
Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2008-10

Liberating TCP: The Free and the Stunts

Jason Valdez
 Mina Guirguis

2008-01-24

1

Liberating TCP: The Free and the Stunts
JASON VALDEZ MINA GUIRGUIS
{jv1150, msg}@txstate.edu

Computer Science Department
Texas State University

San Marcos, TX 78666, USA

Abstract— The performance of a TCP connection is
typically dictated by what the network can provide rather
than what the application would like to achieve. In
particular, the Additive-Increase Multiplicative-Decrease
(AIMD) mechanism employed by TCP hinges on its ability
to meet specific throughput requirements since it has to
respond to congestion signals promptly by decreasing its
sending rate. The level and the timing of congestion signals
impose strict limitations on the achievable throughput over
short time-scales. To that end, this paper presents a new
architecture, whereby a set of TCP connections (we refer to
them as the Stunts) sacrifice their performance on behalf
of another TCP connection (we refer to it as the Free) by
picking up a delegated subset of the congestion signals and
reacting to them in lieu of the Free connection. This gives
the Free connection just enough freedom to meet specific
throughput requirements as requested by the application,
without affecting the level of congestion in the network.
We present numerical analysis which we validate through
extensive simulation experiments.

I. INTRODUCTION

Motivation: Some classes of applications (e.g., real-
time, streaming and gaming) need to aquire/maintian
certain guarantees in order to perform adequately. Due to
the best-effort nature of the Internet, however, it is very
difficult to ensure that these guarantees are met or even
to predict what possible guarantees could be provided.
Hence, these applications are often left with unspecified
guarantees on their quality of service. Research efforts
have addressed this problem and proposed two major
architectures, IntServ [1] and DiffServ [2]. IntServ archi-
tectures require every router to maintain per-flow state.
Applications make reservations based on their needs. The
main problem with IntServ is that it does not scale to a
size that is as large as the Internet. Thus, it is limited to
small-scale deployments. DiffServ architectures, on the
other hand, push traffic management towards the edge
of the network, while keeping the core simple. Edge
routers maintain and classify flows based on classes.
Core routers still need to maintain brief information

on how to treat each class. In both architectures, some
modifications had to be made to some routers.
The “Free and Stunts” Architecture: In this paper,
we propose a new architecture that provides an applica-
tion with soft throughput guarantees over a best-effort
network, without any modification to routers. Moreover,
this is achieved in a completely friendly manner to the
network through strictly adhering to the Transmission
Control Protocol (TCP) rules. In particular, we envision
a set of TCP connections (we refer to them as the
Stunts connections) that are willing to sacrifice their own
performance on behalf of another TCP connection (we
refer to it as the Free connection). This would enable the
Free connection to match its throughput to the requested
throughput from the application.

TCP employs congestion control mainly via the Ad-
ditive Increase Multiplicative Decrease (AIMD) mecha-
nism that seeks to constantly probe for available capacity
while remaining fair to other TCP flows [3], [4]. Con-
gestion signals (as in dropped/marked packets) signal
TCP senders to slow down, by halving their congestion
windows. The quantity and the timing of these con-
gestion signals may prevent the Free connection from
achieving any throughput guarantees. The main idea
behind our architecture is to allow the Free connection to
delegate a subset of those congestion signals to the Stunt
connections. Thus, the Stunt connections would be the
ones that decrease their sending rates instead of the Free
connection, which would be liberated (to a larger extent)
to match the guarantees requested from the application
above. It is important to note that this architecture does
not impact network congestion in any manner. That’s
because it ensures that the total decrease in throughput
from all the Stunt connections is at least as large as what
the Free connection would have decreased, if it were to
observe those delegated losses.1

1It is possible for a single packet loss delegated from the Free
connection to cause more than one Stunt connection to back-off, in
order to have the same equivalent effect on the network.

2

A B

R

R

S

Bottleneck link

Capacity C

ServerClient

Client

Cross-traffic (n)

Free (1)
Stunts (s)

Fig. 1. The Free and the Stunts Setup.

Deployment Examples: Internet servers typically serve
different forms of media to different clients. By employ-
ing this architecture, a server can give a particular flow
(say a media stream) the freedom to match some re-
quested guarantees, while making other flows (say bulky
file transfers) behave as Stunts. Throughout this paper,
we assume the existence of those Stunt connections
(from the server to other clients) and that they can be
utilized by our proposed architecture. This architecture
can also be used by an ISP to provide differentiated
service among its clients, by having some behave as the
Free connections, while others play the Stunt roles.2
Paper Organization: Section II describes our proposed
architecture in more detail with all its components and
logistics. Section III captures the dynamics involved
through numerical results based on a non-linear fluid
model. We present our experimental evaluation in Sec-
tion IV. Section V puts this work in contrast to other
related work and we conclude in Section VI.

II. THE ARCHITECTURE

A. The Components
We envision a setup composed of a single Free TCP

connection and s Stunt TCP connections. Those s + 1
TCP connections traverse a bottleneck link along with
n other TCP connections representing normal cross-
traffic. Thus a total of (1 + s + n) TCP connections
traverse that bottleneck link. Figure 1 depicts this setup.
The application running on top of the Free connection
requests its throughput requirements through a trace file.
This trace file is first checked by a preprocessor for
feasibility. If any of the checks fail, another feasible trace
is created that is closest to the original trace file; oth-
erwise, the trace file is passed directly to the controller.
The controller compares the achievable throughput to the
requested throughput over every time instant. Based on
the difference, the controller adjusts the ratio of conges-
tion signals to be delegated from the Free connection to
the Stunts in order to match the achievable throughput

2By marking the ECN bit in appropriate packets, an ISP can
delegate losses between the Free and the Stunts.

to the requested throughput. A monitor measures the
throughput achieved by the Free connection and reports
this value back to the controller. Figure 2 represents the
different components in the architecture.

Fig. 2. The Architecture.

The trace file:An application specifies its requirements
via a trace file. A trace file describes the shape of
the throughput over time. It is composed of two-tuple
entries in the form of time and throughput. An entry of
the form < i, Ti > indicates a request of Ti throughput
at time instant i.

The preprocessor: The main goal of the preprocessor
is to check the feasibility of the trace file and to create
another feasible trace, if any of the checks fail. It
performs two checks, a slope check and a region check.
The slope check ensures that the requested throughput
can be attained from one time instant to the next based
on the round-trip time (RTT) of the Free connection. For
any two successive time instants, i and j, the requested
throughput Tj at time instant j, is bounded by:

Tj ≤ Ti +
j − i

RTT 2
(1)

Since TCP increases its congestion window by 1
packet every RTT, the congestion window at time j,
cannot be more than j−i

RTT
of the congestion window at

time i. Dividing by RTT to obtain the throughput leads
to the above equation. The region check prevents the
Stunts from achieving zero throughput. Thus for any time
instant i, the requested throughput is bounded by:

Tj ≤ s× x̄s (2)

where x̄s is the average expected throughput per Stunt
connection. This is a preliminary check and a more
strict check is enforced online.

The controller: The controller decides which losses
are picked up by the Free connection versus those
delegated to the Stunts. The decision is based on the error

3

signal between the current throughput and the requested
throughput. We have experimented with two difference
controllers. An On/Off controller and a Proportional
Integral (PI) controller. An On/Off controller, decides
the delegation percentage gi, at time i according to the
following equation:

gi =

{

0 xi > 1.33̄Ti
1 otherwise

(3)

where xi is the instantaneous throughput of the Free
connection at time instant i. An On/Off controller will
try to delegate all the losses to the Stunts, whenever
the current throughput is not matching the requested
throughput. Otherwise, the Free connection will pick up
its own losses and react to them. Notice that we compare
xi to 1.33̄Ti as opposed to Ti directly. This is due to the
AIMD mechanism and the operation of the controller at
short time-scales. A packet loss at 1.33̄Ti will cause the
throughput to drop to 0.66̄, leading to the target average
of Ti.3

The above controller may lead to oscillations, thus
we experiment with a PI controller that adjusts the
delegation percentage based on the following equation:

gi = gi−1 +K × (xi − 1.33̄Ti) (4)

where K is a constant the decides the aggressiveness
of the controller in reaction to the error signal between
the current throughput and the requested throughput.
The higher the value of K is, the more aggressive the
controller would react.

B. Delegation of Congestion Signals
The Free and the Stunts architecture capitalizes on

the fact that a delegation of a congestion signal from
the Free connection to the Stunts will both (1) allow the
Free connection to achieve a higher target data rate, and
(2) it will not violate any TCP congestion control rules.

Since the Free connection can delegate congestion
signals, it can continue sending as dictated by the
Additive Increase component of the AIMD mechanism,
by increasing its congestion window by 1 packet every
RTT. Since the requested throughput is slope-checked by
the preprocessor, then it should be able to achieve the
requested target. However, in some conditions (explained
below), the Free connection may not be able to delegate
a congestion signal and thus it would have to cut its
congestion window in half.

3This assumes that the RTT is kept constant.

It is very important to realize that the impact of a
congestion signal is not the same – as far as the network
is concerned – whenever it gets delegated, since one
connection may have a different congestion window size
than the other. Thus, the reduction in the sending rate
will not be equivalent.

In our particular case, to make sure that the network
sees an equivalent reduction, we first check to see if the
total congestion windows (of all the Stunts) is larger than
that of the Free connection. If so, then we go through
the Stunts, one by one in a round robin fashion, and
we halve each one’s congestion window, until the total
reduction is at least as large as half the Free connection’s
congestion window size. If not, then we cannot delegate
this loss and the Free connection has to react to it in
the normal way, since we can only cause each Stunt
connection to back-off one time for a given loss. Note
that the round robin algorithm may cause the last Stunt
connection to decrease its rate by a bit more of what is
actually required, since we do not optimize to find the
best fit among the Stunt connection’s congestion window
sizes that would sum to exactly the Free connection’s
congestion window size. This is wasted bandwidth that
is essentially given up by the Stunts to be acquired by all
connections. The effect of this is diminished over time
as all connections grab more throughput.

The reason we go in round robin fashion is to provide
some notion of fairness across the Stunts without hurting
any one or group of Stunt connection. Notice that TCP
fairness in our case is considered globally across the
group of Free and the Stunt connections, as they can
be abstractly considered as a single entity. The group of
Free and Stunt connections should not together be more
aggressive than an equivalent number of ordinary TCP
flows when increasing their data flow rate through the
normal TCP rules.
Paying back the Stunts: In some situations, the Free
connection may not need a higher data rate. Either be-
cause the requested throughput at some point in time may
go under its fair share or its data rate has increased to a
point that is above the requested target rate. In both cases
the Free connection can easily give up this bandwidth
by having the application send less data. However, this
slack of bandwidth will be naturally acquired by all
connections (Stunts and cross-traffic). We have modified
both controllers described above to allow for the reverse
loss delegation from the Stunts to the Free connection.
Reverse delegation helps the group of Free and Stunt
flows to retain bandwidth as a whole, as apposed to
releasing it to the network. Furthermore, it allows the
Free connection to closely match its target when the
target is low (typically below its fair-share). Also, as

4

discussed above, delegation in this case would ensure
that the Free connection would have a larger congestion
window than the Stunt that is delegating. Otherwise, the
Stunt connection cannot delegate a loss and would have
to react to it.

We have chosen to delegate losses during the AIMD
behavior, since we focus in this paper on longer data
transfers with TCP. It is possible to delegate other
behaviors such as timeouts and slow-start, but we do
not consider those in this work for reasons having to do
mostly with complexity and rareness of those particular
events, in comparison to the AIMD behavior, on a well
provisioned network.

III. THE MODEL

We extended a nonlinear fluid model, similar to those
proposed in [5], [6], [7], [8], to capture the performance
of m TCP flows traversing a bottleneck of capacity C,
where m is equal to (1 + s+n) as depicted in Figure 1.

A. Model Derivations
The round trip time ri(t) at time t for connection i

is equal to the round-trip propagation delay Di between
the sender and the receiver for connection i, plus the
queuing delay at the bottleneck router. Thus ri(t) can
be expressed by:

ri(t) = Di +
b(t)

C
(5)

where b(t) is the backlog buffer size at time t at the
bottleneck router. We denote the propagation delay from
sender i to the bottleneck by Dsib, which is a fraction
αi of the total propagation delay.

Dsib = αiDi (6)

The backlog buffer b(t) evolves according to the equa-
tion:

ḃ(t) =
m
∑

i=1

xi(t−Dsib)− C (7)

which is equal to the input rate xi(.) from the m

connections minus the output link rate. Notice that the
input rates are delayed by the propagation delay from
the senders to the bottleneck Dsib.

We assume RED [9] is employed at the bottleneck
link. Thus, the congestion loss probability pc(t) is given
by:

pc(t) =











0 v(t) ≤ Bmin
σ(v(t)− ς) Bmin < v(t) < Bmax

1 v(t) ≥ Bmax

(8)

where σ and ς are the RED parameters given by
Pmax

Bmax−Bmin
and Bmin, respectively, and v(t) is the aver-

age queue size, which evolves according to the equation:

v̇(t) = −βC(v(t)− b(t)), 0 < β < 1(9)

Notice that in the above relationship, we multiply β by
C since RED updates the average queue length at every
packet arrival, whereas our model is a fluid model [5],
[7].

The loss delegation between the Free and the Stunts
causes them to pick up different congestion signals than
those set by RED. In particular, the Free connection,
upon delegating g(t) of its congestion signals, would
pick up:

q(t) = pc(t)− g(t) (10)

Each Stunt connection would pick up:

q(t) = pc(t) +
g(t)

s
(11)

The normal cross-traffic are not affected and will
simply pick up:

q(t) = pc(t) (12)

The throughput of TCP, xi(t) is given by

xi(t) =
wi(t)

ri(t)
(13)

where wi(t) is the size of the TCP congestion window
for sender i .

According to the TCP Additive-Increase
Multiplicative-Decrease (AIMD) rule, the dynamics of
TCP throughput for each of the m connections can be
described by the following differential equations:

ẋi(t) =
xi(t− ri(t))

r2
i (t)xi(t)

(1− q(t−Dbsi(t)))−

xi(t)xi(t− ri(t))

2
(q(t−Dbsi(t)))

i = 1, 2, ..,m (14)

where q(.) is the congestion signals observed by each
connection based on its type. The first term represents
the additive increase rule, whereas the second term
represents the multiplicative decrease rule. Both sides are
multiplied by the rate of the acknowledgments coming
back due to the last window of packets xi(t− ri(t)). In
the above equations, the time delay from the bottleneck
to sender i, passing through the receiver i, is given by

Dbsi(t) = ri(t)−Dsib (15)

Mode Assumptions: The model above makes the fol-
lowing assumptions: (1) It ignores the effect of slow-
start and timeout mechanisms of TCP, since our main

5

focus is on the AIMD. (2) The delegation of some
losses can be distributed in a linear fashion among the
Stunts (as indicated in Equation 11). In general, this
does not hold except for small value of losses, since the
throughput is inversely proportional to the square-root of
the loss probability. Despite these assumptions, however,
the model above still captures the main dynamics as we
illustrate below.

B. Numerical Results
We instantiate the model above with specific parame-

ters and we solve it iteratively. We assume there is 1
Free connection, 4 Stunts and 15 cross-traffic, for a total
of 20 connections. The bottleneck has a capacity 2000
packets/sec. The RTT for each connection is chosen at
random around 100 msec.

0 1000 2000 3000 4000 5000 6000 7000 80000

50

100

150

200

250

300

350

400

450

Time

Th
ro

ug
hp

ut

Free
Average Stunts
Average CrossTraffic
Target

Fig. 3. Numerical Results.

Figure 3 illustrates the performance of the Free con-
nection in matching a target trace that starts with constant
throughput at 200 packets/sec and then follows a sin
wave. The figure also shows the average throughput
across the stunts as well as the average throughput across
the cross-traffic connections. One can observe how the
Stunt connections make room for the Free connection
to match the target throughput. Notice also, how little
the normal cross-traffic is affected, except for the initial
startup time (the first 3 seconds) where the whole system
is still in a transient behavior. One can also see the
impact of reverse delegation around time 6000. Since
the target throughput drops below the fair-share (100
packets/sec), the Stunts can delegate congestion signals
to the Free connection and thus they are able to increase
their throughput a bit above their fair-share.

IV. EXPERIMENTAL EVALUATION

We have implemented our proposed architecture in
NS-2 [10]. In this section, we study the performance of
our proposed architecture under differing environments

(topologies and trace files) and parameters.

The Setup: Figure 1 depicts the general topology of the
simulated network. It is composed of a single bottleneck
link that is traversed by the Free, Stunts, and cross-traffic
connections. We assume all connections have an infinite
supply of data to transmit. However, to study the impact
of different dynamics that arise in practice, a number
of the cross-traffic connections are turned on and off
at varying times during a given simulation run. We also
vary the number of Stunt connections to demonstrate and
examine the behavior of our proposed architecture under
different congestion levels.

The bottleneck link is configured with RED [9].
The queue size at the bottleneck link is chosen to be
RTT×C√

m
as advocated in [11], where C is the bottleneck

link capacity and m is the total number of connections
traversing the bottleneck.4 The RED parameter Bmin
is set to 0.25 the size of the queue resulting in the
distance between Bmin and Bmax being three times
Bmin. Other parameters were chosen to encourage the
stability of the average queue size.

Performance Metrics: To measure the effectiveness of
our proposed architecture in matching the achievable
throughput to the requested throughput, we propose a
weighted variant of the standard ”sum-of-squared errors”
method. The main problem with the standard ”sum-of
squared errors” is that it does not differentiate between
the case where the achieved throughput is above the
target, versus the case where the achieved throughput
is below the target (since in both cases we may get the
same value). So we define the positive variance V + to
be:

V + =

∑

(xi − Ti)
2

C+
∀ xi > Ti (16)

where C+ is the number of times (sample points) the
achieved throughput is above target. Similarly, we define
the negative variance V − to be:

V − =

∑

(xi − Ti)
2

C−
∀ xi < Ti (17)

where C− is the number of times (sample points) the
achieved throughput is below target. To capture the
overall performance we use a weighted variance, defined

4On fully utilized simulation networks, those composed of only
long lived TCP flows, the justification for dividing by the square
root of m breaks down due to synchronization of network flows [11]
[12]; however, when randomized cross traffic flows are added the
premise is regain for the reduction in the buffer size.

6

by:

V ∗ = δ ×

∑

(xi − Ti)
2

C+ + C−
(18)

where δ is a ratio that is given by:

δ =
max(V +, V −)

min(V +, V −)
(19)

where δ is always greater than or equal to 1. If the
matching is achieved ideally, then δ would be 1. A larger
value of δ indicates a bias in the matching, either above
or below the target, and this would increase the weighted
variance in return. The above metrics are computed over
an entire simulation experiment.

A. Matching the Target Throughput
This set of experiments assess the ability of the Free

connection in matching its throughput to different target
trace files.

Figure 4 shows representative results using three dif-
ferent trace files with three different parameters. All
results were obtained using a PI controller and with
10 Stunt connections. In each one, we plot the target
trace, the throughput of the Free connection and the
average throughput across all Stunts. Figure 4 (left) was
obtained using a topology with 40 Mbps bottleneck
link capacity. In order to provide some variability 8
of the cross-traffic connections through the bottleneck
were randomized at ten second on/off intervals with the
exception of 2 cross-traffic flows which were continuous.
This experimentation ensured that the flows through the
bottleneck did not experience many timeouts.

Figure 4 (middle and right) were obtained using a
topology with 80 Mbps bottleneck link capacity. The
number of cross-traffic links was kept constant at 20 con-
nections. Overall, one can see that the Free connection
does a fairly good job in matching the target throughput
while the throughput achieved by the Stunts changes in
tandem. Notice the larger oscillations at higher data rates;
these are expected due to the normal behavior of the
AIMD mechanism. We see the opposite effect at lower
data rates, due to a smaller decrease in bandwidth.

Notice also that the reverse delegation of losses from
the Stunts to the Free connection allows the Stunts
to achieve higher rates than they would have achieved
otherwise.5 This is evident from Figure 4 (right) from
time 150 until around 235 seconds. During this time
interval, the Stunts are achieving higher throughput than
their fair share, since the Free connection does not need

5The slack of bandwidth given up by the Free connection goes
directly to the Stunts as opposed to going to the Stunts and the cross-
traffic.

that throughput. This also confirms our numerical results
in Figure 3.

This experiment makes it clear that the Free flow can
acquire a variety of target waveforms. Experimentation
showed that the limiting factors were virtually all related
to network latency and congestion. We understand this to
be due to the fact that the architecture is designed around
TCP congestion signals. Naturally, the ability of the Free
flow to achieve a requested target rate is dependent on
the ability of the network to support that link utilization.
As was mentioned earlier, Figure 4 (left) is an example
of the free flow simulated in a well provisioned network
with moderate cross-traffic dynamics and link utilization.
That figure also shows very good fitness with regard to
the target waveform.

B. Impact of the Number of Stunt Connections
To study the impact of the number of Stunt connec-

tions on the performance of the Free connection, we vary
the number of stunts while holding all other parameters
constant and we plot the weighted variance (as given in
Equation 18) versus the number of Stunts.6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18 20

we
ig

ht
ed

 v
ar

ia
nc

e

stunts

non-random cross traffic
randomized cross traffic

Fig. 5. Impact of the number of Stunts on the weighted variance
for non-random cross traffic and randomized cross-traffic.

Figure 5 shows the results obtained (the non-random
cross-traffic plot), where each point represent an in-
dependent simulation run. One can observe that there
is an optimal number of Stunts (around 5 or 6) that
minimizes the weighted variance. Increasing the number
of Stunts further, not only shows diminishing returns but
also harms the performance of the Free connection as
indicated by a slight increase in the weighted variance
towards the higher number of Stunts.

Figure 6 shows the exact performances with 2, 10
and 20 Stunts, respectively. These plots were generated
on topology of an 80 Mbps bottleneck link with 20
cross-traffic connections. Clearly, a very small number

6As mentioned in Section I, these Stunt connections exist due to
the normal operation of the server. We do not advocate creating them
to make this architecture work.

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200 250 300 350 400

M
B

/ s
ec

Time

Stunt Avg
Free

Trace

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

M
B

/ s
ec

Time

Stunt Avg
Free

Trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300

M
B

/ s
ec

Time

Stunt Avg
Free

Trace

Fig. 4. Three simulation traces to assess the Free connection’s throughput in matching the target throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500

M
B

/ s
ec

Time

Stunt Avg
Free

Trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500

M
B

/ s
ec

Time

Stunt Avg
Free

Trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500

M
B

/ s
ec

Time

Stunt Avg
Free

Trace

Fig. 6. Impact of the number of Stunt connections on the performance. Left plot with 2 Stunts, middle plot with 10 Stunts and right plot
with 20 Stunts.

of Stunts (2) has a noticeable degrading effect on the
performance of the Free connection, which improves
with an increased number of Stunts up to a point where
is starts decreasing again.

The number of Stunts affect the overall efficiency of
the method because they are more than a reservoir of
bandwidth for the Free connection. In particular, they
adjust the level of congestion in the network for the
Free connection to better match the target throughput.
If there number is very low, the Free connection would
not be able to delegate losses (since we strictly enforce
the same reduction in congestion windows from all
Stunts). If there number is very large, the network would
be more congested and all flows would start to go
into timeouts/slow-start which again impact the Free
connection in matching the target throughput.7

C. Impact of Cross-traffic Dynamics
To study the impact of dynamics that arise in practice,

we allow a number of the cross-traffic connections to
be turned on and off at random times during a given
simulation run. The cross-traffic flows are turned on
and off every 10 seconds randomized with a uniform
distribution.

Figure 7 shows the impact of varying the number of
the cross-traffic connections, while keeping the number

7One approach to handel this case would be to delegate timeouts,
however, our focus in this paper was mainly on the AIMD mechanism
as explained earlier.

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22

 0 5 10 15 20

m
et

ric
 v

al
ue

 (l
ow

 is
 b

et
te

r)

of randomized cross-traffic flows

+ variance

- variance

weighted variance metric
positive variance

negative variance

Fig. 7. Impact of increasing the level of dynamic cross-traffic
connections.

of Stunts steady at 10. We plot the positive variance, the
negative variance, and the weighted variance to better
explain a unique behavior observed in this experiment.

It is clear that the higher the dynamics from the
randomized cross-traffic, the harder it is for the Free
connection to match the target. However, when we
examined the exact performance of the Free connection,
we found that its shape was rather intact than deformed,
but it was above the requested target. This was confirmed
visually in each simulation run and is easy to see by
examining the positive and negative variance metrics.
Notice how the positive variance grows larger as the neg-
ative variance grows smaller. Such divergence increases
the weighted variance due to a higher δ. The throughput
of the Free connection was above the target because
with a larger number of randomized cross-traffic, their
combined throughput decreased the utilization at the

8

bottleneck. This caused the Free connection to acquire
more than the target because the lower link utilization
also resulted in a lower packet loss probability.

Figure 5 (the randomized cross-traffic plot) shows the
impact of the number of Stunts when most of the cross-
traffic connections (19 out 20) were randomized on a
10-second on/off intervals. The presence of dynamics,
coupled by an increase in the Stunts lead to a degraded
matching between the the throughput of the Free con-
nection and the target throughput.

V. RELATED WORK

As hinted in the introduction, many Quality of Service
(QoS) mechanisms have been proposed that belong to the
general IntServ [1] or DiffServ [2] architectures. Due to
their reliance on modifying some in-network components
(whether core routers or edge routers), their acceptance
for deployment is difficult. Moreover, some of them do
require the participation of all entities, which imposes a
significant scaling problem.

Other works aim to provide soft QoS guarantees
through existing technologies as in [13], [14], [15], [16].
The work in [13] focused on managing the end-to-end
behavior of TCP connections through sharing conges-
tion information among the connections. The work was
focused on applications adapting their sending rates to
achieve better performance, rather than meet specific
guarantees. In [15] an architecture was proposed that
enables applications to express policies, probe and adapt
to the observed conditions. This however was done at the
end-host, using CPU and memory scheduling. In [14],
an elastic tunnel was created using a number of regular
TCP connections to provide soft bandwidth guarantees.
The cardinality of connections changes in tandem with
cross-traffic, to provide soft QoS guarantees. The work
only considered constant QoS guarantees. Moreover, it
required modifications to edge routes to manage this
tunnel. In [16] the authors propose a coordination pro-
tocol (CP), which seeks to optimize cluster-to-cluster
communication of computing devices across a bottleneck
aggregation point. Their proposal entails, among other
aspects, giving the flows across the aggregation point
the ability to sense the network state and adapt at the
end-points.

VI. CONCLUSION

In this paper we have described an end-to-end ar-
chitecture that achieves soft QoS guarantees for a TCP
connection, which we refer to as the Free connection,
based on throughput requirements from the application.
This is achieved by delegating some congestion signals

to a group of companion TCP connections, which we
refer to as the Stunt connections. The architecture strictly
adheres to TCP rules and does not impact network
congestion in any manner. Moreover, no modifications
is required to devices in the communication path. We
have shown that the architecture is capable of providing
a reasonably accurate targeting between the achieved rate
and the target rate with a small number of Stunts. We
have assessed the performance of our proposed architec-
ture through new metrics, using numerical solutions and
extensive simulation experiments.

REFERENCES

[1] R. Braden, D. Clark, and S. Shenker, “Integrated Services in
the Internet Architecture: an Overview,” RFC 1633, June 1994.

[2] S. Blake D. Black M. Carlson E. Davies Z.Wang and W. Weiss,
“An Architecture for Differentiated Services,” IETF RFC 2475,
December 1998.

[3] V. Cerf and L. Kahn, “A Protocol for Packet Network Inter-
connections,” IEEE Transactions on Communications, 1974.

[4] V. Jacobson, “Congestion Avoidance and Control,” in Proceed-
ings of ACM SIGCOMM’98, Stanford, CA, August 1988.

[5] C. Hollot, V. Misra, D. Towsley, and W. Gong, “A Control The-
oretic Analysis of RED,” in Proceedings of IEEE INFOCOM
2001, Anchorage, AL, April 2001.

[6] F. Kelly, “Mathematical Modelling of the Internet,” Mathemat-
ics Unlimited - 2001 and Beyond, pp. 685–702, 2001.

[7] S. Low, F. Paganini, J. Wang, S. Adlakha, and J. Doyle, “Dy-
namics of TCP/RED and a Scalable Control,” in Proceedings
of IEEE INFOCOM 2002, New York, NY, June 2002.

[8] S. Shenker, “A Theoretical Analysis of Feedback Flow Con-
trol,” in Proceedings of ACM SIGCOMM’90, Philadelphia, PA,
September 1990.

[9] S. Floyd and V. Jacobson, “Random Early Detection Gateways
for Congestion Avoidance,” Transactions on Networking, vol.
1(4), pp. 397–413, August 1993.

[10] E. Amir et al., “UCB/LBNL/VINT Network Simulator - ns
(version 2),” Available at http://www.isi.edu/nsnam/ns/.

[11] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router
Buffers,” in Proceedings of ACM SIGCOMM’04, Portland,
Oregon, August 2004.

[12] L. Zhang, S. Shenker, and D. Clark, “Observations on the
Dynamics of a Congestion Control Algorithm: The Effects of
Two-Way Traffic,” in Proceedings of ACM SIGCOMM’91,
Zurich, Switzerland, September 1991.

[13] H. Balakrishnan, H. Rahul, and S. Seshan, “An Integrated
Congestion Management Architecture for Internet Hosts,” in
Proceedings of ACM SIGCOMM’99, Cambridge, MA, August
1999.

[14] M. Guirguis, A. Bestavros, I. Matta, N. Riga, G. Diamant,
and Y. Zhang, “Providing Soft Bandwidth Guarantees Using
Elastic TCP-based Tunnels,” in In proceedings of the 9th IEEE
Symposium on Computer and Communications (ISCC’2004),
Alexandria, Egypt, July 2004.

[15] G. Molenkamp, M. Katchabaw, H. Lutfiyya, and M. Bauer,
“Managing Soft QoS Requirements in Distributed Systems,” in
Proceedings of ICPP Workshop, Toronto, Canada, August 2000.

[16] D. Ott and K. Mayer-Patel, “An Open Architecture for
Transport-level Protocol Coordination in Distributed Multime-
dia Applications,” ACM Transactions on Multimedia Comput-
ing, Communications, and Applications (TOMCCAP), vol. 3,
no. 3, August 2007.

