ data from 

a .CSV file and added onto the images opened in AM by their identifiable features. 

For each data collection date, a dense cloud was created and examined to identify 

erroneous points (e.g., point well above or below the surface) and those points were 

manually removed. From the dense point cloud, a Digital Elevation Model (DEM) was 

created which is necessary to produce the orthomosaic. Using the DEM and the 

georectified images, an orthomosaic of each dataset was created. The final orthomosaics 

are ultra-high resolution rasterized images from each flight. Spatial resolutions of the 

final orthomosaics varied from 1.88 cm/pix – 2.03 cm/pix (Table 2). Each image was also 

provided with a root mean square error (RMSE) which indicates the error of positional 

accuracy plus or minus the RMSE. 
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Table 2. Orthomosaics used and their corresponding image resolution and RMSE. 

 

 

 

 

Image Classification 

The orthomosaic was exported into ArcGIS Pro as a raster and the raster was 

clipped to water’s edge to exclude sidewalks, grass, manmade structures, and tree 

canopy. All data were projected to the NAD 1983 UTM Zone 14N coordinate system. 

OBIA requires image segmentation prior to applying a classification algorithm. 

The Segmentation tool in ArcGIS Pro was used for segmentation. The segmentation tool 

has three main inputs: spectral detail, spatial detail, and minimum segmentation size. The 

spectral input defines the relative importance of separating objects based on color 

characteristics. Smaller values result in broad classes and more smoothing. Higher values 

are appropriate when discriminating between features having similar spectral 

characteristics; valid values range from 1.0-20.0 with step changes of 0.5 (ESRI, 2021). 

Since this research involves determining the differences between semi-submerged aquatic 

macrophytes which can appear spectrally similar, the spectral detail was set to a high 

value.  

 The spatial detail parameter focuses on the relative importance of separating 

objects based on spatial characteristics. Smaller values result in broad classes and more 

smoothing while higher values are appropriate for discriminating between features that 

are spatially small and clustered together (ESRI, 2021). Since the sUAS data had an ultra-

high spatial resolution and the classes for comparison were stands of aquatic vegetation, 

Date Resolution RMSE 

July 13, 2020 2.03 cm/pix 11.48 cm 

August 24, 2020 1.93 cm/pix 12.62 cm 

September 25, 2020 1.88 cm/pix 76.08 cm 
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the spatial detail parameter was also set to a high value. Valid spatial values range from 

1.0-20.0, with step changes of 1.0.  Minimum segment size considers mapping unit size 

and will filter out blocks of pixels that are smaller than the determined size. TWR has an 

average stand size of approximately 2.13 m long by 1m wide (Oxley, Powers 2004; 

Owens et al. 2001), and the resolution of the sUAS data is approximately 2 cm per pixel. 

Since this research is differentiating between stands of aquatic vegetation, with a specific 

focus on TWR, 2.13 m x 1 m at a resolution of 2 cm per pixel creates a rectangular shape 

that is approximately 3,500-4,000 pixels in size. This was the range used to determine the 

minimum segment size (Table 3) and helped with eliminating noise and aggregating 

spectrally similar areas on the river system. Since emergent root culms were too small to 

be detected, a smaller minimum segment size created noise and difficulty defining class 

features. 

Table 3. Segmentation parameters for each classified image 

Month Minimum 

Segmentation Size 

Spectral Detail Spatial Detail 

July 3,500 20.0 19.0 

August 3,500 18.50 17.0 

September 3,500 19.50 17.0 

 

After an image was segmented, training samples were created. Training samples 

are a series of segments that correspond to the defined classes in the classification 

schema. The schema for classification was defined as: Substrate – 10, Non-TWR – 20, 

Mixed – 30 and Mono – 40. A description of each class is provided in Table 4. To ensure 

that spectral variability within the classes was accounted for, subclasses were identified 

(e.g., bright, and dark Non-TWR vegetation). Prior to final map production, the 
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subclasses were merged to their general class. 

Table 4. Class categories and class values 

 

After the classification samples were created, the image was classified using the 

Image Classification tool in ArcGIS Pro, with the Random Trees classifier (also known 

as Random Forests (RF)) method was chosen. RF is a statistical method that uses 

decision trees to determine the likelihood of an object belonging to a certain class 

(Breiman, 2001). This method classifies an image based on a random selection of training 

pixels where the number of pixels used is specified by the user. The process begins with 

creating a specified number of decision trees, which is the basis for a RF model. Decision 

trees define a pixel’s classification by creating several rules ranked to determine the 

likelihood of a pixel belonging to a class. Rules create the “branches” of the decision tree. 

An example of a decision tree can be found in Figure 2. Each pixel being evaluated goes 

through several decision trees, with a class being returned based on the rules for a given 

tree; a collection of trees is what creates the “forest” in RF. 

Class Definition Subclass Definition Class Code 

Substrate 
Areas where there is no aquatic 

vegetation present 
N/A 10 

Non-TWR 

Stands of mixed vegetation or 

stands of vegetation that contain no 

TWR 

Non TWR Bright 

(21), Non-TWR 

Dark (22) 

20 

Mixed  
Stands with TWR and other 

Aquatic vegetation 

Mixed Bright (31) 

and Mixed Dark (32) 
30 

Mono 

 
Stands of only TWR 

TWR Bright (41) 

and TWR Dark (42) 
40 
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Figure 2. Random Forest conceptual model. 

 

The RF algorithm in ArcGIS Pro requires five input parameters: Training 

Samples, Maximum Number of Trees, Maximum Tree Depth, Maximum Number of 

Samples per Class, and Segmented Image (optional). The training samples input is a 

polygon shapefile of the training samples. The maximum number of trees indicates the 

number of trees in a forest; the more trees used, the greater the potential accuracy (ESRI, 

2021). Maximum tree depth defines the number of rules within each tree. The maximum 

number of samples is used for defining each class. For each image I chose zero to use all 

training samples to train the classifier. Finally, the segmented raster created from the 

orthomosaic was used for classification of each image date. Detailed information for each 

classified image is provided in Table 5. The raster derived from the classification tool 

provides two sets of information in the attribute table: class name, which describes the 

name of the class category, and class value, which is a long integer attribute that specifies 
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the count of pixels within the classified image for each category. 

Table 5. Image classification RF parameters 

Orthomosaic Max # of Trees Max Tree Depth 
Max # of Samples 

per Class 

July 13, 2020 135 100 0 

August 24, 2020 120 90 0 

September 25, 2020 120 90 0 

 

Map Validation 

For the accuracy assessment, I targeted an 80% accuracy for the Mono class and 

70-80% overall accuracy. Since the focus of this research is TWR, the Mono class was 

considered the most important and I wanted high agreement in the accuracy of that class 

being defined. The desired 80% accuracy was chosen based on the considerations of 

working with sUAS in a dynamic environment and based on existing literature. Ma et al. 

(2017) published a review of 220 papers that utilized OBIA using different sensors with 

the inclusion of sUAS and different supervised classification methods with considerations 

to RF. In the studies, RF had the highest mean classification accuracy of 85.81% (Ma et 

al., 2017). I aimed for an accuracy lower than this because many of the studies did not 

work in an aquatic environment which creates its own challenges for accurately 

classifying imagery. 

Overall, the focus will be on the Kappa statistic to determine the agreement of the 

accuracy. A Kappa of 0.01 - 0.20 is slight agreement; 0.21 - 0.40 is fair agreement; 0.41 - 

0.60 is moderate agreement; 0.61 - 0.80 is substantial agreement; 0.81 - 1.00 is almost 

perfect agreement (Landis and Koch, 1977). I aimed for a Kappa of 0.61 or higher to 

demonstrate substantial agreement of the classified images accuracy. I used the 

multinomial distribution equation (MDE) (Equation 1; Jensen 2004) to determine the 
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number of samples necessary for a statistically objective accuracy assessment. 

Multinomial distribution equation:  

N=
𝐵Π𝑖(1−Π𝑖)

𝑏𝑖
2     (Equation 1) 

  

Where:                                          

B = (𝛼 𝑘⁄ ) ∗ 100 

 

Where N represents the number of observations or samples, B represents the Chi-

square critical value for alpha (α) divided by k multiplied by 100. Where α represents one 

minus the confidence desired for the map, in this research it was 1 - 0.80, and k is the 

number of classes which is four in this study. This is then multiplied by 100 and that 

number is used in a chi-squared right-tail distribution table with one degree of freedom. 

Πi represents the class whose proportion of the map is closest to 50% and bi represents 

the desired precision. In this study I chose a desired precision of five percent. 

The Zonal Histogram tool obtains a count of the raster values from the classified 

data set. Each class is divided by the total count of pixels to identify the class proportions 

for the MDE (Equation 1). After this the MDE (Equation 1) was calculated. Since the 

size of each image varies due to tree canopy coverage, and the proportion of classes 

varied as well, the amount of sample points needed was different for each map output. A 

stratified random sampling design method was used to proportionally among the four 

classes. Samples required for each classified map accuracy assessment are provided in 

Table 6. 
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Table 6.: Minimum number of sample points required for a statistically substantial 

accuracy assessment using the MDE (Equation 1). 

Image Date Number of samples required 

July 384 

August 376 

September 380 

 

After identifying the amount of sample points needed for accuracy assessment, 

sample points were created using the Create Accuracy Assessment Points tool in ArcGIS 

Pro. Using the reference data provided by BIO-WEST, the interviews conducted in situ 

which involved going to specific portions of the study area to discuss the vegetation 

composition, the emails sent discussing the orthomosaic images and what the 

classification of a given area would be, and my visual interpretation of the imagery, each 

accuracy assessment point was assigned a reference value. After all reference values were 

assigned, I used the Compute Confusion Matrix tool to generate an accuracy assessment 

report.  

The confusion matrix facilitates calculation of producer accuracy, user accuracy, 

overall accuracy, and an overall Kappa coefficient of agreement value. Producer accuracy 

indicates how effective the map classification was, and omission errors describe the 

percentage of pixels omitted from the correct class. User accuracy is a measure of how 

useful the data is to the user and commission error provides information on pixels 

included in a class they do not belong to. Overall accuracy describes the proportion of 

correctly classified objects. Kappa analysis measures the agreement of the classified map 

compared to the reference data and whether the agreement is based on chance. Kappa 

coefficients of agreement range from 0-1. The closer to 1 the Kappa statistic is, the 

stronger the agreement between the classified map and reference data. Upon achieving a 
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satisfactory output, the workflow continued to the post-classification change detection of 

the classified imagery. 

 

Change Detection 

A post-classification change detection was conducted between three time periods: 

July 2020 to August 2020, August 2020 to September 2020, and July 2020 to September 

2020. To be accurately compared, the images needed to be clipped and resampled to a 

similar resolution. The images were clipped to the September 2020 image since it had the 

smallest extent, and the images were re-sampled to the July 2020 image resolution since 

it had the largest pixel size of 2.03 cm/pixel. The September and August 2020 rasters 

were resampled with the Resample tool using the nearest neighbor resampling technique 

in ArcGIS Pro. Nearest neighbor does not change the value of the cells and minimizes the 

changes to pixel values. The July and August 2020 rasters were then clipped to the 

smallest extent using the Clip Raster tool. 

The post-classification change detection was completed using ArcGIS Pro’s 

Change Detection Wizard tool with categorical change. The process uses two rasters 

representing to and from data (e.g., from July to August). Next, the configure step 

identifies classes that will be used in the change analysis. In this case all four classes 

were used as indicators of change, so when filtering the data, the changed only option 

was used which showed which pixel values changed classes. Under the configure 

window there is one more output: Transition Class Color Method which specifies which 

method will be used to symbolize the pixels that have changed classes. Since this 

research looked at change from month to month, the ‘to color’ option was used. For 
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example, if a pixel was classified as Mixed in July but Mono in August, the output was 

coded as Mono. The final step was the post processing window which can provide 

smoothing, but that option was not used in this research to leave the pixels unaltered. The 

data were exported as a raster and feature class and the change detection was complete. 
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IV. RESULTS 

Image Classification 

All three classified images had less than three percent of the image classified as 

Non-TWR, with July (Table 7), August (Table 8), and September (Table 9) totaling 

2.24%, 1.6%, and 1.5%, respectively. For all three dates, TWR was the largest class with 

a value of 50.73% for July 57.23% for August and 55.39% for September. Substrate 

showed the greatest variation of change, with a 51.35% difference from the July 

classification (18.5%) to the September classification (9.5%). Classified maps for each 

image date are provided in Figures 3-5. 

Table 7. Summary class counts and percentages for July 13, 2020. 

Class Count of pixels Percentage of class coverage 

Substrate 3,862,553 18.5% 

Non-TWR 467,774 2.24% 

Mixed 5,958,576 28.53% 

Mono 10,596,163 50.73% 

 

Table 8. Summary class counts and percentages for August 24, 2020. 

Class Count of pixels Percentage of class coverage 

Substrate 3,629,754 13.44% 

Non-TWR 431,014 1.6% 

Mixed 7,484,973 28% 

Mono 15,454,093 57.23% 

 

Table 9. Summary class counts and percentages for September 25, 2020. 

Class Count of pixels Percentage of class coverage 

Substrate 2,707,464 9.5% 

Non-TWR 418,047 1.5% 

Mixed 9,464,725 33.53% 

Mono 15,633,669 55.39% 
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Figure 3. Classified map for July 13, 2020. 
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Figure 4. Classified map for August 24, 2020. 
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Figure 5. Classified map for September 25, 2020. 
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July and August had Kappa values of 0.70 and 0.65, respectively while September 

had a Kappa value of 0.59. Summary accuracy statistics are provided in Tables 7 – 9 for 

July, August, and September, respectively. The table is a confusion matrix which 

indicates the sample points and what they were classified as during the accuracy 

assessment points, as an example, in Table 10 the first row indicates that the substrate 

class was given 71 points in total, and 66 out of 71 points were classified accurately, 

indicating a user accuracy of 92.96%. The mono class is highlighted as this is the class 

had the highest desired accuracy and was the main focus of this research. July and 

September both had user and producer accuracies for Mono over the desired 80% at 

81.54% and 85.95% for July, and 84.76% and 83.57% for September, while August had a 

producer accuracy of 87.56% and a user accuracy of 78.60%. Overall accuracy of the 

classified images ranged from 75.72% in September to 80.57% in July. 

Table 10. Classified raster accuracy assessment for July 13, 2020. 

Class Substrate Non-TWR Mixed Mono Total 
User 

Accuracy 
Kappa 

Substrate 66 1 0 4 71 92.96%  

Non-TWR 0 5 4 1 10 50.00%  

Mixed 1 7 81 21 110 73.64%  

Mono 5 4 27 159 195 81.54%  

Total 72 17 112 185 386   

Producer 

Accuracy 
91.67% 29.41% 72.32% 85.95%  80.57%  

Kappa       0.70 
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Table 11. Classified raster accuracy assessment for August 24, 2020. 

Class Substrate Non-TWR Mixed Mono Total 
User 

Accuracy 
Kappa 

Substrate 47 1 1 2 51 92.16%  

Non-TWR 1 8 0 1 10 80.00%  

Mixed 2 7 74 21 104 71.15%  

Mono 10 4 32 169 215 78.60%  

Total 60 20 107 193 380   

Producer 

Accuracy 
78.33% 40.00% 69.16% 87.56%  78.42%  

Kappa       0.65 

 

Table 12. Classified raster accuracy assessment September 25, 2020. 

Class Substrate Non-TWR Mixed Mono Total 
User 

Accuracy 
Kappa 

Substrate 29 1 6 0 36 80.56%  

Non-TWR 0 10 0 0 10 100.00%  

Mixed 11 8 73 35 127 57.48%  

Mono 8 0 24 178 210 84.76%  

Total 48 19 103 213 383   

Producer 

Accuracy 
60.42% 52.63% 70.87% 83.57%  75.72%  

Kappa       0.59 

 

Change Detection 

For the July to August 2020 map comparison (Table 10), pixels that were 

identified as Mono in July and Mixed in August accounted for the greatest change, at 

11.04%. In the change detection, 73.86% of pixels from July to August remained 

unchanged. For the August to September 2020 change detection (Table 11) the largest 

change occurred between pixels that were identified as Mixed in August and became 

Mono in September (11.75% of pixels) and was the single greatest class variation in any 

of the images. Overall, from August to September, 67.79% of pixels did not change.  The 

greatest changes occurred between July and September 2020 (Table 15). Where 66.93% 

of the pixels found within the July to September imagery went unchanged. Maps of the 
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change detection from month to month are provided in Figure 5.  



Figure 6. Change detection map with changes greater than one percent 
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Table 13. Change detection from July 2020 to August 2020. Top three largest changes 

are in bold. Class mapping codes are included with the class name. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. Change detection from August 2020 to September 2020. Top three largest 

changes are in bold. Class mapping codes are included with the class name 

Class Change August Class 
September 

Class 
Percent 

Substrate->Non-TWR Substrate 10 Non-TWR 20 0.10% 

Substrate->Mixed Substrate 10 Mixed 30 3.55% 

Substrate->Mono Substrate 10 Mono 40 5.11% 

Non-TWR->Substrate Non-TWR 20 Substrate 10 0.15% 

Non-TWR->Mixed Non-TWR 20 Mixed 30 1.15% 

Non-TWR->Mono Non-TWR 20 Mono 40 0.21% 

Mixed->Substrate Mixed 30 Substrate 10 0.88% 

Mixed->Non-TWR Mixed 30 Non-TWR 20 0.72% 

Mixed->Mono Mixed 30 Mono 40 11.75% 

Mono->Substrate Mono 40 Substrate 10 0.84% 

Mono->Non-TWR Mono 40 Non-TWR 20 0.27% 

Mono->Mixed Mono 40 Mixed 30 7.48% 

No Change Same Same 67.79% 

 

 

 

 

 

 

 

 

Class Change July Class August Class Percent 

Substrate->Non-TWR Substrate 10 Non-TWR 20 0.20% 

Substrate->Mixed Substrate 10 Mixed 30 1.77% 

Substrate->Mono Substrate 10 Mono 40 2.86% 

Non-TWR->Substrate Non-TWR 20 Substrate 10 0.01% 

Non-TWR->Mixed Non-TWR 20 Mixed 30 1.34% 

Non-TWR->Mono Non-TWR 20 Mono 40 0.37% 

Mixed->Substrate Mixed 30 Substrate 10 0.65% 

Mixed->Non-TWR Mixed 30 Non-TWR 20 0.39% 

Mixed->Mono Mixed 30 Mono 40 5.38% 

Mono->Substrate Mono 40 Substrate 10 1.45% 

Mono->Non-TWR Mono 40 Non-TWR 20 0.67% 

Mono->Mixed Mono 40 Mixed 30 11.04% 

No Change Same Same 73.86% 
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Table 15. Change detection from July 2020 to September 2020. Top three largest 

changes are in bold. Class mapping codes are included with the class name. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class Change July Class 
September 

Class 
Percent 

Substrate->Non-TWR Substrate 10 Non-TWR 20 0.11% 

Substrate->Mixed Substrate 10 Mixed 30 3.55% 

Substrate->Mono Substrate 10 Mono 40 6.66% 

Non-TWR->Substrate Non-TWR 20 Substrate 10 0.11% 

Non-TWR->Mixed Non-TWR 20 Mixed 30 1.14% 

Non-TWR->Mono Non-TWR 20 Mono 40 0.23% 

Mixed->Substrate Mixed 30 Substrate 10 0.68% 

Mixed->Non-TWR Mixed 30 Non-TWR 20 0.33% 

Mixed->Mono Mixed 30 Mono 40 8.05% 

Mono->Substrate Mono 40 Substrate 10 0.78% 

Mono->Non-TWR Mono 40 Non-TWR 20 0.42% 

Mono->Mixed Mono 40 Mixed 30 10.98% 

No Change Same Same 66.93% 
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V. DISCUSSION 

Field Collection 

Limitations in field collection were primarily due to weather and image 

acquisition. Initially, this study was going to be an analysis of anthropogenic impacts 

during the busiest season of the year, summer of 2020, but the circumstances due to 

COVID-19 prevented public river access and dramatically reduced the load of 

recreational users on the river. In the field, the team that collected the sUAS data dealt 

with issues from the weather due to heat and spectral responses. The time period during 

which flights occurred, July-September, are the hottest months in Texas and at times 

flights would be conducted in 100˚F+. Excessive heat prevented the sUAS from taking 

off, required a cool down and the use of multiple batteries, and is another reason why two 

flights were conducted during each data acquisition session.  Despite attempting to fly at 

similar times of the day that experienced similar illumination conditions, when flying in a 

dynamic environment, cloud coverage changed the lighting of the landscape midflight, 

and this caused differences in spectral responses. The sUAS does have the ability to 

change the ISO and shutter speed midflight which can increase the brightness, but only 

when it was not taking photos. During a flight, the sUAS was programmed to take images 

every two seconds; at times because of the illumination conditions the ISO settings on the 

sUAS needed to be manually adjusted. There was a time delay between the transmitter 

and the sUAS, not all images had optimal exposure. Because of this, some imagery was 

darker and not optimal for use.  

Lastly, despite public river access being closed, riverside businesses would allow 

river users to enter the river for a fee, and private river access never closed. As a result, 
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for some of the images kayakers and swimmers obstructed the planar view of the river 

and increased water turbidity. The turbidity prevented the mapping of aquatic vegetation 

at specific sites, often a couple of meters in size and changed from month to month in 

both location and amount of river users present. In the July ortho, this totaled 9.7 M2 

which totaled 0.11% of the total area, for the August ortho the total coverage amounted to 

35.24 M2 which covered 0.40%of the image, and in September the coverage was 5.13 

M2 amounting to 0.06% of the image’s coverage. For future studies, I would recommend 

creating feature classes of polygon data that cover the recreational users to be used as a 

mask to avoid misclassifications. 

 

Orthomosaics 

While orthomosaics were chosen by their most optimal parameters for July and 

August, since there was only one image available to classify from September, I was 

expecting a lower Kappa and overall accuracy because the orthomosaic had cloud 

coverage and is darker overall than the July and August orthomosaics. The RMSE of the 

September imagery was much higher, which certainly affected the spatial accuracy of the 

data.  In addition to the lowered brightness and higher RMSE, the September image 

features several “swirlies,” or portions where the image becomes blurry due to distortion, 

which made classifying the image difficult. This type of distortion was previously 

reported by Chabot et al. (2017) and Pande-Chhetri et al. (2017) who specifically 

mentions the blurring of orthomosaic imagery and the resultant difficulty they 

encountered trying to classify emergent and submerged vegetation in low turbidity 

waters.  
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In general, capturing sUAS data in a dynamic environment proved to have 

challenges but can be accomplished if sufficient time is allocated to collect multiple sets 

of data. Flynn and Chapra (2014) identified difficulty capturing data in a windy 

environment and preventing off nadir or non-planar or directly above imagery by 

capturing images every two to five seconds. In this study, images were captured every 

two seconds and very few images were off-nadir. In the case of having off-nadir imagery 

in the data, those photos were removed prior to processing. In sum, capturing vegetation 

in a windy and spectrally changing environment created challenges, but the work can still 

be done with planning and repetition. 

 

Reference Data 

The data collected by BIO-WEST was a valuable resource for reference, but there 

were some differences in what was collected and what was visual in a planar view of the 

study area. After speaking with members of the Meadows Center for Water and the 

Environment (MCWE) habitat conservation crew, they confirmed the crew collects the 

data as viewed from a kayak in a similar planar fashion but from a much closer angle 

compared to the sUAS. Because of this difference in mapping, areas that were not 

documented to have TWR but visibly had it in the sUAS imagery or were confirmed to 

have TWR by the members of the MCWE habitat conservation crew were still considered 

Mono. An example is provided in Figure 6. The process of mapping each TWR stand 

present in the SMR can be nearly impossible due to the dynamic and at times rapid 

growth of the species. The BIO-WEST data in tandem with in-situ data collection and the 

continuous mapping of the SMR through remote sensing and GIS would likely create the 
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most comprehensive overview of the coverage of TWR. 

Figure 7 August 24,2020 orthomosaic with polygon data representing the mapped TWR 

from August 2019 (pink) and August 2020 (Blue). At the center are several bright green 

patches which have been confirmed to be Mono stands of TWR. This is not classified as 

TWR in the 2019 or 2020 data. The green patches were still classified as Mono based on 

interviews with the MCWE habitat conservation crew. 

 

Image Classification 

 Within the study area there are three major locations where there are known 

mono stands: To the right directly below the Sewell Park bridge and above dog beach, to 

the left above City Park and adjacent to Dog Beach, and the remaining majority of the 

bottom image below Dog Beach. The central portion of the map, between Dog Beach and 

City Park is one of the major entrances and recreational swimming locations have 

experienced a large amount of contact recreation, which prevents the proliferation of 

aquatic species due to being trampled on. I believe the classified imagery visualize this 
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accurately.  

 When classifying the imagery, the spectral responses of several macrophytes 

could be confused with TWR and other. Husson, Reese and Ecke (2017) also experienced 

issues when classifying taxa and they reported that spectrally similar aquatic vegetation 

will often be misclassified. To further understand the range of visible spectral responses 

in macrophytes, an aquatic plant table has been provided in Appendix 2.1. A suggestion 

for improvement on this work in the future would be to use a near infra-red (NIR) sensor 

to help interpret and classify vegetation rather than only using visible light in the 

electromagnetic spectrum. Chabot et al. (2018) and Jing et al. (2017) both reported 

improved classification accuracy after incorporating a NIR sensor in their works in low 

turbidity aquatic environments with submerged and semi-submerged macrophytes. 

 In addition to adding a NIR component, I would also suggest classifying smaller 

areas or sections of importance. One of the sections the EAHCP is focused on is below 

Sewell Park and above Dog Beach and is a diverse and dense location which could be 

studied on its own. Chabot et al. (2017) identified an issue of “under-segmentation” 

which is described as simplifying features through segmentation. A by-product of under-

segmentation is data omission and was something that had to be balanced in this research. 

Finding the area between deriving objects of significance and avoiding noisy data might 

be easier to manage with a smaller study area. More time could be given to a smaller 

analysis extent for running a supervised classification and would potentially improve 

accuracy.  

 When in the field, it is clear that the classes are not clearly defined in the exact 

manner of the classified rasters, but rather there is a “transition” zone which is a mixture 
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of vegetation slowly moving into the Mono. Non-TWR, or Mixed class. These transition 

zones are difficult to classify as there is no clear partition where one class begins and 

another one ends, and the similarity found with the visible view of vegetation in the river 

(Appendix 2.1). Because of this, and the common “mixed pixel” issue, where a pixel can 

contain two class types yet need to be assigned one class, there were certainly 

misclassifications in the data. Even with the ultra-high resolution of the data, some of 

these transition zones prevented difficulty in classifying the data, and this could be a 

source of error or uncertainty in both the classification and accuracy assessment steps of 

the research process. The use of an NIR component could help mitigate this as well as 

observations of the vegetation and their composition during the day of flights in future 

research. 

 

Accuracy Assessments 

 Due to the issues with the September 2020 orthomosaic, I anticipated lower 

overall accuracy. Since TWR grows most rapidly during the spring and summer months 

(Powers and Poole 2004), finding classes that were entirely without TWR were not as 

frequent as the Mixed classes. Often the classes that were defined exclusively as Non-

TWR represented less than three percent of the classified images coverage. This does not 

necessarily represent what is present on the ground, as there are areas where TWR has 

trouble rooting due to more clayey rock beds in the river (Saunders et al., 2001). 

However, this could be due to the growth of TWR in the time without large-scale 

anthropogenic impact, allowing the reach of the plant to cover the areas where TWR 

would not be present, making the planar view of the area to appear as a Mixed 
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classification. 

 The overall accuracies and Kappa of the three images scored similar to the study 

done by Chabot et al. (2017) who reported overall accuracies ranging of 69.50% to 

78.25% and Kappa values ranging from 0.47 to 0.60. However, these results are lower 

than Jing et al. (2017) who reported an overall accuracy of 88.89% and a Kappa of 0.86. 

These studies are used for comparison since they specifically used OBIA and RF to 

classify aquatic vegetation. The classified map accuracy was higher than the work done 

by Visser et al. (2016) who reported an overall accuracy range of 53% to 61%, however, 

their research attempted to specifically identify individual macrophytes rather than 

identifying vegetation composition like the work in this thesis does.  

 During in-situ surveys of the area, I saw locations where Water Pennywort 

(Hydrocoytle spp), a macrophyte that does not grow in the same location as TWR, had 

long leaves of TWR Mixed with it due to the large reach of a TWR plant growing several 

meters upstream from it and flowing down stream (Figure 7). This was evident in many 

areas of the orthomosaic creating a large Mixed class and may not be as visible in future 

studies due to resuming public access. In studies on how river users interact with TWR, it 

was often observed that the thin leaves of TWR are damaged most often by kayakers, 

swimmers and tubers ripping them out by their hands and paddles (Bradsby, 1996; 

Breslin, 1997), this will likely change the landscape of the study area. 
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Figure 8. Pennywort in the lower portion of the image, a 

macrophyte that roots in substrate that TWR does not prefer, 

mixed with TWR at the top portion of the image due to the reach 

of the TWR stand. 

 

Because of the small percentage of Non-TWR class across all maps and the 

stratified random sampling design, all accuracy assessment points for the Non-TWR class 

amounted to 10 sample points per map. This created a varied range of accuracy 

assessment points, with 50% of Non-TWR points correctly classified in July (Table 10), 

and 100% correctly classified in September (Table 12). This did affect the Kappa values 

and overall accuracies for the maps. I would recommend creating a large sample size in 

the future for a more robust summary of the Non-TWR class. 

 

Change Detection 

Several caveats need to be made when interpreting the change detection maps and 

the percent class change. Specifically, what contraction and expansion truly represents, 

and what a planar view of the data provides compared to a three-dimensional view of 

aquatic vegetation. When looking at the change detection data and map, even if a class 
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became smaller in size this does not necessarily mean that the class became smaller, but 

that growth of one class changed the planar view of the vegetation composition.  

In all three change detections the same classes were identified as the largest 

percent changes: Substrate to Mono, Mixed to Mono and Mono to Mixed. While 

Substrate to Mono is a direct representation of root culm growth without being trampled 

on in the SMR (Poole, Powers, 2004) and the growth of matured TWR having an 

increased reach, Mono to Mixed and Mixed to Mono can seem contradictory. This Mixed 

to Mono change likely represents areas where a strong presence of TWR grew over and 

floated above the Mixed vegetation while areas with a heavier presence of Mixed 

vegetation grew as well in the Mono to Mixed change. The Mono to Mixed change could 

be an indicator of all species benefitting from the lack of river users during the summer of 

2020, not just TWR. Additionally, the growth of the Mono class in any way can also be 

attributed to the growth of the species from matured stands gaining greater reach down 

stream, and the emergent root culms being large enough to be detected in the 

classification process.  

The major change of pixels occurred around the dock directly below Sewell park, 

with the growth of the Mixed class identified in all three change detections. The growth 

of the Mono class occurred in excess around the large patch of Mono stands to the left 

above dog beach and below the Sewell park bridge, and below the patch of Mono stands 

adjacent to Dog Beach and to the right above City Park. Between Dog Beach and City 

Park, in the location where there is known contact recreation which tramples the 

vegetation there is significant growth in the Mono class, representing both new plant 

growth and existing growth maturing and extending further downstream. Directly above 
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and to the left of dog beach there is a large portion of mixed vegetation and this area 

experienced significant growth in the mixed class, spreading out further from the central 

point of the patch. Overall, most growth was exhibited form the center of the river stream 

rather than along the riverbanks edge in the imagery, indicating the lack of river users 

allowing the vegetation that would normally be ripped out, pulled apart or trampled on to 

grow from root culms, root without interference, and mature without being torn apart. 

Figure 1 could be used a reference to see what the area would look like during a time of 

unrestricted recreational image since the imagery is satellite data from 2019 in order to 

compare how the growth changed during the summer of 2020.   

Morgan and Hodgson (2021) found that some pixels that were identified as 

changed could be attributed to shadow differences from mapping the vegetation at a 

different period. Despite attempting to fly during uniform solar illumination conditions, 

the high resolution of the data and cloud coverage could cause a pixel to be identified as 

Mixed dark instead of Mono dark. In general, Liu (2016) found improved success in 

using change detections frequently from year to year and month to month, noting 

improved accuracy in classifying the data, and improved accuracy in detailing change. 

The Mixed class indicated whether there was a presence of TWR but does not 

provide insight on what percentage of the vegetation is covered by TWR compared to 

other aquatic vegetation. Because of this, in the change detection there is no way to 

determine whether the change of Mixed classes amounted to the expansion or contraction 

of TWR within the Mixed class. Future research could be done to expand upon the mixed 

class, by providing percentage composition of the mixed class with TWR to other aquatic 

vegetation  
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No planting occurred by the MCWE habitat conservation crew during the summer 

of 2020, so new culms that were identified can be attributed to the growth of the species 

however, the EAHCP did work on floating vegetation mat (veg mat) removal. Veg mats 

are mixed species that have broken off from rooted macrophytes or small floating species 

that come together and float above vegetation in the river. Veg mats form in areas of 

dense vegetation with low velocity and are considered harmful to the vegetation as it 

prevents sunlight from penetrating the surface of the river and reaching submerged 

vegetation and prevents the flow of oxygen.  During summer 2020 veg mat removal 

occurred nine times in the study area (Figure 8, Table 13) with the MCWE habitat 

conservation crew removing over 6,400 square meters of veg mats. Removal contributed 

to the change from Mixed (30) to Mono (40) classes specifically in the month of August 

as the removal of veg mats reveal stands of TWR from the sUAS planar view. Veg mats 

affect TWR significantly, since large stands of TWR can create low velocity, which is 

where veg mats are usually found, and this serves as an optimal location for invasive 

species as well (EAHCP, 2019). Removal occurred within a three-day period during the 

capturing of July and September imagery, so I do not believe it played as large of a role 

as it does in the August orthomosaic imagery. 
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Figure 9. Vegetation mat removal that occurred during the study period by month. No 

veg mat removal occurred on data acquisition days. 
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Table 16. Dates of veg mat removal in study area and accumulated coverage of veg mat 

removal. The removed column represents the volume of veg mat removed in the area. 

Comments Date Removed total (m2) 

Veg Mat Removed 07/04/20 321.15 

Veg Mat Removed 07/11/20 811.55 

Veg Mat Removed 07/18/20 769.63 

Veg Mat Removed 07/23/20 721.23 

Veg Mat Removed 08/12/20 1151.42 

Veg Mat Removed 08/19/20 1032.84 

Veg Mat Removed 08/27/20 601.01 

Veg Mat Removed 09/15/20 673.66 

Veg Mat Removed 09/22/20 407.51 
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VI. CONCLUSION 

This research involved collecting sUAS imagery on an area of biological 

importance on the SMR during July, August, and September of 2020 to create continuous 

maps of vegetation in the SMR. One flight was processed from each month into an ultra-

high resolution orthomosaic in Agisoft Metashape and an OBIA supervised classification 

was performed with the RF classifier to create classified imagery of the orthomosaics. 

Using reference data from GIS data, in-situ observations, in person interviews and over 

email, accuracy assessments were performed that yielded overall accuracies of 80.57% 

for July, 78.42% for August and 75.72% for September. The July and August classes had 

a Kappa above 0.61 indicating substantial agreement in accuracy and the September class 

had a Kappa of 0.59 indicating moderate agreement.   

Change detections were performed on the classified maps from July to August, 

August to September, and July to September. All three change detections resulted in the 

same classes exhibiting the greatest change: Substrate to Mono indicating the growth of 

root culms and young TWR, Mixed to Mono indicating the growth of matured TWR and 

the removal of floating vegetation mats in the study area, and Mono to Mixed indicating 

the growth of all species during a time of little anthropogenic impact.  

While this study involved developing a map of continuous coverage from a planar 

view, this study did not conduct a three-dimensional study of vegetation stands in the 

river, like the work BIO-WEST and the MCWE habitat conservation crew does on a 

regular basis. Mapping aquatic vegetation is impossible to do by planar view alone and 

will need to be corresponded with in-situ field work for validation and three-dimensional 

mapping to get a full contextual view of the composition of aquatic vegetation in a river 
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system. This work could benefit from more in-situ observations at the time of data 

collection and additional reference data that could potentially be derived from sUAS with 

the help of an expert, or which could serve as a strong point of reference when assessing 

accuracy. The work done in this thesis along with the many other studies done on the 

SMR only represent parts of a dynamic, constantly changing river system.  

An Analysis of Aquatic Vegetation in the San Marcos River Using sUAS 

contributes to a larger body of study on the endemic specie, TWR, on the SMR and can 

be used as a benchmark or reference as to the state of aquatic vegetation mapped in a 

continuous raster format for the summer months of 2020, which is normally when the 

river is experiencing the highest use.  This work successfully implemented the use of 

OBIA in a low turbidity aquatic environment using sUAS to classify different aquatic 

vegetation compositions over the summer months during 2020 with change detections 

indicating the change of the vegetation from month to month and across the entire study 

period. 
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APPENDIX SECTION 

APPENDIX 1.1: Orthomosaic July 13, 2020. 
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APPENDIX 1.2: Orthomosaic August 24, 2020. 
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APPENDIX 1.3: Orthomosaic, September 25, 2020. 



APPENDIX 2.1.0: 

Name Description Size Submerged/Floating? Native/Invasive? Image 

Texas Wild rice 

(Zizania texana) 

Narrow grass macrophyte that can produce 

stalks above the water for reproduction. Can 

produce both sexually and asexually.  This 

plant grows in stands and often roots in 

groups. 

A strand can be 0.31 cm-

2.5 cm wide and can 

become up to 40-200 cm 

long. Matured, adult plants 

average approximately 

2.13 m long by 1 m wide.  

S N 

Larger 

image can 

be found in 

Appendix 

2.1.1 

Coontail 

(Ceratophyllum 

demersum) 

Identified by straight flat leaves, brittle 

stems that are branched and are somewhat 

cord-like and flexible. (AquaPlant, 2021). 

The coontail is a darker green but can 

sometimes appear brown in submerged 

water and is visibly able to be distinct from 

the spectral response of TWR.  

The length of the coontail 

can range from 50 cm - 3.5 

m, and as tall as the water 

column. 

Submerged, does not 

root into substrate, 

will float at surface. 

N 

Larger 

image can 

be found in 

Appendix 

2.1.2 

Delta Arrowhead 

(Sagittaria 

platyphylla): 

A broadleaf plant that is native to the 

eastern United States. The herb is perennial. 

Primarily submerged, the taller leaves can 

become emergent and rise above the water’s 

surface.  

The herb can range from 

30 cm to 150 cm tall and 

the emerged leaves can 

range from 10 cm to 17 cm 

long.  

Begin submerged but 

leaves will emerge in 

shallow areas. 

N 

Larger 

image can 

be found in 

Appendix 

2.1.3 

Illinois 

Pondweed 

(Potamogeton 

illinoensis 

A perennial plant. Pondweed has thin, 

elliptical shaped broad leaves, (AquaPlant, 

2021). The stems are referred to as 

"runners” and found underground; it is red 

with a tinge of red at the base and branches 

out.  

Leaves can be average 6-

10 cm long and 2.5-3 cm 

wide, stems can grow to 

the entire water column. 

S N 

Larger 

image can 

be found in 

Appendix 

2.1.4 

Water 

Pennywort 

(Hydrocoytle spp) 

Small perennial plant. Leaves are rounded, 

with stems attached to the center (TAPMS, 

2020). Pennywort mainly grows in the 

locations of the riverbed that TWR is often 

not found, that include soft, clayey 

substrate. Referred to as a carpeting plant as 

it is found on the riverbed floor.  

Averages 5 cm-7.62 cm 

submersed and 12.7 cm 

when out of the water and 

approximately 2 cm in 

diameter. Morphology 

changes based on flow of 

the river. 

Can grow fully out of 

the water and 

submerged. 

N 

Larger 

image can 

be found in 

Appendix 

2.1.5 
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APPENDIX 2.1.0 (Continued) 

Name Description Size Submerged/Floating? Native/Invasive? Image 

Common 

Duckweed 

(Lemna minor L.) 

Small, individual aquatic species that are flat 

with single roots that cluster together in groups 

of two to five or more. Duckweed is often 

found floating on the surface and in floating 

vegetation mats in dense colonies (AquaPlant, 

2021). Duckweed will normally be found 

mixed in with other aquatic vegetation or in 

floating vegetation mats.  

.16-.32 cm in size. F I 

Larger image 

can be found 

in Appendix 

2.1.6 

Bladderwort 

(Utriculariaa 

gibba) 

Small, webbed like aquatic species that are 

rootless and form in mats. Appear bright green 

in color and often form in clumps. Forms in 

whorls, appears spongy in texture, with long 

thin stems and thin branched leaves. This plant 

is carnivorous and has air sacks that trap insects 

for energy. Fluctuates seasonally. Found in 

stagnant back water.  

12.7 cm-30 cm in 

size.  
S N 

Larger image 

can be found 

in Appendix 

2.1.7 

Floating 

Crystalwort 

(Riccia fluitans) 

An aquarium plant that grows in tangled 

clumps or mats. Stem and leaves are 

indistinguishable (AquaPlant, 2021) 

An average of .2 

cm in size, found in 

floating veg mats. 

F N 

Larger image 

can be found 

in Appendix 

2.1.8 

Filamentous 

Algae 

Single cell algae that string together to form 

mat like threads, chains, or filaments. Often 

clinging to rocks and can float to the surface. 

Thick filamentous hair algae, found in clay 

dominant substrate.  

Size varies S & F N 

Larger image 

can be found 

in Appendix 

2.1.9 
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APPENDIX 2.1.0 (Continued)  

Name Description Size Submerged/Floating? Native/Invasive? Image 

 Carolina Fanwort 

(Cobomba 

caralliniana)  

Cylindrical stems with a thin, jelly like 

coating, that have leaf shape fans that 

come out in whorls. Appears similar to 

the coontail but it is slightly larger in size, 

the leaves are more feather like 

(AquaPlant, 2021).  

Can grow to the 

length of the water 

column.  

S N 

Larger 

image can 

be found in 

Appendix 

2.1.10 

Indian Hygrophila 

(Hygrophila 

polysperma) 

A perennial plant that is native to India 

and Malaysia. The plant is found mostly 

submerged. (ERSS, 20XX). This plant 

can be confused with the native Ludwigia 

repens due to its red coloration from sun 

exposure. Hygrophila is aggressive. Can 

grow in riparian areas. 

Leaves are 

normally .5-2.54 

cm wide and 5-

12.7 cm long.  

S I 

Larger 

image can 

be found in 

Appendix 

2.1.11 

Water Thyme (Hydrilla 

verticillata) 

This is a slender stemmed submerged 

plant from Africa that grows in whorls 

and is often found rooted in silty 

conditions trapping sediment. Hydrilla is 

also considered aggressively invasive. 

Hydrilla is often compared to looking 

closely like other watermilifoil species 

(TPWD, 2019). Differentiating between 

Hydrilla and Elodea, a lake plant can be 

nearly impossible without physical 

sampling.   

Averages 5 cm in 

width and 6 m 

long.  

S I 

Larger 

image can 

be found in 

Appendix 

2.1.12 
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APPENDIX 2.1.0 (Continued) 

Name 
Description Size Submerged/Floating? Native/Invasive? Image 

Floating Vegetation 

Mats 

This is a mixture of species that have joined 

together to make large mats of floating 

vegetation. Dominated by Horntwort. A 

mixture of aquatic species can be found 

within the veg mats. Veg mats can prevent 

the flow of oxygen and can prevent sun rays 

from reaching the submerged vegetation, so 

they are routinely removed by the EAHCP. 

TWR and veg mats are commonly found 

near one another as TWR is the primarily 

emersed species on the river. Can submerge 

around TWR plants.   

Size varies F 

Predominantly 

composed of 

native species, 

some floating 

invasives might 

be found. 

Larger 

image can 

be found 

in 

Appendix 

2.1.13 

Water Lettuce (Pistia 

stratiotes L.) 

Thick hearty leaves make up the floating 

emergent portion of this plant. Water 

Lettuce is clustered on very short branches 

with roots found in the water. The plant 

points upwards and fans out (AquaPlant, 

2021) 

Can be 25.4 cm 

in diameter. 

Can be 5-15 cm 

in height 

(Aquaplant, 

2021). 

F I 

Larger 

image can 

be found 

in 

Appendix 

2.1.14 

Watersprite 

(Ceratopteris 

thalictroides) 

With leaves that resemble a fern, this is a 

fast growing invasive species that originated 

from the Philippines. The macrophyte 

normally has singular stems that have finger 

like leaves which can become numerous in 

a short amount of time (AquaPlant, 2021). 

When emerged the stalks can become.  

The leaf 

structure of 

watersprite 

average 7.62 cm 

long and 2.5 cm 

wide. Can grow 

fully submerged 

rooted in 

substrate on the 

bed of the river. 

S & F I 

Larger 

image can 

be found 

in 

Appendix 

2.1.15 
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APPENDIX 2.1.0 (Continued)

Name Description Size Submerged/Floating? Native/Invasive? Image 

Watercress 

(Nasturtium 

officinale) 

A perennial plant native to Europe and 

Asia, the plant has rounded leaves attached 

to a cylindrical stem. Roots occur at the 

nodes of the macrophyte and are stringy 

and thin in appearance (AquaPlant, 2021).  

Root structures can damage TWR through 

strangulation.  

Leaves are an average 

of 2 cm in length and 

stems can reach a 

length anywhere from 9 

cm to 58 cm long.  

F I 

Larger image 

can be found 

in Appendix 

2.1.16 

Water 

Hyacinth 

(Eichhornia 

crassipes) 

Originally from South America, water 

hyacinth is an aggressive invasive species 

that grows rapidly. This plant is identified 

by its blue to purple flowers, with round 

leathery leaved attached to inflated stalks 

(Aquaplant, 2021). Has long roots that 

hang below the plant mass. 

The plant can grow an 

average of 12.5 cm tall 

and 10.2 cm wide. 

F I 

Larger image 

can be found 

in Appendix 

2.1.17 

Water 

Stargrass 

(Heteranthera 

dubia) 

Stargrass does not have runners, it is a 

bushy species from the root base and 

appears like pondweed and TWR, with 

long stems from the base and thin stems 

that resemble individual grass blades. 

Can take up entire 

water column, does not 

become emersed. 

Leaves average 1 cm in 

width. 

S N 

Larger image 

can be found 

in Appendix 

2.1.18 

Creeping 

Primrose 

(Ludwigia 

Repens) 

Perennial plant that is elliptical shaped and 

red in color. This macrophyte has hardy 

cylindrical stems that are reddish brown in 

color. Roots are creeping and found at the 

nodes of the plant which gives the common 

name to the species. Riparian, capable of 

growing out of the water. 

Stems can 30 cm to 

53.34 cm long, and up 

to 2 to 5 cm wide.  

Submersed, but can grow 

fully out of the water. 
N 

Larger image 

can be found 

in Appendix 

2.1.19 
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APPENDIX 2.1.1: Texas Wild rice (Zizania texana) 

Source: Alexa Lopez 

APPENDIX 2.1.2: Coontail (Ceratophyllum demersum) 

Source: Alexa Lopez 
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APPENDIX 2.1.3: Delta Arrowhead (Sagittaria platyphylla)

Source: Peggy Romfh. USDA, NRCS. 2018. The PLANTS Database (http://plants.usda.gov, 28 March 

2018). National Plant Data Team, Greensboro, NC 27401-4901 USA. 
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APPENDIX 2.1.4: Illinois Pondweed (Potamogeton illinoensis) 

 
Source: USDA, NRCS. 2021. The PLANTS Database (http://plants.sc.egov.usda.gov, 

05/17/2021). National Plant Data Team, Greensboro, NC USA. 

 

APPENDIX 2.1.5: Water Pennywort (Hydrocoytle spp) 

Source: Alexa Lopez 
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APPENDIX 2.1.6: Common Duckweed (Lemna minor L.) 

 
Among this pile of vegetation Duckweed can be seen, it is the bright green vegetation 

scattered throughout the image. Source: Alexa Lopez 

 

 

APPENDIX 2.1.7: Bladderwort (Utriculariaa gibba) 

 
Source: Rob Routledge, Sault College, Bugwood.org 

 

 

 

 



  

68 

 

APPENDIX 2.1.8: Floating Crystalwort (Riccia fluitans) 

 
Source:  University of Florida/IFAS Center for Aquatic and Invasive Plants. 

 

APPENDIX 2.1.9: Filamentous Algae 

 
Source: Alexa Lopez 
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APPENDIX 2.1.10: Carolina Fanwort (Cobomba caralliniana) 

 
Source: Alexa Lopez 

 

 

APPENDIX 2.1.11: Indian Hygrophila (Hygrophila polysperma) 

 
Source: USDA, NRCS. 2018. The PLANTS Database (http://plants.usda.gov, 28 

March 2018). National Plant Data Team, Greensboro, NC 27401-4901 USA. 

 

 

http://plants.usda.gov/
http://plants.usda.gov/


  

70 

 

APPENDIX 2.1.12: Water Thyme (Hydrilla verticillata) 

 
Source: Robert Videki, Doronicum Kft., Bugwood.org 

 

APPENDIX 2.1.13: Floating Vegetation Mats 

 
Source: Alexa Lopez 
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APPENDIX 2.1.14: Water Lettuce (Pistia stratiotes L.) 

 
Source: Alexa Lopez 

 

APPENDIX 2.1.15: Watersprite (Ceratopteris thalictroides) 

 
Source: Alexa Lopez 

 

 

 

 

 

 

 



  

72 

 

APPENDIX 2.1.16: Watercress (Nasturtium officinale) 

 
Source: Leslie J. Mehrhoff, University of Connecticut, Bugwood.org 

 

APPENDIX 2.1.17: Water Hyacinth (Eichhornia crassipes) 

 
Source: Peggy Romfh. USDA, NRCS. 2018. The PLANTS Database 

(http://plants.usda.gov, 28 March 2018). National Plant Data Team, Greensboro, 
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NC 27401-4901 USA. 

 

APPENDIX 2.1.18: Stargrass (Heteranthera dubia) 

 
Source: Dean Wm. Taylor. Calscape. California Native Plant Society. 2014 

 

APPENDIX 2.1.19: Creeping Primrose (Ludwigia Repens) 

 
Source: Alexa Lopez 
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APPENDIX 3.0: Habitat conservation measures by the EAHCP. 

Measures 

⎯ Texas wild ricewild rice Enhancement and Restoration (EAHCP §§ 5.3.1/5.4.1) 

⎯ Management of Recreation in Key Areas (EAHCP §§ 5.3.2/5.4.2) 

⎯ Management of Aquatic Vegetation and Litter Below Sewell Park (EAHCP § 

5.3.3) 

⎯ Prohibition of Hazardous Materials Transport Across the San Marcos River and 

Its Tributaries (EAHCP § 5.3.4) 

⎯ Reduction of Non-Native Species Introduction (EAHCP §§ 5.3.5/5.4.11) 

⎯ Designation of Permanent Access Points/Bank Stabilization (EAHCP § 5.3.7) 

⎯ Control of Non-Native Plant Species (EAHCP §§ 5.3.8/5.4.3/5.4.12) 

⎯ Control of Harmful Non-Native and Predator Species (EAHCP §§ 5.3.9/5.4.13) 

⎯ Management of Floating Vegetation Mats and Litter (EAHCP §§ 5.3.3/5.4.3) 

⎯ Management of Golf Course and Grounds (EAHCP § 5.4.9) 

⎯ Native Riparian Restoration (EAHCP § 5.7.1) 

⎯ Impervious Cover/Water Quality Protection (EAHCP § 5.7.6) 

⎯ Management of Household Hazardous Wastes (EAHCP § 5.7.5) 

⎯ Prohibition of Hazardous Material Transport (EAHCP § 5.3.4) 
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