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ABSTRACT 

Woody phreatophytes are some of the most impactful invasive species in the 

upper Brazos River (UBR), with saltcedar (Tamarix spp.) being of most concern. Since 

saltcedar’s introduction to the eastern United States in the late 1800’s, it quickly grew to 

become a nuisance. This invasive species alters instream sedimentation dynamics, 

channel and floodplain morphology, and riparian vegetation throughout the southwestern 

United States. The removal and eradication of this species is a multi-million dollar per 

year project. This thesis uses high-resolution imagery and object-based image 

classification methods to measure changes in saltcedar cover within the UBR relative to 

pre- and post-management efforts, over the period of 2017-2020, led by Texas Parks and 

Wildlife Department. During the study period, analysis revealed an overall decrease in 

saltcedar, indicating that management efforts have been effective in decreasing the 

amount of healthy saltcedar that occur in the UBR.  
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I. INTRODUCTION 

 

Background 

 The Brazos River is the third longest river (1,352 km) in the state of Texas, the 

second largest river basin by area (119, 174 km2) and has the largest average annual 

discharge volume (237.5 m3/s) of all Texas rivers (Hendrickson, 2002). The Brazos 

River’s water resources are vital to the state’s economic activities such as crop 

agriculture, ranching, municipal, and industrial water supply. Historically, the Brazos 

River is second to only the Mississippi River in amount of sediment that is transported to 

the Gulf of Mexico at approximately   ~ 10 – 16 metric tons per year (Milliman and 

Meade, 1983).  

Saltcedar (Tamarix spp.) is a woody, shrub-like phreatophyte that originates from 

regions that include southern Europe, the eastern Mediterranean, and northern Africa, and 

was introduced into the U.S. (Baum, 1967). Saltcedar was the name given to these shrubs 

due to the small scale-like leaves that appear to resemble leaves of cedars, as well as the 

saline exudate that accumulates on the foliage (Fraiser and Johnsen, 1991). Once hailed 

as a cost-effective and accessible option for wind breaks, shade, and streambank 

stabilization, saltcedar quickly became an invasive species by as early as the 1920’s 

(Botherson and Winkel, 1986). Since their introduction, saltcedar has invaded many 

ecosystems throughout the United States, with much of their concentrations found within 

the southwestern states spanning from California to north Texas and Oklahoma (Neill, 

1985; Friederici, 1995). Their invasion has brought forth ecological and hydrological 

stresses that have required management efforts costing millions of dollars per year 
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(Zavaleta, 2000).  

With the availability and accessibility of water becoming an issue of growing 

concern, especially in the American southwest, the management of invasive species like 

Tamarix has become a focal point of resource conservation (Seager et al., 2013; Elias et 

al., 2016; Miller et al., 2021).  Saltcedar’s roots reach and drain the water table adjacent 

to streams, altering local water budgets and increasing water losses. Much of the 

southwestern states are experiencing more frequent and intense droughts brought on by 

unsustainable practices and anthropogenic climate change (Diffenbaugh et al., 2015; 

Williams et al., 2020). These droughts have allowed Tamarix to expand their dominance 

due to their salinity tolerance (Gatewood et al., 1950; Carman and Brotherson, 1982; 

Brotherson and Winkel, 1986). This study will use high spatial resolution imagery to 

identify saltcedar coverage changes in high-density reaches within the upper Brazos 

River where management efforts have occurred since 2017.   

 

Problem Statement  

 Invasive species like Tamarix are altering the geometry, composition, and 

sedimentation of the upper Brazos River though sediment accumulation and channel 

narrowing (Nagler et al., 2008; Dean et al., 2011). Riparian banks stabilized by invasive 

saltcedar have the ability to transform shallow, wide, low-velocity braided streams into 

deeper and swifter flowing streams. These changes impact flood processes, native 

riparian communities, and instream aquatic habitats. Reduced water temperatures 

resulting from increased stream depth create colder conditions that directly impact warm-

water adapted native fish. Previous studies have examined how invasive riparian 
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vegetation encroachment affects streams’ responses to high flows, and how their removal 

can restore geomorphic dynamics of sediment remobilization. (Perignon et al., 2013; 

Vincent et al., 2009). Studies focusing on saltcedar influenced geomorphology within the 

UBR have not been conducted recently, with some of the most substantial research in the 

region conducted in the 1970’s and 1980’s (Busby and Schuster, 1973; Blackburn et al., 

1982). The majority of recent studies on the fluvial geomorphology of the Brazos River 

focused on the middle and lower sections, with minimal emphasis on the influence of 

invasive riparian vegetation (Phillips, 2007; Taha and Anderson, 2008; Giardino and Lee, 

2011).  

Remote sensing of vegetation is an important methodological approach in the 

identification and management of invasive species, as managers require precise 

spatiotemporal information to assist their efforts of mitigation and eradication (Johnson, 

1999). Traditional surveying methods including ground mapping utilizing instruments 

such as Global Positioning System (GPS) units result in high accuracies in small areas 

(Cooksey and Sheley, 1997). With management areas in the UBR usually exceeding 

thousands of hectares, this method of surveying may prove to be impractical for 

management efforts. Remote sensing of invasive vegetation species using high-resolution 

imagery is common (Glenn and Nagler, 2005; Akasheh et al., 2008; Huylenbroeck et al., 

2020). Saltcedar identification has been conducted using both medium and high-

resolution imagery (Wang et al., 2013; Ji and Wang, 2016). Methods have included 

object-based image analysis, phenological metrics, and indices such as Normalized 

Difference Vegetation Index (NDVI). Accurate spatial distribution mapping of saltcedar 

is imperative for proper systematic conservation of native species while removing the 
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invasive phreatophyte to restore these affected riparian ecosystems (Stromberg et al., 

2009; Nagler et al., 2011). This research contains the spatial distribution of remotely 

sensed Tamarix in management areas. Images from 2012 and 2020 are used to calculate 

the change of saltcedar in these areas pre- and post-management.  

 

Justification 

 The results from this study will contribute to the management efforts of saltcedar, 

as well as provide recent data to examine the influence of riparian phreatophytes in the 

context of the UBR. This research could provide useful data to agencies such as Texas 

Parks and Wildlife Department (TPWD) whose aquatic invasive management efforts are 

some of the largest in the state.  

 TPWD is actively undertaking a large-scale collaborative management effort of 

Tamarix in north Texas. Beginning in 2016, partners including U.S. Fish and Wildlife 

Service (USFWS), and multiple Texas universities have aided TPWD in the targeted 

application of herbicides to manage the saltcedar invasion. Eradication activities have 

focused on tributaries of the upper Brazos River Basin, including the Salt Fork and North 

Fork Double Mountain Fork, as well as the main stem upstream of Possum Kingdom 

Lake (TPWD, 2018). Efforts also include the continued monitoring of riparian and 

instream habitats, as well as measurements to further assess how saltcedar affects local 

hydrology. This study will provide classified change detection maps of select reaches 

targeted by TPWD’s removal efforts. Understanding the temporal and spatial responses 

of saltcedar vegetation changes will inform the monitoring and adaptive management 

efforts in the UBR. The techniques used in this study can be applied to examining 
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invasive phreatophytes in similar riparian corridors throughout the southwestern United 

States.  

 

Objectives 

The goal of this research is to answer the research question: How has saltcedar 

presence, coverage, and distribution in riparian areas of the upper Brazos River Basin 

changed over the period of 2016 -2020?  I will map saltcedar distribution in pre-defined 

management areas within the UBR via remotely sensed imagery and assess the change in 

vegetation cover linked to management efforts of the invasive species. TPWD is using 

targeted, aerial applications of herbicide on saltcedar to begin the restoration of riparian 

and instream habitats to support fish and wildlife, as well as healthy river function 

(TPWD, 2022). The images will be classified utilizing an Object-Based Image Analysis 

(OBIA) scheme to classify the images by land cover type, then a change detection will be 

calculated to quantify the change in saltcedar coverage. This relationship will highlight 

the effect of saltcedar management in repelling an invasive species while restoring river 

functionality. I will answer my research question using the following approach: 

1. Acquire National Agricultural Imagery Program (NAIP) imagery of years 2012 

and 2020 of pre-defined management areas.  

2. Produce an object-based classification of NAIP imagery scenes. 

3.  Calculate change detection of saltcedar between image years and quantify 

changes in presence, coverage, and distribution.  

4. Assess the effects of saltcedar management in selected areas and future 

 implications.  
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II. LITERATURE REVIEW 

 

History of Tamarix spp. and Introduction to North America 

 Within the native range of Tamarix, there are fifty four species that span from 

southern Europe, North Africa, the Middle East, India, Pakistan, and China (Baum, 

1978). Tamarix has been found in fossilized charcoal records originating from Israel that 

date back to before 10,000 YBP (Ley-Yadum and Weinstein-Evron, 1994). Naming of 

the plant’s genus Tamaricacae is thought to have been sourced from either Tamaro River 

located in Nepal, or possibly the Tamaris River in Spain (Crins, 1989; DiTomaso, 1998). 

Currently, there are eight species of Tamarix found throughout the United States and five 

species with concentrations within the southwest (DiTomaso, 1996).  

 Many theories exist on the timing of saltcedar introduction to North America and 

the United States.. Early hypotheses included introduction via the Spaniards as they 

travelled from southern Europe to the arid and semiarid regions of Mexico during their 

exploration of the New World. If populations of saltcedar were indeed established in this 

manner, then it would be logical to believe that central Mexico and the arid American 

southwest would be the epicenter of distribution (Bowser, 1958). Analysis of texts 

written by a Spanish padre during the late 18th century suggested observations of 

Tamarix, although the term used might have been misinterpreted and instead detailed 

native vegetation (Martinez, 1937; Auerbach, 1943). Further support of this mislabeling 

includes the lack of observations made by Spanish explorers as they crossed American 

rivers such as the Green and Colorado, both of which presently contain dense stands of 

saltcedar (Christensen, 1962).  
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 The first known intentional introduction of Tamarix into the United States was 

documented by nursery workers in the early 1800’s (Robinson, 1965). Evidence for this 

introduction timeline includes the offering of Tamarix for sale in New York City for 

ornamental plantings by the Old American Nursery in 1823 (Horton, 1964). Commercial 

availability of Tamarix expanded throughout the early 1800’s along the eastern seaboard. 

An annual report from the U.S. Department of Agriculture listed six species of Tamarix 

that were being grown in their Arboretum Grounds in Washington D.C. (Horton, 1964). 

From the dispersal of these plants for ornamental plantings, they soon began their gradual 

escape from cultivation. By the early 1900’s, specific species of saltcedar were 

encountered along roadsides in the south with regularity (Small, 1903). Endorsements of 

the possible benefits of saltcedar aided their expansion, these included ornamental 

plantings in arid environments for their utility as windbreak, shade for stock animals, and 

even fuel. Through these uses, the number of planned and unplanned plantings grew 

(Thornber, 1916).  

 

Tamarix spp. in Texas 

Saltcedar was first collected in Texas in 1877, and it was one of the first 

specimens collected for study outside of their introduced habitats (Robinson, 1965). This 

specimen was collected on Galveston Island and was noted as being naturalized to its 

invaded habitat.  Saltcedar was first introduced in Texas to mitigate streambank erosion, 

following a similar practice in other states (Everitt, 1998). Much of the early 

concentrations of saltcedar were located in the Rio Grande and Pecos rivers, where some 

of the earliest documentations of Tamarix in the southwest occurred in the early 1900’s. 
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(Eakin and Brown, 1939; Thompson, 1958). According to Robinson (1965), the largest 

area of saltcedar was located within the Pecos River Basin in New Mexico and Texas, 

covering an aerial extent of 275,000 acres. Most of the area was within the Texas border 

and cover density varied from five to one hundred percent 

It is hypothesized that from there, saltcedar dispersed eastward in Texas along 

connected river networks, invading suitable habitats. Much of the saltcedar in the United 

States occurs west of the 100th meridian where annual rainfall drops below 45 cm yr-1 and 

agriculture becomes dependent on irrigation (Zavaleta, 2000). The UBR spans a gradient 

along this meridian boundary and has documented saltcedar invasion. Saltcedar in the 

UBR likely proliferated from fragmented stands that occurred hundreds of meters away 

from the channel where native mesquite created a barrier. Flooding allowed saltcedar 

propagules to migrate and establish closer to the channel (Blackburn et al., 1982). 

Sedimentation dynamics along the Brazos have been altered due to saltcedar presence. In 

1940, sparse saltcedar stands were located on average 93 meters away from the channel 

and within ten years the average distance was reduced to 19 meters (Busby and Schuster 

1973). Dense saltcedar stands averaged 111 meters from the channel in 1940 and reduced 

to just 13 meters in 1969 (Busby and Schuster, 1973).   

Following establishment, saltcedar and native phreatophytes occupied fifty seven 

percent of the UBR upstream of Possum Kingdom Lake, an increase of eighteen percent 

from 1969 through 1979 (Blackburn et al., 1982). In 1969, saltcedar alone attributed to 

thirty six percent of the observed riparian vegetation within the UBR (Busby and 

Schuster, 1973). As a phreatophyte with the ability to consume large quantities of water, 

saltcedar is estimated to use approximately 44,000 acre-feet of water annually within the 
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tributaries and main stem of the Brazos upstream from Possum Kingdom Lake (Busby 

and Schuster, 1973). Sediment accumulation and hydrologic alteration has profoundly 

affected the shape and morphology of the UBR. A pair of photograph analyses of aerial 

images captured between 1939 and 1973 revealed the changes in stream position 

coinciding with saltcedar’s proliferation in the region. Both analyses displayed the 

selected stream reaches narrowing due to rapid sedimentation accumulations (Busby and 

Schuster, 1973; Blackburn et al., 1982).  

Saltcedar and phreatophyte proliferation along the floodplain and channel 

facilitated the accumulation of 3 meters of sediment, reducing the width of the Brazos by 

approximately 90 meters in reaches upstream of Possum Kingdom Lake (Busby and 

Schuster, 1973). Similar studies across the west have yielded comparable results. The 

Gila River, Arizona, experienced rapid expansion of saltcedar and displacement of native 

cottonwood and Baccharis between 1914 and 1964. As a result, mobilized sediments 

upstream from unaffected reaches of the Gila accumulated in dense saltcedar stands, 

drastically reducing the width of the channel (Turner, 1974). As saltcedar now occupies 

over 500,000 acres in Texas, its effects on rivers and riparian habitats have created a 

major management issue that proves to be a daunting task heading into an uncertain 

future in terms of water usage and availability (DeLoach et al., 2009).  

 

Tamarix spp. as an Exotic and Invasive Species  

 Exotic and invasive plant species are those that are introduced outside of their 

native range, establish populations, naturalize within their environment, and then disperse 

outside of their introduction range, and are detrimental to their introduced environment 
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(Mooney and Drake, 1989; Parker et al., 1999; Mack et al., 2000; Tickner et al., 2001). 

Highly prolific invasive species are credited with becoming one of the leading causes of 

biodiversity loss (Pimentel et al., 2005). Invasive species establishments are widely 

studied because they alter ecosystem function and structure (Crowl et al., 2008).  

Until the mid-twentieth century, saltcedar was positively viewed in the context of 

riparian ecosystems. Sediment accumulation brought on by the expansion saltcedar was 

seen as a stabilizer against erosion along lake and channel edges, and the species’ ability 

to desalinize deep soil profiles through their salt secretion was considered desirable 

(Goldsmith and Smart, 1982). Although these initial alterations to their environments 

were welcomed, the negative effects of saltcedar expansion were soon realized. 

Continued expansion and outcompeting of native vegetation has contributed to saltcedar 

being the most dominant woody riparian species in the west (Dudley et al., 2000; Doody 

et al., 2011). 

 Saltcedar expansion occurred at a time where much of the riparian vegetation was 

concurrently altered by westward expansion during the 1800’s and early 1900’s. Native 

phreatophytes along streams were harvested or cleared for anthropogenic uses and 

created an opening for saltcedar to expand their range (Horton and Campbell, 1974). The 

destruction of native vegetation from water management plans that drastically altered 

natural flow regimes of the western and southwestern United States greatly aided 

saltcedar’s proliferation (Engel-Wilson and Ohmart, 1978; Everitt, 1980; Shafroth et al., 

1995). Streamflow alterations have increased average soil salinities, such that native 

vegetation cannot survive, enabling the more saline resistant saltcedar to benefit 

(Brotherson and Field 1987; Sala and Smith 1996).  
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Comparisons between streams with native riparian cover and those with saltcedar, 

indicate that flooding and erosion disproportionately impact stream reaches dominated by 

the invasive saltcedar. Sediment accumulation caused by the extensive and sturdy 

Tamarix root systems reduced stream’s lateral mobility (Graf, 1978). The sediment 

accumulation creates a positive feedback loop; as the sandbars, riverbanks, and 

midstream islands continue to grow and streams become progressively narrower. Stream 

narrowing increases streamflow velocity and the potential for severe flood events (Eagan 

et al. 1993; Fraiser and Johnsen 1991; Friederici, 1995; Kerpez and Smith, 1987). During 

flood events, water flows over the expanded riverbanks and interacts with the dense 

saltcedar stands. The shrub’s anchored structure renders it resistant to uprooting from 

strong currents and its structural presence increases water depth through flow resistance. 

Removal of saltcedar along an 18.5 km reach of the Gila River in Arizona resulted in a 

decrease of Manning’s ‘n’ roughness coefficient, stage, and depth of peak discharges and 

mitigated flood damages that would have otherwise resulted if saltcedar was not removed 

(Burkham, 1976). 

Saltcedar’s primary root stem grows downward with minimal lateral extension 

until it reaches the water table (Horton, 1977). This characteristic is a major factor 

enabling it to outcompete native vegetation. Root characteristics also act as a controlling 

factor of saltcedar distribution, as their requirement to reach the water table leads to a 

majority of saltcedar concentrated on relatively flat floodplains with little elevation 

change (Everitt, 1980). Saltcedar’s ability to draw moisture from both the saturated zone 

below the water table as well as unsaturated soils above deeper water tables provides an 

advantage over native vegetation with shallower root systems (Everitt, 1980). Most 
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native woody taxa are obligate phreatophytes and source their water from shallower 

water tables (Busch et al., 1992). The deeper root structure of saltcedar enables them to 

draw down the water table below the reach of many native species, which contributes to 

its competitive advantage and decline of native riparian vegetation (Brotherson et al., 

1984).  

Evapotranspiration (ET) rates of saltcedar far exceed that of native species and is 

among the most important factors driving management efforts in the southwest (van 

Hylckama, 1974; Brotherson et al., 1984). Their water usage is so extensive that they 

have been attributed to the complete drainage of hydric systems such as groundwater 

springs, pools, and perennial streams (Johnson, 1987). Numerous studies have attempted 

to quantify the amount of water used by Tamarix throughout their naturalized ranges and 

have resulted in varying estimates. Variation of water use has created divided opinions on 

management efforts. Shafroth et al. (2005) stated that “Despite decades of saltcedar 

invasion and control attempts, conflicting opinions remain about how, where, or if 

controlling saltcedar is likely to provide ecological or economic benefits that justify 

removal”. Site specific environmental and climatic factors may prove to be the source of 

varying estimates of saltcedar’s evapotranspiration. Riparian phreatophytes require 

access to water tables to consume the required amount of water for survival and growth, 

and shallower water tables give species such as saltcedar easier access to consume greater 

amounts of water (Robinson, 1965; van Hylckama, 1970, 1974; Davenport et al., 1982; 

Cooper et al., 2006). Solar radiation also controls the rates of ET, with notable decreases 

found during overcast days (Butler et al., 2007). Conversely, Davenport et al. (1982) 

found that saltcedar ET may not be accurately measured due to the plant’s increased 
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stomatal resistance during extremely hot temperatures in dry soil conditions and resulting 

water use quantities may be exaggerated. In this scenario, Tamarix will close their 

stomata during the hottest part of the afternoon to reduce water loss (Hagemeyer and 

Waisel, 1990). Other climatic conditions such as humidity, wind, and air temperature 

affect saltcedar ET (Gatewood et al., 1950; Robinson, 1965; Devitt et al., 1997). 

Gatewood et al. (1950) states saltcedar ET is at its lowest during humid conditions, 

something that is not common in many environments where saltcedar is located. Stand 

density has also been found to be a major contributing factor to saltcedar ET. Weeks et al. 

(1987) found significantly lower ET rates in scattered stands compared to stands 

moderately to densely packed. Regardless of stand density, saltcedar possesses a higher 

leaf area than native riparian species, allowing for higher rates of ET (Sala and Smith., 

1996; Di Tomaso, 1998). Losses of water due to saltcedar are continuing to put stresses 

on their affected environments and is another reason for a decline in native riparian 

vegetation (Cleverley et al., 1997).  

Displacement of native taxa through ecosystem alteration is an issue that 

management efforts are attempting to rectify. Riparian and wetland ecosystems are 

critically important to arid and semiarid environments of the western United States, as 

sources of sustenance to many native taxa (Sanders and Edge, 1998; Skagen et al., 1998). 

Riparian ecosystems support many endangered species, and these habitats are 

increasingly threatened by alteration and degradation caused by land development, 

pollution, water diversions, and exacerbated by invasive species (Allan and Flecker, 

1993; Moyle, 1994; Dudley and Collins, 1995). Saltcedar water consumption displaces 

riparian-dependent native species. Avian species that live perennially or seasonally prefer 
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native cottonwood, willow and mesquite stands to saltcedar (Cohan et al., 1978). Ground 

nesting species have adapted to nesting within saltcedar stands, but a lack of preferred 

food sources has led to an increase of foraging in nearby agricultural fields (Brotherson 

and Field, 1987).  

Changes to overall vegetation stand structure and composition have also 

negatively affected bird communities. Several native species of bird prefer stands of trees 

or shrubs between approximately 5 and 21 meters in height, which is taller than most 

saltcedar (Anderson et al., 1977). Reproductive fitness of birds who nest in saltcedar was 

also found to be significantly lower than species in native stands (DeLoach et al., 2000; 

Dudley et al., 2000). This decreased fitness is attributed to lower levels of food 

availability, as arthropod abundance has been reduced compared to similar ecosystems 

with more abundant native vegetation (Stevens, 1985, Delay et al., 1999; Knutson et al., 

2003; Yard et al., 2004). Herpetofauna are also affected and occur in lower diversities 

and abundances in saltcedar dominated habitats (Jakle and Gatz 1985; Szaro and Belfit, 

1986; Konkle, 1996). Many fish species that are regionally endemic to the west and 

southwest have been negatively affected by the alterations created by saltcedar invasion. 

Some species benefited from the removal of dense saltcedar and reversion to natural 

conditions (Kennedy, 2002). Effects on mammal populations have shown mixed results, 

as species-specific interactions with riparian habitats vary. Large mammals such as the 

Peninsular bighorn sheep (Ovis canadensis cremnobates) have seen their access to 

surface water reduced by saltcedar uptake (Rowlands, 1989; Lovich and DeGouvenain 

1998). Some species of smaller mammals have seen their numbers remain unchanged, 

although saltcedar invasion was considered a major factor in the near elimination of 
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beaver and kangaroo rat in Big Bend National Park (Boeer and Schmidly, 1977). 

 

Management Techniques in Texas 

 Saltcedar’s effects on hydrology, geomorphology, and ecology created the need 

for management to eradicate the invader and restore native conditions. The assertion that 

saltcedar management will result in overall water gains appeals to communities and many 

keyholders and has led to management efforts throughout west Texas and other affected 

areas of the southwest (Mayes et al., 2019). Several studies, however, have only found 

modest water gains, and these findings have yet to be documented at a watershed scale 

(Wilcox 2002; Wilcox et al., 2006; Doody et al., 2011; Cleverly, 2013; McDonald et al., 

2015). Although water gains have yet to be broadly substantiated, management of 

saltcedar can help to achieve flow restoration while protecting channel and riparian 

habitats from further degradation. Flow restoration and protection strategies prove to be 

the most feasible and impactful conservation objectives within west Texas (Valente et al., 

2019).  

 Unlike other states where saltcedar infestation requires management, an 

overwhelming majority (95 percent) of affected habitat in Texas is privately owned. 

Watershed-scale efforts must engage and partner with private landowners in order to 

effectively manage saltcedar (Mayes et al., 2019). Outreach programs have aimed to 

educate landowners on the effects and threat of saltcedar. Beginning in 2015, the TPWD 

launched an initiative to combat Tamarix in the UBR, alongside USFWS and Texas 

A&M AgriLife Extension. Since their efforts began in 2016, these groups have treated 

more than 18,500 acres of saltcedar along the UBR on 140 ranches (TPWD, 2018). The 
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main treatment method in the UBR has involved targeted applications of the herbicide 

Imazapyr. A member of the imidazolinone family of herbicides, Imazapyr’s effectiveness 

stems from its ability to inhibit the synthesis of enzymes vital for amino acid production 

(Mayes et al., 2019). Imazapyr has been deemed “practically nontoxic” to fish 

populations in aquatic formulas (Shaner and O’Connor, 1991). Application of Imazapyr 

in the UBR occurs via helicopter spraying of the saltcedar foliage. Helicopter-based 

application can be highly effective in the management of Tamarix (Duncan and 

McDaniel, 1998). Helicopters also provide a degree of maneuverability that cannot be 

achieved in fixed-wing aircraft, allowing applicators to avoid treating native species such 

as cottonwood (McDaniel and Taylor, 2003). Some detrimental effects of Imazapyr exist, 

with potential long-lasting consequences. Imazapyr applied via helicopter binds to the 

soil and is degraded mainly through microbial activity, thus creating an extended 

residence time that may inhibit the growth of native vegetation (Shaner and O’Connor, 

1991; Mayes et al., 2019). 

 Biological agents have also been implemented in the management efforts of 

saltcedar within Texas, albeit not within the selected region of this study. Saltcedar 

beetles (Diorhabda spp.), a natural predator originating from the same native range of 

Tamarix have been used as a biological control agent. These beetles have been introduced 

throughout the United States, including Texas, to aid in the management of saltcedar 

(Bean et al., 2013). Per Bean et al. (2013), at least one species of this beetle is found in 

low numbers in the UBR watershed and are transient as they prefer to feed on new 

growths. Complete eradication of Tamarix is nearly impossible, treatment to date has 

required excessive expenditures and human intervention. Integrated herbicide and 
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biological management approaches could be best implemented in the small creeks and 

draws that are essentially inaccessible by air. After herbicide treatment, fresh new growth 

of saltcedar may seem more appetizing to the saltcedar beetles than older and denser 

stands (Mayes et al., 2019).  

 Due to saltcedar’s extensive and dense coverage, complete eradication at a 

watershed scale is not an attainable goal. Instead, mimicking natural disturbances could 

prove to be the most effective management plans along with targeted herbicide 

applications. Manual removal of saltcedar and herbicidal treatment creates a fragmented 

environment, which in turn can create an opening for natural processes to begin the 

transition back to previous fluvial conditions (Mayes et al., 2019) Flood and high flow 

events are required to mobilize and transport sediment that has accumulated in the 

floodplains, removing the habitat needed for saltcedar expansion. Although the current 

channel-floodplain hinders the effectiveness of flood events, any high flow event in 

managed areas may become more effective for promoting natural instream habitat and 

improved river functions, and quality (Keller et al., 2014). Integrated management efforts 

of saltcedar could increase water gains from 5,600 to 10,800 L/ha treated within the 

upper reaches of the watershed at only a 10 percent reduction of saltcedar (Mayes et al., 

2019). Similar results from Harwell et al. (2016) were calculated within the Double 

Mountain Fork upstream of Lake Alan Henry (Harwell et al., 2016).  
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Remote Sensing of Tamarix spp. 

 Effective management efforts at a watershed scale could not be achieved without 

the proper understanding of saltcedar’s areal extent and distribution. Remote sensing 

provides a means of detecting invasive species and quantifying rates of land cover change 

(Wang et al., 2013). Since the introduction of high-resolution satellites, data has been 

utilized in the identification of other invasive species in Texas such as giant reed (Arundo 

donax) and spiny aster (Chloracantha) (Everitt et al., 2005). Remote sensing of saltcedar 

has been explored in multiple studies, using hyperspectral imagery. Hamada et al. (2007) 

investigated saltcedar mapping using hyperspectral (0.5m) imagery in California, and Pu 

et al. (2008) conducted change detection calculations in saltcedar environments through 

NDVI differencing and traditional image classification (Hamada et al., 2007; Pu et al., 

2008). Saltcedar’s late fall to early winter variations in leaf color can serve as the basis of 

species identification (Everitt and DeLoach, 1990; Groeneveld and Watson, 2008; Diao 

and Wang, 2016). A technique that has been used frequently in mapping and quantifying 

cover change at a species level is the object-based image analysis (OBIA).  

 

Utilization of OBIA for Mapping Riparian Vegetation 

 Riparian study areas pose challenges for manual and pixel-based vegetation 

mapping due to narrow stream widths, seemingly erratic drainage patterns, and varied 

compositions (Yu et al., 2006). To overcome these obstacles, other approaches have been 

utilized. OBIA of remotely sensed imagery is based on grouping sets of similar pixels 

into image objects (Macfarlane et al., 2017). OBIA overcomes the shortcomings of other 

techniques for vegetation classification because it relies on spectral, spatial, textural, and 
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contextual information from the created image objects rather than spectral reflectance 

from individual pixels as the foundation of categorization (Blaschke et al., 2014). It is 

widely agreed that OBIA builds upon previous segmentation, edge-detection, feature 

extraction, and classification concepts that have been developed and refined over many 

decades of remote sensing studies (Haralick and Shapiro 1985; Hay et al., 2001; Burnett 

and Blaschke. 2003; Laliberte et al., 2004). OBIA has been used in various change 

detection studies (Lunneta et al., 2006; Ma et al., 2016).  OBIA can be divided into two 

main steps: segmentation and classification. Image segmentation is often defined as a 

method for dividing an image into homogenous regions (Pal and Pal, 1993). Homogenous 

regions represent areas of the image of similar land cover (i.e., buildings, water, grass) 

that are known as image objects (Heumann, 2011; Costa et al., 2018). Segmentation is the 

most critical step in OBIA, and the accuracy of the following classification depends 

heavily on the quality of the segmentation algorithm (Mountrakis et al., 2011; Su and 

Zhang, 2017).  

OBIA segmentation/classification of vegetated cover using high spectral 

resolution in RGB imagery can improve the mapping accuracy of small features, such as 

trees of different species or age (Platt and Rapoza, 2008). In imagery with a spatial 

resolution greater than 5 m per pixel, vegetation stands can be discerned on a coarse scale 

and below this threshold, vegetation can be discriminated on an individual basis 

(Blaschke et al., 2010). OBIA has been generally considered highly accurate (> 85 

percent), and more efficient than pixel-based image analysis. In order to achieve a single-

scale segmentation, the parameters and thresholds of that segmentation must be tuned to 

meet the requirements of the scale of study. It is often the case that determining the 
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correct scale in advance of the analysis is difficult as significant objects may appear at 

different spatial scales within the same image (Blaschke et al., 2010). In this study, the 

intended scale will be that at a tree stand scale, as that the structure of saltcedar 

communities within the UBR.  

Application of select indices may help improve the accuracy of classification. 

Nguyen et al. (2018) applied two indices as masks to separate vegetation from other 

kinds of land covers The Normalized Difference Water Index (NDWI) is used to separate 

water from other image objects, and the Normalized Difference Vegetation Index (NDVI) 

to separate bare soils from vegetation in arid environments. Select band ranges (642 – 

683 nm and 750 – 870 nm) were determined to be important predictors for vegetation 

classification, as the range of spectra is related to the growth and vigor of plants. In 

addition to using hyperspectral imagery, random forest classification provided robust 

results even with a small sample size (94.8 percent overall accuracy) (Nguyen et al., 

2018).  
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III. METHODOLOGY 

 

Study Area 

 The Brazos River flows for more than 2,000 km from the headwaters of the 

Blackwater and Yellow House Draws of southeastern New Mexico, eastward through 

central Texas, before turning south and emptying out into the Gulf of Mexico. The three 

selected areas are located on tributaries in the northwestern area of the Brazos River 

drainage basin. Two locations are on the North Fork Double Mountain Fork Brazos River 

(NFDMF) in northwestern Garza County, and one location is on the Double Mountain 

Fork Brazos River (DMF0) in southern Kent County (Figures 1-3). The three site 

locations are saltcedar management areas executed by TPWD and its partners since 2016.  

Streamflow in these locations is highly variable and is dependent on rain events 

for much of the year (Echelle et al., 1972). Rainfall averages approximately 60 cm 

annually and falls in hard, localized showers. Sediment size found in the UBR ranges 

from clay to cobbles, creating braided channels that have since been affected by saltcedar 

growth. Alluvium within the floodplain is immature and is sourced from iron oxide rich 

red beds that are Permian to Triassic in age.  

Vegetation is similar to other similar arid and semiarid ecosystems. Mesquite 

dominates much of the slopes and open areas in all three sites. Other shrubs such as 

hackberry occur at smaller frequencies. Saltcedar is located very close to the stream, 

though some were observed away from the stream if there was a wetted depression, or an 

arroyo that flows during precipitation. Saltcedar, both healthy and unhealthy, could be 

found in stands ranging from a single individual to very dense, extensive stands. Some 
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species were present at some sites while not at another. Cottonwoods were more 

prevalent at DMF 0 than the NFDMF sites. This presence could be explained by the 

slight increase in moisture from the NFDMF sites, southeast towards DMF 0. Grass types 

also differ between sites but were grouped into one class per image due to their similar 

spectral responses.  
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Figure 1. NAIP image of NFDMF 1  
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Figure 2. NAIP image of NFDMF 2 
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Figure 3. NAIP image of DMF 0  
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Data Collection 

High spatial resolution imagery was collected to display areas of pre- and post-

managed saltcedar treatments. The images of each section were collected as part of the 

National Agriculture Imagery Program (NAIP), which provides 1 x 1 m2 spatial 

resolution for the United States during leaf on conditions. Spatial resolution improved to 

60 cm per pixel beginning in 2018. Each individual tile is based on a 3.75 – minute 

longitude by 3.75 minute – latitude quarter quadrangle, including a 300-meter buffer on 

each side. Each image tile is orthorectified in the Universal Transverse Mercator (UTM) 

coordinate system, North American Datum 1983 (NAD 83), and cast into a single 

predetermined UTM zone. The images collected are color-infrared (CIR), containing red, 

green, blue, and near-infrared (NIR) bands. Instead of being captured via satellite, NAIP 

imagery is collected by the Leica ADS100 Aerial Scanner that is fixed to a commercially 

flown aircraft (U.S. Department of Agriculture, 2013). Images are taken under ideal 

weather conditions, containing no more than 10 percent cloud coverage per quadrangle. 

Imagery is orthorectified, and each tile image is contractually obligated to be horizontally 

accurate within 6 meters of ground control points. Imagery is available for download 

from the United State Geological Survey EarthExplorer image database for all selected 

locations. Collection of these images occurred for the years 2012 and 2020 (Table 1). 

  

Table 1. Collection dates for NAIP imagery in 2012 and 2020. 

Image 2012 Collection Date 2020 Collection Date 

NFDMF 1  August 5th September 25th  

NFDMF 2  August 5th September 25th 

DMF 0 August 5nd September 27th  
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Ground reference data was sourced using TPWD’s Ecological Mapping Systems, which 

provides 10 m resolution land classifications for almost 400 various land cover 

designations. Derived from NAIP imagery, the vegetation cover class has an accuracy of 

74 to 90 percent (TPWD, 2022). These classifications are visualized in TPWD’s Texas 

Ecosystems Analytical Mapper (TEAM) that is supplemented by GroundTruther. This 

tool is a crowdsourced application that allows citizen scientists to provide feedback to 

TPWD on the accuracy of the vegetation classification, and aids in tracking changes in 

vegetative cover. GPS points were taken in the field at both NFDMF sites. These points 

were then used to help classify the images.  

 

Data Preprocessing  

The initial step to preprocessing this data is to create an area of interest (AOI), 

focusing on the stream channel and adjoining areas and discarding the rest of the images. 

Exact AOIs in each location are selected for their habitat potential of saltcedar. Channel 

segments are relatively straight, and have wide, flat floodplains in which saltcedar 

hypothetically occurs in highest densities. Total extents of AOI from location to location 

varied, as their distinct morphologies influenced AOI creation. In order to explore the 

variance in accuracy between a larger area and a floodplain, an AOI of strictly the 

floodplain in NFDMF 1 was created. AOIs are then clipped from their respective images 

and exported as GeoTIFFs.  

Originally, one goal of preprocessing was to convert the digital numbers of NAIP 

imagery into Top-of-Atmosphere (ToA) values. This removes some atmospheric 

alteration of the reflected wavelengths to produce more accurate and precise calculations 
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for desired indices. Digital numbers are a variable that is assigned to a pixel in the form 

of a binary integer to express values of reflectance. Digital numbers were not converted 

due to the extreme lack of relevant metadata needed to calculate radiance and reflectance. 

This conversion could have been accomplished with satellite imagery such as Landsat, 

but complications including temporal and instrumental restrictions disallowed this 

conversion to be used as a reference to the NAIP imagery.  

 Calculation of a NDVI layer for NAIP will be done to help identify vegetation 

covers and improve classification. Calculation of NDVI creates a dimensionless index 

that displays the difference between visible and NIR reflectance of vegetation cover and 

can be used to estimate the density of green vegetation (Weier and Herring, 2000). This 

calculation will be applied to all NAIP images through ArcGIS Pro. This raster function 

applies a band math equation included below. 

(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

Where NIR is the reflectance values associated with the near-infrared band, and R is the 

reflectance values associated with the red band. Bands necessary for NDVI calculation 

from NAIP imagery are bands 1 (red) and 4 (NIR). The new NDVI layers will then be 

stacked with their respective original CIR images to help with classification.  

 In order to minimize the effect of spectrally similar pixels of differing vegetation, 

a grey level co-occurrence measurement will be added to each image. Grey level co-

occurrence matrices (GLCMs) are based on co-occurrence probabilities and provide a 

method to generate textures from spectrally similar features (Haralick, 1973). A GLCM 

will characterize the configuration of grey scales in an image and is used to analyze the 

variations in textures within an image (Sonka, 1999). Using GRASS GIS, a first-order 
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texture measurement will be conducted to help with object identification prior to 

segmentation. Entropy (ENT) is the measure chosen, as it will identify areas within the 

image where classification confusion may occur. Values of ENT were tested to produce 

the best texture variation between vegetation types with similar spectral reflectance 

values. The smaller window is chosen to depict variation between vegetation types. The 

resulting rasters were then stacked with the NDVI bands of their corresponding images, 

and then in turn stacked to the original 4 band CIR NAIP image. Each preprocessed 

image will contain the original four bands (red, green, blue, NIR), plus the GLCM of the 

calculated NDVI rasters.  

 

Object-Based Image Classification 

 OBIA identifies image objects based on similar spectral values based on color, 

texture, and tone through image segmentation. Segmentation will be accomplished by 

using ArcGIS Pro and requires user-selected parameters such as spectral detail, spatial 

detail, minimum segment size, and band indices. Segmentation parameters of NFDMF 1, 

NFDMF 1 floodplain, NFDMF 2, and DMF 0 for both image years are provided in the 

accompanying tables. All images were segmented using the red, NIR, and NDVI bands 

extracted from the composite images. 

Table 2. Segmentation parameters for NFDMF 1 and NFDMF 1 floodplain 

Image Spectral Detail Spatial Detail Minimum 

Segmentation Size 

NFDMF 1 2012 18 17 5 

NFDMF 1 2020 18.5 18 5 
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Table 3. Segmentation parameters for NFDMF 2  

Image Spectral Detail Spatial Detail Minimum 

Segmentation Size 

NFDMF 2 2012 19 18 5 

NFDMF 2 2020 18.5 18 5 

 

Table 4. Segmentation parameters for DMF 0  

Image Spectral Detail Spatial Detail Minimum 

Segmentation Size 

DMF 0 2012 18.5 18 10 

DMF 0 2020 18.5 18 10 

 

Spectral input focuses on the weight of separation between objects based on color 

reflectance characteristics on a scale of 1.0 – 20.0 with step changes of 0.5 (ESRI, 2022).  

Lower values result in broader classes and more smoothing, while higher values are 

implemented in situations requiring the discrimination of objects with similar spectral 

characteristics. Spatial detail input focuses on the weight of separation between objects 

based on spatial influences. Lower values also result in broader and smoother classes, 

while higher values are used in situations where objects are spatially small and clustered 

(ESRI, 2022). As this study aims to map the spatial distribution of saltcedar that occurs in 

dense, thick stands, this parameter is also set to a high value. Values of spatial detail 

range from 1.0 – 20.0, with step changes of 1.0. Minimum segment size considers the 

size of each scene and prevents over segmentation of the image. Segments that are 

smaller than the chosen minimum are merged with the neighboring pixel they best fit 

with (ESRI, 2022). Stands of saltcedar can vary in width, thus the minimum segment size 

varies depending on the characteristics of each individual image scene to ensure creating 

image objects that capture both small, scarce stands as well as large, dense stands. The 

mean shift algorithm will then be applied to the images to create image objects. 
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 After segmentation, training sets were created. Training sets are groupings of 

segments that correspond to a defined class within the classification schema the user is 

trying to create. In this study, the schema for this classification contains many of the 

same classes, but as each scene location is dynamic, some classes were added or omitted. 

Once the selected training segments were created, they were exported as shapefiles.  

 

Table 5. Class categories and values for NFDMF 1 and NFDMF 1 floodplain 

Class Subclass Class Code 

Saltcedar Healthy (11) 

Unhealthy (12) 

10 

Mesquite N/A 20 

Grasses N/A 30 

Non-Vegetated N/A 40 

 

Table 6. Class categories and values for NFDMF 2 

Class Subclass Class Code 

Saltcedar Healthy (11) 

Unhealthy (12) 

10 

Mesquite N/A 20 

Willow N/A 30 

Hackberry N/A 40 

Grasses N/A 50 

Non-Vegetated Barren (61) 

Human Structures (62) 

60 

  

 

Table 7. Class categories and values for DMF 0  

Class Subclass Class Code 

Saltcedar Healthy (11) 

Unhealthy (12) 

10 

Mesquite N/A 20 

Cottonwood N/A 30 

Hackberry N/A 40 

Grasses N/A 50 

Barren  60 
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Afterwards, the images were classified utilizing the Image Classification tool in 

ArcGIS Pro, using the Random Trees Classifier. Random Trees is also known as Random 

Forests (RF), which is an image classification technique that creates a number of decision 

trees to determine the class an object most likely belongs to (Breiman, 2001). The 

classification trees are created by selecting a random subset of segments from the training 

segment groups that were produced by the user. These trees then branch out by the 

creation of rules. In ArcGIS Pro, five parameters are needed for input: Training Samples, 

Maximum Number of Trees, Maximum Tree Depth, Maximum Number of Samples per 

Class, and the Segmented Image. The shapefile of the created training segments serves at 

the training samples. The maximum number of trees represents the number of trees that 

will be used in the decision forest. When more trees are used, the greater potential there is 

for a more accurate classification (ESRI, 2022). Maximum tree depth is the definition of 

the number of rule branches within each tree. Maximum number of samples is 

implemented in the definition of each class. To use all training samples to train the 

classifier, zero was selected for the maximum number of samples. The segmented raster 

image became input for the classification of the NAIP image. Information for each 

classified image is provided in the accompanying table. The resulting classified raster 

provides two information fields: class name which describes the name of the class, and 

class value, an integer value that specifically states the total count of pixels within the 

classified image per each category. 
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Table 8. Random Forest image classification parameters 

Image Max # of Trees Max Tree Depth Max # of Samples 

per Class 

NFDMF 1 2012 120 90 0 

NFDMF 1 2020 120 90 0 

NFDMF 2 2012 135 100 0 

NFDMF 2 2020 135 100 0 

DMF 0 2012 120 100 0 

DMF 0 2020 120 100 0 

NFDMF 1 2012 

Floodplain 

120 90 0 

NFDMF 1 2020 

Floodplain 

120 90 0 

 

Accuracy Assessment  

After each classified NAIP image was created, accuracy assessments were 

conducted. This assesses how well each classification compared to the reference data 

utilizing user image interpretation. An overall accuracy of 75 percent with a 5 percent 

error was targeted to ensure the classification was accurate enough to be implemented in 

further studies.  

 The most indicative accuracy coefficient is Kappa, which determines the level of 

agreement. Kappa coefficients range from 0.00 – 1.00 which are categorized into 5 levels 

of agreement: slight (0.01 – 0.20), fair (0.21 – 0.40), moderate (0.41 – 0.60), substantial 

(0.61 – 0.80), and almost perfect (0.81 – 1.00) (Landis and Koch, 1977). A Kappa of at 

least 0.61 was targeted to demonstrate a substantial agreement of the classification. 

Jensen’s (2004) multinominal distribution equation (MDE) was applied to determine the 

number of samples needed to perform an accuracy assessment.  
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𝑁 =
𝐵Π𝑖(1 − Π𝑖)

𝑏𝑖
2  

 

Where:  

𝐵 = (𝑎 𝑘⁄ ) ∗ 100 

Where N represents the number of samples, B represents the Chi-square critical 

value for α (alpha) divided by k, then multiplied by 100. Alpha represents one minus the 

desired confidence for the map. This study aims for a 75 percent Kappa coefficient, 

therefore alpha is 1 – 0.75. Variable k is the total number of classes in this study, which 

varies between image scenes. This number is then multiplied by 100, and the product is 

used in a chi-squared right-tail distribution table with one degree of freedom. Π𝑖 

represents the class whose proportion of the map is closest to the majority of the image, 

and bi represents the desired precision. Within this study, the precision was chosen at five 

percent.  

Using the Zonal Histogram tool, raster values will be obtained from the classified 

data set from each image. Every class is then divided by the total pixel count to calculate 

the proportions of each class used in the MDE. Following this step, the MDE will be 

calculated. Because images and resolutions vary between image dates and location, the 

proportion of classes will vary as well. Due to this variation, the number of samples 

needed will vary between image products. Stratified random sampling will be used 

proportionally among all classification designations to derive the number of samples 

from each classified image needed to perform the accuracy assessment. Sample 

requirements will be provided in the accompanying table.  
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Table 9. Minimum number of sample points required for accuracy assessment using 

MDE  

Image  Number of samples required 

NFDMF 1 2012 374 

NFDMF 1 2020 335 

NFDMF 2 2012 447 

NFDMF 2 2020 451 

DMF 0 2012 416 

DMF 0 2020 416 

NFDMF 1 2012 floodplain 338 

NFDMF 1 2020 floodplain 326 

 

 Once the number of sample points required for the accuracy assessment were 

calculated, the points are then created using the Create Accuracy Assessment tool in 

ArcGIS Pro. Visual interpretations of each sample points are made, then assigned a 

reference value. Once all points are assigned a reference value, the Compute Confusion 

Matrix tool will be used to calculate accuracy statistics of each classification. Statistics 

produced by the creation of a confusion matrix are producer accuracy, user accuracy, 

overall accuracy, and the overall Kappa coefficient. Producer accuracy refers to the 

effectiveness of the user produced classification schema. Omission errors from 

producer’s accuracy defines the percentage of pixels omitted from the correct 

classification. User accuracy measures how well the data aids the user, and commission 

errors define the pixels that are included in a class they do not belong to. Overall 

accuracy describes the percentage of correctly classified objects within a segmented 

image. Kappa measures the degree of agreement within a classified image compared to 

the reference data and determines if the agreement occurs by chance. As the coefficient is 

described on a scale of 0 – 1, the closer the Kappa coefficient is to 1, the stronger the 

degree of agreement between the classified image and the reference data. As the 

classification was tuned to produce a satisfactory statistical outcome, change detection 
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calculations of saltcedar between image dates were conducted. 

 

Stratified Image Approach 

Image stratification was incorporated to test its effect on improving the accuracy 

of both image classification using OBIA techniques and change detection of healthy to 

unhealthy saltcedar. Treating an image as a whole may not be helpful in identifying 

saltcedar as it occurs in only the floodplain, and not in other regions of the image that are 

not suitable for saltcedar. Stratifying an image to the floodplain may help to focus on the 

patterns of distribution in riparian vegetation, a phenomenon that is scale-dependent. 

Most segmentation procedures in studies using OBIA occur for the entire image and may 

not allow for the proper segmentation of heterogeneous regions of an image. As it is 

increasingly difficult to recognize spatial patterns in high-resolution imagery, the 

implementation of stratification was useful in extracting objects seen only in the 

floodplain (Zhou et al., 2018). Another approach could be to take the already classified 

image and clipping the extent to the stratified floodplain of the image to better constrain 

the area of change detection.  

 

Change Detection 

 A change detection was conducted between the classified images from August 

2012 and September 2020. As the spatial resolution of the color infrared images was 

reduced from 1 m in 2012 to 60 cm in 2020, the images were resampled to a similar 

resolution for proper comparison. Image resampling adhered to the 2012 image resolution 

since it was coarser than the 2020 resolution. September 2020 image rasters were 
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resampled using the Resample tool, which utilizes the nearest neighbor technique for 

resampling in ArcGIS Pro. Under nearest neighbor, the value of the cells are not changed 

and alterations to the pixel values are minimized.  

 Change detection between the classified images was accomplished with the use of 

ArcGIS Pro’s Change Detection Wizard tool, with categorical change. This tool takes 

two rasters representing the specified time difference (in this study, August 2012 to 

September 2020). The next step is the configure step, which identifies the classes used for 

change detection, which was the coverage of saltcedar. Symbolization of change was 

selected under the configure window. Within this window, the Transition Class Color 

Method provides specific details as to how the changed pixels will be visualized. Due to 

this change detection being between years, the ‘to color’ option was selected for change 

symbolization. No inputs were applied in the post-processing window to leave pixels 

unchanged from potential smoothing. The resulting images were then exported as rasters 

and feature classes. 

Although this study aimed to detect the change in saltcedar from healthy to 

unhealthy, it could also be useful to understand areas where healthy saltcedar has not 

changed between 2012 and 2020. Detecting unchanged pixels can help to visualize areas 

of tenacious growth. Information such as this can also inform managers of areas where 

more focused efforts would be beneficial. This was achieved by using the Change 

Detection Wizard and selecting the categorical change of unchanged pixels of unhealthy 

saltcedar between the 2012 and 2020 classified images.  
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IV. RESULTS 

 

Image Classification 

 Eight OBIA classified images were produced (Figures 4 – 11). The classes and 

pixel counts varied between each image site (Tables 10 – 17). From the pixel counts, the 

resulting coverage percentages were input into the MDE for accuracy assessment 

creation.  

Table 10. Class counts and percentages for NFDMF 1 2012 

Class Total # of pixels Percentage of coverage 

Healthy Saltcedar 14,483 7.86% 

Unhealthy Saltcedar 3.904 2.12% 

Mesquite 76,689 41.62% 

Grasses, Sedges and 

Baccharis 

14,602 7.92% 

Barren 74,601 40.48% 

 

Table 11. Class counts and percentages for NFDMF 1 2020 

Class Total # of pixels Percentage of coverage 

Healthy Saltcedar 25,826 5.05% 

Unhealthy Saltcedar 122,825 23.99% 

Mesquite 158,572 30.98% 

Grasses, Sedges and 

Baccharis 

40,580 7.94% 

Barren 164,089 32.06% 

 

Table 12. Class counts and percentages for NFDMF 2 2012 

Class Total # of pixels Percentage of coverage 

Healthy Saltcedar 10,915 3.01% 

Unhealthy Saltcedar 24,826 6.85% 

Mesquite 43,748 12.07% 

Willow 278 0.08% 

Hackberry 44,387 12.25% 

Grasses, Sedges, and 

Baccharis 

15,273 4.21% 

Barren 221,500 61.13% 

Human Structures 1,441 0.40% 
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Table 13. Class counts and percentages for NFDMF 2 2020 

Class Pixel count Percentage of coverage 

Healthy Saltcedar 13,118 1.30% 

Unhealthy Saltcedar 184,038 18.27% 

Mesquite 77,682 7.72% 

Willow 2,949 0.29% 

Hackberry 106,110 10.54% 

Grasses, Sedges, and 

Baccharis 

10,651 1.06% 

Barren 609,324 60.52% 

Human Structures 3,008 0.30% 

 

Table 14. Class counts and percentages for DMF 0 2012 

Class Total # of pixels Percentage of coverage 

Healthy Saltcedar 14,550 5.98% 

Unhealthy Saltcedar 17,930 7.37% 

Mesquite 18,789 7.72% 

Cottonwood 1,744 0.72% 

Hackberry 25,312 10.41% 

Grasses, Sedges, and 

Baccharis 

29,427 12.10% 

Barren 135,475 55.70% 

 

Table 15. Class counts and percentages for DMF 0 2020 

Class Total # of pixels Percentage of coverage 

Healthy Saltcedar 13,115 1.99% 

Unhealthy Saltcedar 291,859 44.39% 

Mesquite 62,295 9.47% 

Cottonwood 12,072 1.84% 

Hackberry 21,781 3.31% 

Grasses, Sedges, and 

Baccharis 

42,449 6.46% 

Barren / Alluvium 231,967 35.28% 

 

Table 16. Class counts and percentages for NFDMF 1 2012 floodplain 

Class Total # of pixels Percentage of coverage 

Healthy Saltcedar 16,606 20.98% 

Unhealthy Saltcedar 13,378 16.90% 

Mesquite 9,661 12.20% 

Grasses, Sedges, and 

Baccharis 

13,684 17.29% 

Non-Vegetated 25,834 32.63% 
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Table 17. Class counts and percentages for NFDMF 1 2020 floodplain 

Class Total # of pixels Percentage of coverage 

Healthy Saltcedar 43,245 19.66% 

Unhealthy Saltcedar 42,275 19.22% 

Mesquite 26,258 11.94% 

Grasses, Sedges, and 

Baccharis 

41,187 18.73% 

Non-Vegetated 66,970 30.45% 
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Figure 4. Classified map for NFDMF 1 2012 
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Figure 5. Classified map of NFDMF 1 2020 
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Figure 6. Classified map of NFDMF 2 2012 
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Figure 7. Classified map of NFDMF 2 2020 
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Figure 8. Classified map of DMF 0 2012 
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Figure 9. Classified map of DMF 0 2020 
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Figure 10. Classified map of NFDMF 1 2012 floodplain  
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Figure 11. Classified map of NFDMF 1 2020 floodplain  
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Accuracy Assessments 

 Summary accuracy statistics provide numerical representation of the 

classification. Confusion matrices assess which class sample points were assigned, and 

how they were classified using the created accuracy assessment points (Tables 18-25). 

Values within the tables include user accuracy, producer accuracy, and Kappa 

coefficients. Values also include the accuracies of classification by class. Using Table 18 

as an example, the first row will demonstrate how well healthy saltcedar was classified 

for NFDMF 1 2012. Of the 29 sampled points of healthy saltcedar, 24 of them were 

correctly classified, resulting in a user accuracy of 82.75% (Table 16). As the change in 

saltcedar coverage is the focus of this study, it is important to understand how well the 

images were classified regarding these two classes. Six of eight accuracy assessments 

returned values above the desired overall accuracies and Kappa coefficients.  
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Table 18. Accuracy assessment for classified NFDMF 1 2012 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Grasses Barren Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

24 0 4 1 0 29 82.75%  

Unhealthy 

Saltcedar 

0 1 2 3 4 10 10.00%  

Mesquite 2 0 117 16 21 156 75.00%  

Grasses 1 0 5 24 0 30 80.00%  

Non-

Vegetated 

0 0 18 12 121 151 80.13%  

Total 27 1 146 56 146 376   

Producer 

Accuracy 

88.88% 100.00% 80.13% 42.85% 82.87%  76.30%  

Kappa        0.64 
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Table 19. Accuracy assessment for classified NFDMF 1 2020 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Grasses Barren Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

13 0 1 3 0 17 76.48%  

Unhealthy 

Saltcedar 

2 40 10 6 22 80 50.00%  

Mesquite 2 5 72 18 7 104 69.23%  

Grasses 0 0 6 21 0 27 77.77%  

Non-

Vegetated 

0 0 11 12 84 107 78.50%  

Total 17 45 100 60 113 335   

Producer 

Accuracy 

76.47% 88.88% 72.00% 35.00% 74.33%  68.65%  

Kappa        0.58 
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Table 20. Accuracy assessment for classified NFDMF 2 2012 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Willow Hackberry Grasses Barren Human 

Structures 

Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

10 0 2 0 0 0 1 0 13 76.90%  

Unhealthy 

Saltcedar 

0 14 5 1 1 3 7 0 31 45.20%  

Mesquite 0 0 45 0 0 7 2 0 54 83.33%  

Willow 3 0 0 6 0 1 0 0 10 60.00%  

Hackberry 0 2 7 0 38 5 3 0 55 69.09%  

Grasses 0 0 2 0 2 15 0 0 19 78.94%  

Barren 0 0 20 0 2 13 238 0 273 87.17%  

Human 

Structures 

0 0 0 0 0 0 7 3 10 30.00%  

Total 13 16 81 7 43 44 258 3 465   

Producer 

Accuracy 

76.92% 87.50% 55.55% 85.71% 88.37% 34.09% 92.22% 100.00%  79.35%  

Kappa           0.68 
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Table 21. Accuracy assessment for classified NFDMF 2 2020 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Willow Hackberry Grasses Barren Human 

Structures 

Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

6 0 4 0 0 0 0 0 10 60.00%  

Unhealthy 

Saltcedar 

0 47 6 0 1 1 27 0 82 57.31%  

Mesquite 0 1 28 0 4 1 1 0 35 80.00%  

Willow 1 0 2 7 0 1 0 0 10 70.00%  

Hackberry 0 2 4 0 29 4 8 1 48 60.41%  

Grasses 0 0 1 0 2 6 1 0 10 60.00%  

Barren 0 6 8 0 15 2 242 0 273 88.64%  

Human 

Structures 

0 0 0 0 0 0 6 4 10 40.00%  

Total 7 56 53 7 51 14 285 5 478   

Producer 

Accuracy 

85.71% 83.92% 52.83% 100.00% 56.86% 42.85% 84.91% 80.00%  77.19%  

Kappa           0.63 
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Table 22. Accuracy assessment for classified DMF 0 2012 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Cottonwood Hackberry Grasses Barren Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

20 0 4 0 0 1 0 25 80.00%  

Unhealthy 

Saltcedar 

0 19 2 0 0 3 6 30 63.33%  

Mesquite 3 1 24 0 1 3 0 32 75.00%  

Cottonwood 0 0 1 4 0 4 1 10 40.00%  

Hackberry 0 1 3 0 26 10 3 43 60.45%  

Grasses 1 2 10 0 3 33 1 50 66.00%  

Barren 0 4 4 0 14 8 201 231 87.01%  

Total 24 27 48 4 44 62 212 421   

Producer 

Accuracy 

83.33% 70.37% 50.00% 100.00% 59.09% 53.22% 94.81%  77.67%  

Kappa          0.67 
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Table 23. Accuracy assessment for classified DMF 0 2020 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Cottonwood Hackberry Grasses Barren Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

7 0 2 0 0 1 0 10 70.00%  

Unhealthy 

Saltcedar 

0 105 20 0 4 10 41 180 58.33%  

Mesquite 0 1 32 0 3 2 0 38 84.21%  

Cottonwood 0 0 1 5 2 2 0 10 50.00%  

Hackberry 0 1 3 0 7 1 1 13 53.84%  

Grasses 0 1 8 1 1 15 0 26 57.69%  

Barren 0 8 6 0 2 6 121 143 84.61%  

Total 7 116 72 6 19 37 163 420   

Producer 

Accuracy 

100.00% 90.51% 44.44% 83.33% 36.84% 40.54% 74.23%  69.52%  

Kappa          0.58 
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Table 24. Accuracy assessment for classified NFDMF 1 2012 floodplain 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Grasses Non- 

Vegetated 

Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

56 0 10 5 0 71 78.87%  

Unhealthy 

Saltcedar 

0 11 1 12 33 57 19.30%  

Mesquite 8 0 28 5 0 41 68.30%  

Grasses 5 0 4 47 2 58 81.03%  

Non-

Vegetated 

0 0 1 3 106 110 96.36%  

Total 69 11 44 72 141 337   

Producer 

Accuracy 

81.20% 100.00% 63.64% 65.28% 75.18%  73.59%  

Kappa        0.65 
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Table 25. Accuracy assessment for classified NFDMF 1 2020 floodplain 

Class Healthy 

Saltcedar 

Unhealthy 

Saltcedar 

Mesquite Grasses Non-

Vegetated 

Total User 

Accuracy 

Kappa 

Healthy 

Saltcedar 

44 5 8 6 1 64 68.75%  

Unhealthy 

Saltcedar 

1 44 6 2 10 63 69.84%  

Mesquite 3 1 29 5 1 39 74.36%  

Grasses 0 0 9 51 1 61 83.61%  

Non-

Vegetated 

0 2 2 9 86 99 86.87%  

Total 48 52 54 73 99 326   

Producer 

Accuracy 

91.66% 84.62% 53.70% 69.86% 86.87%  77.91%  

Kappa        0.71 
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Change Detection 

 As this study focuses on the change of saltcedar coverage, the change detection of 

healthy saltcedar to unhealthy is highlighted. The pixel-based change detection confirms 

a slight decline in saltcedar (Table 26) which can be visualized in the maps for the study 

areas, as well as areas where healthy saltcedar has persisted between 2012 and 2020 

(Figures 12 – 19).    

 

Table 26. Changed pixels and percent change of saltcedar 

Image # of changed pixels Percent change 

NFDMF 1 4,213                 -2.34% 

NFDMF 2 3,861 -1.08% 

DMF 0 7,225 -3.06% 

NFDMF 1 floodplain 6,152 -7.80% 
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Figure 12. Change detection of saltcedar for NFDMF 1 

The bright red areas on each map are areas that were classified as healthy saltcedar in 

2012 but were then reclassified to unhealthy saltcedar in 2020. 
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Figure 13. Change detection of unchanged saltcedar for NFDMF 1 

The bright green areas on each map are areas that were classified as healthy saltcedar in 

2012 and were classified as healthy saltcedar in 2020. 
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Figure 14. Change detection of saltcedar for NFDMF 2 
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Figure 15. Change detection of unchanged saltcedar for NFDMF 2 
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Figure 16. Change detection of saltcedar for DMF 0 
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 Figure 17. Change detection of unchanged saltcedar for DMF 0 
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Figure 18. Change detection of saltcedar for NFDMF 1 floodplain 
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Figure 19. Change detection of unchanged saltcedar for NFDMF 1 floodplain 
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V. DISCUSSION 

 

NAIP Imagery 

 Although NAIP imagery provides high spatial resolution, there is low spectral 

resolution. This lack of spectral resolution created limitations in class creation and 

classification. Due to this poor resolution, separability between spectrally similar classes 

such as unhealthy saltcedar and barren or non-vegetated was difficult. These classes were 

often misclassified throughout all sites and image dates. Spatial resolution of images also 

influenced classification. In the context of the vegetation, there were many species whose 

individuals were smaller than one meter. This size issue created situations where one 

pixel is demonstrating a vegetated spectral response, however, since many of the 

surrounding pixels were of different classes and larger, the adjacent area would be 

classified as that of the larger object. Changes in the spatial resolution between image 

years from 1 m to 60 cm needed to be addressed in the classified images. Resampling the 

2020 image to the resolution of the 2012 image was needed to ensure that the change 

detection was conducted on two images with similar spatial resolution. As some classes 

returned low accuracies, this study supports the future implementation of higher 

resolution imagery to identify and classify some vegetation species that would have been 

omitted or underrepresented.  

 Temporally, this study might have produced different results if quality images 

were available for times where saltcedar was in bloom. Their distinct pink and purple 

flowers would have created both a RGB and NDVI signature that could be useful in 

better identifying saltcedar. Leaf color changes during autumn and early winter could 
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also be beneficial to future studies. This approach was taken by Everitt and DeLoach 

(1990), Groeneveld and Watson (2008), and Diao and Wang (2016), all with varying 

degrees of success.  

 During the initial data preprocessing, it was a goal to mitigate the atmosphere’s 

interference with reflectance to create a less denuded product. However, it was found that 

obtaining Top-of-Atmosphere DNs would not be possible due to the extensive 

requirement of metadata that was not available. It was decided not to attempt to obtain 

ToA values.  

 

Field Data Collection 

 Field vegetation data was collected in May and June of 2022. Data collection 

occurred within the two-year span between image products, and so the discrepancy of 

timing between the newest available image and field data collection must be noted when 

examining the results of this study. The vegetation points were collected on a handheld 

GPS unit. Descriptions of these points were taken in a field notebook to aid in vegetation 

identification during the analysis. Many of the points were successfully used in 

identifying different vegetation covers, and the points whose descriptions greatly differ 

from what is seen in the NAIP imagery were not used. As the GPS unit had an average 

error distance of 1.8 m, it was necessary to scrutinize the image and the segmentation to 

ensure proper identification. As I was not present at these sites in 2012 and 2020, my 

observations on riparian vegetation come two years after the most recent NAIP image. 

Due to this, my observations in-situ cannot be definite of the conditions that were present 

during the time of imaging. This river system experienced few high-magnitude events, 
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and when they occur their effect on the landscape is preserved until the next event. These 

changes can occur quickly and can alter the floodplain significantly. It will require 

multiple years of successional observations to truly explain the rates of change in these 

floodplains. 

 

Image Classification 

 Due to the low spectral resolution of NAIP imagery, it was necessary to 

implement the use of NDVI and texture measures to produce an enhanced image for 

segmentation and classification. Implementing texture measures in high spatial resolution 

imagery can yield increased land cover classification accuracy (Franklin et al., 1990). 

Texture measures provide an enhanced difference between potential land cover classes 

and aide in image segmentation.  

 In addition to discrete classes in the classification, it is also important to 

understand the role of transitional zones in land cover types. In the field, it is evident that 

many times there is not a defined beginning and ending to land cover types. Instead, they 

transition into different vegetation types at differing rates. These transitions are difficult 

to analyze as deciding their class designations for training segment creation and accuracy 

assessment can become subjective. There is no clear partition between many of these 

transition zones. Due to this, there were many instances where a pixel contained two or 

more land cover types but had to be grouped into one discrete class. Many 

misclassifications were made along these transition zones. Using imagery with greater 

spatial and spectral resolutions can help to mitigate issues brought on by the mixed pixel 

issue.  
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Accuracy Assessment 

 Due to the low spectral resolution and difficulty identifying smaller vegetation 

types, I anticipated misclassifications and moderate accuracies. All Kappa values were 

approximate to the desired 0.61 Kappa coefficient, showing a substantial agreement. 

Kappa coefficients should be viewed as support to the results, as several studies have 

established some of the shortcomings of Kappa. Pontius and Millones (2011) examined 

the role of Kappa and outlined how it is often a metric that serves little purpose in the 

realm of image classification. However, as this value is seen in countless analyses, it was 

also included in this study.  

 In multiple images, the percentages of certain classes remained very small. 

Coupled with stratified random sampling, accuracy assessment points of small classes 

amounted to 10 samples of each small class. This influenced the wide ranges of accuracy 

for those classes. If able in future analyses, it should be a goal to create a large sample 

size of those classes to help create a more robust summarization of mentioned classes.  

 In the case of NFDMF 1 and NFDM 1 floodplain, the stratified floodplain overall 

accuracy for 2012 decreased from 76.30% to 73.59%, yet for 2020, accuracies improved 

from 66.65% to 77.91% between NFDMF 1 and NFDMF 1 floodplain, respectively. In 

addition, Kappa values improved in both images. Image stratification led to overall 

increased accuracies and Kappa values.  

 

Change Detection 

 In all three detections, healthy saltcedar coverage decreased, and unhealthy 

saltcedar increased. This change detection suggests that the management efforts of 
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TPWD have been effective in the treatment of saltcedar in the UBR. During the creation 

of training segments, it was important to identify areas of dense saltcedar coverage in 

2012 as they would be used a reference to the 2020 images to help identify unhealthy 

saltcedar. There were many areas in all images where there were large and dense stands 

of saltcedar in 2012 that became unhealthy saltcedar in 2020. For example, in NFDMF 1 

2012, a large and dense stand of many saltcedars could be seen towards the top of the 

image. In the 2020 image, dead saltcedar occupied the same region. It was much easier to 

identify large areas of change, but it proved difficult to find and classify moderately 

dense or single stands of saltcedar without many other saltcedar in the vicinity. Using a 

higher spatial or spectral resolution image could prove useful in identifying single stands 

of trees that would lead to higher accuracies and a better overall classification.  

 In partitioning the image between the original clipped image and the floodplain 

stratification for NFDMF 1, a larger increase in pixels that transitioned from healthy to 

unhealthy saltcedar occurred. This shows that focusing on the floodplain can yield a more 

precise and accurate change detection, as opposed to incorporating image elements not 

associated with the floodplains Stratification should be applied to all sites in future 

analyses to provide more robust demonstration of its potential for improved classification 

accuracies and change detections.  

 

Next Steps 

Given additional time for analysis, I would stratify each of the images to provide 

additional context between overall accuracies. Additionally, the creation of random 

accuracy assessment points would have proven useful before the completion of field
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work. These points would have served as control points for vegetation surveying, 

providing a more robust and thorough ground truth observation of the vegetation present.   

As this research advances, there will be new opportunities to expand upon or adjust the 

techniques used. Due to instrumentation limitations, utilizing technology with higher 

spatial and spectral resolutions may lead to higher accuracies and better change 

detections. Along with changes in instrumentation, adopting new approaches for image 

processing might also be utilized to better detect the presence and change in saltcedar.  

Structure from Motion (SfM) is a photogrammetric imaging technique for estimating 

structures in three dimensions from sequences of two-dimensional images. This technical 

approach provides a high-resolution landform model of the study sites. SfM would be 

able to capture and display the differences between saltcedar health, as well as 

differentiating between vegetation types. This higher detailed technique would also allow 

for the inclusion of additional vegetation types that could not be included in this analysis 

due to spatial and spectral constraints. Using this technique would produce classifications 

that are more representative of present vegetation types, while doing so with higher 

accuracies. Additional adjustments to instrumentation could also include the 

implementation of LiDAR (Light Detection and Ranging). This is a remote sensing 

technique that uses light pulses to measure distances and elevations. Along with SfM, 

these techniques could be used to create a classification that can better distinguish the 

structure of a healthy saltcedar from an unhealthy saltcedar.  
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VI. CONCLUSION 

 

 In this research, OBIA analyses were conducted on three sites of TPWD’s effort 

to manage the invasive phreatophyte saltcedar to detect changes in coverage. Imagery 

was before and after the beginning of management efforts. The analysis used high spatial 

resolution NAIP imagery where an NDVI layer with texture measures was created and 

stacked with the original NAIP image. Texture measures included IDM and ENT to 

create an enhanced segmentation of the image. Supervised classification began with 

creating training sets and labeling objects. Using a RF classifier, classified images were 

created. Utilizing in-situ observations and GIS data as references, accuracy assessments 

were performed and yielded overall accuracies ranging from 68.65% for NFDMF 1 2020, 

to 79.35% for NFDMF 2 2012. Six of the eight Kappa values exceeded 0.61, which 

indicates a substantial agreement in accuracy.  

 Change detections were performed on all classified maps. All four detections 

resulted in an overall decrease in healthy saltcedar coverage. There were also areas of 

persistent growth in all detections. Due to some limitations concerning the spectral 

resolution of the images, there were large ranges of accuracies produced which varied by 

class. Field observations also agree that there is substantial evidence for the effectiveness 

of TPWD management efforts.  

 While this study developed a time series change detection of vegetation, historic 

images were not used to better comprehend the conditions and trends seen in that river 

system. Inclusion of these historic images would have also opened an avenue to explore 

the history of saltcedar invasion and how it has influenced the very composition and 
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geometry of the NFDMF and DMF since its introduction to the United States.  

This work could benefit from additional in-situ observations and more robust field 

data collection. Additionally, incorporating higher spatial resolution imagery should 

reveal more accurate and comprehensive results. The work expressed in this thesis along 

with the various associated works in this region represent only a part of a constantly 

changing and adjusting river system.  

This research contributes a map product that has not been made available for this 

type of analysis in this specific region. This research focuses on detecting change in the 

presence of an exotic and invasive species, saltcedar. This work can be used as a 

benchmark for adopting similar classification methods for arid river systems that have 

been affected by invasive riparian vegetation. This study successfully implemented the 

use of OBIA to detect the change in saltcedar coverage in NAIP imagery over an 8-year 

period in areas that have been the focus of management efforts. 
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