
MACHINE LEARNING BASED DVFS FOR ENERGY EFFICIENT

EXECUTION OF MULTITHREADED WORKLOADS

by

Richard Hay, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
December 2014

Committee Members:

Apan Qasem, Chair

Dan Tamir

Hassan Salamy

COPYRIGHT

by

Richard Hay

2014

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgment. Use of
this material for financial gain without the author’s express written permission is
not allowed.

Duplication Permission

As the copyright holder of this work I, Richard Hay, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGEMENTS

This thesis would not have been possible without my supervisor, Apan Qasem,

whose advice, guidance and support from idea to a full fledged product. I would

also like to thank my committee members Dan Tamir and Hassan Salamy. A special

thanks to friends who gave me specific advise on how to get through this. I’d also

like to make a very special thanks to Team Awesome a.k.a Team Out To Lunch.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

CHAPTER

I. INTRODUCTION . 1

II. RELATED WORK . 6

2.1 Performance Counters in Power-aware Optimizations 6

2.2 Dynamic Frequency and Voltage Scaling 7

III. FRAMEWORK . 9

3.1 Overview . 9

3.2 Workload Generation . 10

3.3 Fine Grain Probing of Performance Counters 14

3.4 Power Estimation . 19

IV. SUPERVISED LEARNING FOR DVFS 21

4.1 DVFS from User Space in Linux 21

4.2 Set-up for ML-based DVFS . 22

4.3 Training Data Generation . 24

V. EXPERIMENTAL RESULTS . 27

5.1 Experimental Setup . 27

5.1.1 Platform . 27

5.1.1.1 Benchmark Tools 28

5.1.2 Workloads . 28

v

5.2 Accuracy of ML Models . 29

5.3 Energy Efficiency . 31

5.3.1 Single Program Workloads 31

5.3.2 Multi Program Workloads 32

VI. CONCLUSION . 40

BIBLIOGRAPHY . 41

vi

LIST OF TABLES

Table Page

3.1 Affinity configurations . 12

3.2 Performance counters vetted from Likwid and Perf 13

3.3 Coefficients for Watt’s Up linear regression 20

3.4 Real versus estimated power for Watt’s Up 20

4.1 Modifiable files that control DVFS policies in Linux 22

4.2 Different types of governors supported by Linux 22

4.3 Frequency table 2.0 Ghz to 1.8 Ghz for workload Canneal/Raytrace 25

5.1 Accuracy of machine learning models for multiple and single programs . . 30

5.2 Power savings and execution time penalty for single programs using

SVM model . 32

5.3 Power savings and execution time penalty for multi programs using

DTree model . 33

vii

LIST OF FIGURES

Figure Page

1.1 Variations in energy consumption in PARSEC benchmarks as a

function of core frequency . 5

3.1 Framework overview . 9

3.2 Execution time for compute-bound workload for different affinity

configurations . 15

3.3 Power consumption for compute-bound workload for different

affinity configurations . 16

3.4 Execution time for memory-bound workload for different affinity

configurations . 17

3.5 Power consumption for memory-bound workload for different affin-

ity configurations . 18

5.1 Core utilization’s relation to power consumption 29

5.2 Single program results for Bayes model 34

5.3 Single program results for DTree model 35

5.4 Single program results for SVM model . 36

5.5 Multi program results for Bayes model . 37

5.6 Multi program results for DTree model . 38

5.7 Multi program results for SVM model . 39

viii

ABSTRACT

Concerns over high power consumption of large computations and data centers

have been growing in recent years. Many software and hardware strategies for

reducing power have been proposed as remedies. Dynamic voltage and frequency

scaling (DVFS) is one technique that can be effective if given expert knowledge.

However, DVFS effectiveness is sensitive to workload characteristics and

architectural parameters. Lack of knowledge can hurt DVFS strategies and render it

ineffective. This thesis presents a supervised machine learning (ML) strategy for

automatically making smart DVFS decisions to improve energy efficiency of multi

threaded and multiprogram workloads. The technique uses hardware performance

counters to construct feature vectors that capture program behavior and thread

interaction in a meaningful way. The resulting models have high accuracy in picking

optimal frequencies. Experimental results on contemporary benchmark suite show

that application of a ML technique is able to reduce energy consumption by as

much as 24% on memory-intensive workloads.

ix

CHAPTER I

INTRODUCTION

Energy efficiency in chip design is important now due to the rising thermal footprint

of the CPU. As clock speed increased so did power consumption due to leakage from

heat. Processors logistically became much harder to cool. This allowed for the

necessary shift from single core systems to heterogeneous multi-core systems. In

todays world, supercomputers and data centers incur large cooling costs. There is a

tangible impact to saving energy whether it is monetary or environmental and

people have become more energy conscious as of recent. There are tools available

currently that give the opportunity to save energy. Exploiting tools such as dynamic

voltage and frequency scaling (DVFS) can help reduce power consumption.

Because of the importance of energy efficiency in high-performance computing,

many techniques have been proposed for managing power and reducing energy

consumption. Core gating is a technique that has uses for certain situations. In this

technique a core is disabled at times when it has nothing to work on. This situation

is called starvation. By disabling a specific core the processor is effectively using less

power than before. Thread mapping also happens to be a promising technique for

power efficiency and reducing the execution time of a program. Thread mapping

involves making choices about where the threads of an application should be run on

the processor. The distinct advantage this provides is the ability to reduce

execution time and power just on mapping threads of an application to cores on a

processor. Since this project deals with workloads which are sets of multithreaded

1

applications it is suitable to apply thread mapping techniques. It will allow for

exploration of the effects affinity configurations have with power and execution

time. Affinity is the core to thread assignment of an application. With the ability to

map threads, it is useful to use thread migration since it is the most dynamic option

once threads are mapped. A thread migration strategy takes threads and moves

them to different cores with the strategy of balancing load. If execution is

important then thread migration can be beneficial for moving applications to idle

cores thereby eliminating starvation. There are a few penalties to this transfer but

those penalties can be mitigated with the right decisions.

DVFS is a technique that dynamically changes the voltage and frequency of a

processor. Although DVFS is useful, it is difficult to come up with an effective

strategy because there is a lot of information needed to make a good decision.

DVFS provides opportunity to exploit the frequency of the processor with some

overhead associated with the switch from one frequency to another. Modern

processors divulge the time it takes to change steps in frequencies and that change

is measured in microseconds. This is a physical factor that hinders changes in

frequency. It is called transition delay. There are various power saving states that

are controlled by firmware. The governor is a mechanism that is a part of DVFS

that dictates the range of available frequencies the processor can change to. It also

establishes how aggressive the scaling between frequencies can be. This delay from

signal to action means that the information collected and decided upon needs to be

resolved in that time frame. There is also the software issue of receiving the state

2

change signal within the software and not just the hardware change. But in terms of

benefit, if there is a prediction mechanism then the change can happen right before

it is needed negating the previously mentioned issues. In order to make intelligent

decisions about DVFS there needs to be some feature set that can be collected to

create a prediction model.

This thesis aims to develop a learning based prediction model for DVFS that

leverages hardware performance counters to create the feature set. This model will

be applied to multiprogram workloads with the intention of gaining some power

efficiency. In newer generations of processors manufacturers have provided more

counters as well as better descriptions of what the counters record. By polling

certain counters it is possible to generate estimates on power. Some of those

counters that can be used include cache misses, branch predictions, and clock cycles.

It is possible to predict how much power the processor will use in some arbitrary

time slice so long at the application has been characterized. Performance counters

provide the ability to characterize applications. Power as well as other performance

counters provide key information in assessing decisions made by our power aware

DVFS system.

This thesis contributes a few tools and systems for collecting information as

well as processing that information. MLDataGen is a system developed for the

collection of performance counter information. The information MLDataGen collected

was used to generate the models for power estimation. The collected values were

vetted based on importance and the limitations that come from multiplexing live

3

performance counter values. The values that were selected were used to generate a

regression model. We applied this model to a system without a power performance

counter. What was learned from this was eventually applied to perfCollection

which is the second generation of the MLDataGen tool. This was used to collect

information that would apply to our machine learning models for smartDVFS. There

are three models being used and they are Baysian, Decision Trees, and Support

Vector Machines.

The developed models show that, if used intelligently, DVFS can result in

significant energy savings on contemporary parallel workloads. Furthermore, the

models provide key insight into program behavior in the presence of frequency

scaling. This knowledge can be used to develop more sophisticated techniques for

power-aware optimizations. Figure 1.1 shows that there are certain frequencies

where power consumption values and execution time trade offs are beneficial. A

program where the benefit is seen clearly is steamcluster.

4

2.2

2.4

2.6

2.8

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

blackscholes

(a) Blackscholes

1.6

1.8

2.0

2.2

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

bodytrack

(b) Bodytrack

2.2

2.6

3.0

3.4

3.8

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

canneal

(c) Canneal

4.8

5.0

5.2

5.4

5.6

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

facesim

(d) Facesim

4.6

4.8

5.0

5.2

5.4

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

ferret

(e) Ferret

5.2

5.7

6.2

6.7

7.2

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

freqmine

(f) Freqmine

4.0

4.4

4.8

5.2

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

streamcluster

(g) Streamcluster

2.8

3.0

3.2

3.4

2.0 1.8 1.6 1.4 1.2

E
ne

rg
y

(K
ilo

 J
ou

le
s)

Frequency (GHz)

swaptions

(h) Swaptions

Figure 1.1: Variations in energy consumption in PARSEC benchmarks as a function

of core frequency

5

CHAPTER II

RELATED WORK

2.1 Performance Counters in Power-aware Optimizations

Singh et al. work uses performance counter information to estimate power

consumption. They developed a regression model based on readings from a set of

hardware performance counters. It also covers the difficulties of reading

performance counters and issues with multiplexing. It introduces the concept of

power being a piecewise function in that low power consumption fits linearly and

high power consumption fits exponentially [Singh et al., 2009].

Power estimation has been explored for quite some time and there are many

concerns with how the numbers are generated and how accurate they are. But,

there have been some strides to get numbers that correspond with actual values.

Chip manufactures have exposed the actual power consumptions of their chips and

on top of that each individual cores consumption. Older studies used programs that

simulated CPU architecture such as McPAT and newer studies took wattage

measurements directly from the wall socket using something similar to a

Kill-A-Watt [Li et al., 2009]. Moving forward it is more likely usage of performance

counters will trump older methods with its accuracy.

6

2.2 Dynamic Frequency and Voltage Scaling

There is research being done on core gating by IBM. Vega et al. explored the

potential of core gating to show real power savings on an IBM Power 7 chip. The

work explains the benefits and importance of thread mapping on a processor. By

using the PARSEC benchmark suite, Vega was able to show that programs with

starving cores can and should be turned off as a result saving some power that

otherwise would have been wasted idling. This type of research is important in the

field of web servers where there is a scenario in which a server processor is not

receiving page requests. In that scenario and many others it would be prudent to

shut off parts of the processor until demand picks up again [Bienia et al., 2008].

Power management is handled differently on different operating systems and

hardware. The context in which software and hardware dictate power management

commands is blurry. Different processor architectures handle power states with a

combination of software and or hardware. Shen et al. sheds light about software

based solutions for power management. There is also coverage on DVFS but a

significant part of research is focused on evaluating temperatures and software based

solutions for power management. Shen provides information describing performance

and temperature correlation. It is known that as the demand for performance

increases the trade off is power and temperature. The work provides discussion on

optimal performance counters to use and determines that instructions per second

(IPS) can be used to estimate power consumption with reasonable accuracy [Shen

7

et al., 2012]. This idea was supplanted in this thesis by the usage of unhalted clock

cycles which in essence are the cycles in which the processor is actively executing

instructions. This information has value in that it shows the total amount of cycles

the processor was actually busy. That counter in particular provides as much detail

if not more than IPS [Jung and Pedram, 2010].

8

CHAPTER III

FRAMEWORK

3.1 Overview

Operating
System
(Linux)

dynamic readings from HW performance counters

Frequency Change Frequency Change
Takes Effect

t1 t2 tn

parallel workload

target architecture

C
0

C
1

C
3

C
4

L1 L1 L1L1

L2

LLC

L2

Collect Performance Counter Information from the Target Architecture

ML Models
• Bayes
• SVM
• Decision Trees

Derive frequency
from dynamic

readings

M
o

d
e

l G
e

n
e

ratio
n

(perf, likwid)

(set_cur_freq.sh)

Offline
Model

Generation
Legend

offline
online

(perf)

Affinity-based
Workload
Generator

Figure 3.1: Framework overview

The framework for our system has many moving parts some of which are automated

and some of which are manual and offline processes. But, each step is just as

important as any other and all data collected has its importance in the framework.

9

Figure 3.1 is a broad overview of what the framework does and its various

components are explained in detail.

3.2 Workload Generation

wkldgen is a tool created to reduce time to launch multiple applications as well as

provide custom configuration mechanics. A workload is a collection of one or more

programs. The tool itself allows flexibility in the following areas, types of

applications, number of applications, number of threads, input dataset, and affinity

configurations.

wkldgen is used to generate flexible application launching for use in

performance counter collection. Rather than launch each application manually with

a simple script it would save time if the launch of applications were generalized and

given a few options that would be useful. Affinity configurations provide insight into

how a programs execution time and power can be affected by arranging where on

the processor threads are run. There was also an interest in the effects of adding

additional threads to the power and execution time. Since the processor used for the

majority of experiments has 12 logical cores and 6 physical cores the interaction

between thread count and power can be explored. Logically, increasing software

thread count saturates the cores and increases power consumption. This would be

an intuitive understanding except when the program has significant memory

accesses. Programs with heavy computation exhibit this intuitive behavior while

memory bounded applications do not. This distinction gives some room to find out

10

optimizations that would be useful for memory bounded applications. In other

words, being able to find frequencies that reduce power consumption but still

maintain a reasonable execution time. This trade off is key to building a heuristic to

address the problem of balancing power savings and execution time.

Table 3.2 shows five affinity configurations each workload was run under. Each

affinity mapping is unique with the exception of affinity 0. Affinity 0 is the

operating system’s choice on mapping threads. Affinity 1 is placing all the threads

on half the processor. Affinity 2 takes an application’s threads and either places

them on the left or right side of the processor. As an example, there is a workload

with four programs and they are each running four threads. The first two

applications are placed on the first half of available cores on the processor while the

last two applications are placed on the last half. So, you have 8 threads sharing 6

logical cores. Affinity 3 distributes threads in such a way that each program has

overlapping threads on a core. This creates competing interests from two programs

on one core. Using the same example of 4 programs and 4 threads the first program

would take up cores 0-3 and the second program would map to 3-7 essentially giving

it 5 logical cores with one core in competition. Affinity 4 applies threads in an

interleaving fashion. Given the example of 4 programs and 4 threads with 12

available logical cores the first program’s threads will be on cores 0,3,7, and 11.

Performance counter selection was based on the work by Singh et. al. in which

they ranked the most correlated counters to power. Table 3.2 is a list of adapted

performance counters from their work. The counters selected have slight variations

11

Table 3.1: Affinity configurations

Affinity Name Configuration Example

Affinity 0 (Operating System) A1-2C0-5

Affinity 1 (Cohort) A1C0-2 A2C0-2

Affinity 2 (Half ’n Half) A1C0-2 A2C3-5

Affinity 3 (Resource Competing) A1C0-2 A2C2-5

Affinity 4 (Interleaved) A1C0,2,4 A2C1,3,5

or approximates in some cases to the work of Singh due to differences in architecture

between AMD and Intel hardware. The performance counter information collected

this way was used in deriving the power estimation model Watt’s Up seen later.

In the figures 3.2–3.5 there is a distinction between two workloads that were

characterized by calling them compute and cache. Characterize in this context is

referring to the recording of a program or workload throughout its entire execution.

These workloads include programs from the PARSEC benchmark that stress the

computation portion of the processor while cache workloads have large amounts of

memory accesses. Hence, cache bounded programs tend to exhibit high cache miss

rates and will prove to be useful in maximizing power efficiency. The Aff labeling in

the figures refers to the configurations provided in Table 3.2. Affinity configurations

are an important aspect of power and performance. The operating system needs to

monitor and decide what is the most appropriate core configuration to run

multi-threaded applications. By applying a few changes in thread mapping it is

possible to beat the operating system’s optimal mapping. One thing the operating

12

Table 3.2: Performance counters vetted from Likwid and Perf

Performance Counter Description

Power [W] The average power consumption in watts for a time slice.

Time [Seconds] The time from start of execution to end.

UNHALTED CLK CYCLES Number of clock cycles that executed an instruction.

FP COMP OPS EXE X87 The amount of floating point instructions executed.

BR INST RETIRED ALL BRANCHES Number of branching paths instructions executed.

BR INST RETIRED CONDITIONAL Number of branches executed conditionally.

BR MISP RETIRED ALL BRANCHES The number of mispredicted branch predictions.

INSTR RETIRED ANY Number of instructions executed of any type.

UOPS RETIRED ALL Micro-Ops code executed.

RESOURCE STALLS ANY Issues involving loading resources for instructions.

INT MISC STALL CYCLES Stalls from something other than Load/Store operations.

L3 LAT CACHE MISS The number of L3 cache misses.

ICACHE MISSES The number of instruction cache misses.

L2 RQSTS MISS L2 cache requests that resulted in a miss.

system does not seem to do effectively is map threads. Evidence of this can be seen

in Figure 3.2(b).

Figure 3.3 shows the trend in power as thread count increases under different

affinity configurations for a compute-bound workload. There are significant

differences in power consumption between thread counts and affinity configurations.

The most notable aspect of these graphs is the power consumption in comparison to

execution time. In Figure 3.3(a) the power difference between Aff0, the operating

system, and Aff1 is significant. They both have roughly the same execution time

but Aff1 has considerably less power usage. These advantages fall apart when the

13

thread count is 8 or higher. The memory bound workload exhibits similar power

patterns to the compute bound workload refer to Figure 3.3 and Figure 3.5. The

main differences is the execution time penalty is more significant and the power

savings are less drastic. This information leads to believe that optimizations should

come from compute bounded workloads as the values appear favorable towards

power efficiency.

3.3 Fine Grain Probing of Performance Counters

Performance counters are a new feature that the public has been given access to.

The counters are registers on the CPU that provide useful information about the

CPU in time slices. With the ability to access these counters you gain the power to

observe and profile the state of the system. There are a significant amount of tools

that allow polling of performance counters.

There are some performance counter polling tools that are used for this thesis

which include Likwid and Perf. Likwid is a performance counter monitoring

solution that is used to collect data [Treibig et al., 2010]. Likwid provides access to

power performance counters on Intel’s Xeon processor while Perf has better

compatibility with older processors. Perf also is useful in conjunction with liwkid

because it has less overhead when collecting performance counter information. This

makes Perf attractive for real-time monitoring. Both programs expose the issue of

multiplexing. Multiplexing in this context means the limited available counters that

the machine can track and record information for. The processor can only

14

Using 2 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
50

10
0

15
0

20
0

25
0

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(a) 2-threaded workload

Using 4 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
50

10
0

15
0

20
0

25
0

30
0

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(b) 4-threaded workload

Using 8 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
50

10
0

15
0

20
0

25
0

30
0

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(c) 8-threaded workload

Using 16 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
50

10
0

15
0

20
0

25
0

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(d) 16-threaded workload

Figure 3.2: Execution time for compute-bound workload for different affinity

configurations

accommodate a small number of counters due to space restrictions on the die. This

ends up limiting the amount of counters that can be recorded. Likwid exposes a

fixed number of counters on an Intel Xeon processor. The Intel Xeon that is in use

15

Using 2 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(a) 2-threaded workload

Using 4 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(b) 4-threaded workload

Using 8 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(c) 8-threaded workload

Using 16 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(d) 16-threaded workload

Figure 3.3: Power consumption for compute-bound workload for different affinity

configurations

for this thesis only has space for a few counters to be recorded which leads to a

scenario where information limitation forces specific choices that need to be made.

For instance, MBOX holds instructions related to performance metrics while MEM

16

Using 2 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
20

0
40

0
60

0
80

0

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(a) 2-threaded workload

Using 4 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
20

0
40

0
60

0
80

0

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(b) 4-threaded workload

Using 8 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
20

0
40

0
60

0
80

0

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(c) 8-threaded workload

Using 16 Threads

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

0
20

0
40

0
60

0
80

0
10

00

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(d) 16-threaded workload

Figure 3.4: Execution time for memory-bound workload for different affinity

configurations

holds cache related performance counters. As part of the system requires data

generation from selected features it is necessary to provide a tool that records

performance counter information under these limited circumstances.

17

Using 2 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(a) 2-threaded workload

Using 4 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(b) 4-threaded workload

Using 8 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(c) 8-threaded workload

Using 16 Threads

P
ow

er
 (

W
at

ts
)

0
10

20
30

40
50

af
f 4

af
f 3

af
f 2

af
f 1

af
f 0

(d) 16-threaded workload

Figure 3.5: Power consumption for memory-bound workload for different affinity

configurations

MLDataGen, the data generation tool, is given a set of user defined

performance counters to look at and outputs text files with the recorded data for a

user defined time slice. This data would then be formatted and used to generate a

18

model of a specific application or a workload.

3.4 Power Estimation

Watt’s Power is a program that implements power estimation for a program. Once

it profiles the programs or workload it will calculate a wattage based on a regression

equation. This was built in part to validate a power model that would work on older

systems that did not include performance counters for power consumption. While it

proved valuable in trying to understand current power estimation and forecasting

models it was not helpful in providing a backwards compatible way to apply our

smartDVFS heuristic. The formula used to create the power estimation model is

Power [W] = CPU CLK UNHALTED CORE + FP COMP OPS EXE X87 +

L3 LAT CACHE MISS + BR MISP RETIRED ALL BRANCHES +

UOPS RETIRED ALL. Refer to table 3.2 for descriptions of each variable in the

equation. The training of the linear regression model used data that was normalized

based on unhalted core clock cycles. When fed into Watt’s Up , the unhalted core

clock value is unchanged but the rest of the values in the formula have been scaled

appropriately. Table 3.4 shows the accuracy of predicted power values. This

information validates what was said in Singh et. al. work. Their research concluded

that power requires two models rather than one model. Low power value predictions

behave differently from high power value predictions. While the estimation can be

inaccurate it at least shows the trends in power consumption. This model could be

improved if split up between low and high power models.

19

Table 3.3: Coefficients for Watt’s Up linear regression

Coefficient Value

(Intercept) 16.126921936879

CPU CLK UNHALTED CORE 0.000000000658

FP COMP OPS EXE X87 -0.049011893798

L3 LAT CACHE MISS 77.347080712590

BR MISP RETIRED ALL BRANCHES 0.630887016032

UOPS RETIRED ALL -0.015837407026

Table 3.4: Real versus estimated power for Watt’s Up

Real Power Value Estimated Power Value % Error

49.00 51.80 5.71%

43.00 39.83 7.37%

37.50 31.60 15.73%

29.00 25.70 11.38%

12.00 3.40 71.67%

20

CHAPTER IV

SUPERVISED LEARNING FOR DVFS

4.1 DVFS from User Space in Linux

The first step to applying DVFS policies in Linux is to find documentation on how

to manipulate it. DVFS configuration in Linux is entirely controlled by a set of text

files located in a device folder that holds information about the CPU. This

information can be modified directly if given the permission to write to those files,

which may have security ramifications, as well as having the governor set to

userspace. The governor is a written policy on how to handle energy demand from

the processor. The table 4.2 lists the available governor types on Linux platforms.

The one governor that applies to this thesis is userspace since it allows a user to

modify the processor’s frequency directly. This method was chosen because the tool

that was initially used cpufrequtils required root permissions and it proved to be

cumbersome. cpufreq-info is a tool that provides information about the processor

and specifically derives its data from the files in Table 4.1. It ended up being much

more simple to modify the files directly and possibly more efficient. Table 4.1 shows

the various files that can be modified to control things such as frequency and

governors. Also worth noting, each core has its own individual files prescribed to

them. That means there is complete control over what each core is doing at

anytime. The penalty for changing frequency is the transition delay between states.

The Intel Xeon processor this thesis uses as its platform is able to run between the

21

frequencies of 1.2 Ghz to 2.0 Ghz.

Table 4.1: Modifiable files that control DVFS policies in Linux

File Name Description

scaling governors Describes the type of governor currently in use.

scaling frequency Describes the current frequency in Hz.

scaling setspeed Allows for setting the speed of the processor.

cpuinfo max freq Shows maximum allowed frequency.

cpuinfo min freq Shows minimum allowed frequency.

Table 4.2: Different types of governors supported by Linux

File Name Description

ondemand Gives power to the processor as needed.

userspace Allows User Defined Values for files in Table 4.1.

conservative Only increases frequency when needed. (Laptops)

powersave Maintains a power budget and minimum frequencies. (Laptops)

performance Maintains max power and frequency.

4.2 Set-up for ML-based DVFS

In order to derive a good machine learning model it is necessary to pick the right

features. Without the right features a model will suffer. The features selected for

the ML model correspond with some of the most effective performance counters

that correlate with power. There are four features and they are cache misses, core

22

utilization, dTLB misses, and FP Intensity. Cache misses refers to the general

amount of cache misses on the entire processor. There is nothing discriminatory or

specific about the cache miss performance counter such as only collecting L3 cache

misses. Core utilization is a percentage of core usage. It is derived by taking the

max frequency of the processor and dividing it by the unhalted clock cycles. dTLB

is the data translation look-aside buffer. It is a valuable metric for seeing how many

memory accesses are happening between addressable caches. Basically, it is great for

seeing if the flow of information is causing cache pressure. FP Intensity is a

combination of two different performance counters. It represents the amount of

floating point operations executed. FP Intensity was later scrapped in order to

accommodate the two values that derived that feature. The two performance

counters are uncore and fpinst. The uncore value represents actions on the

processor that do not have a specified category. Fpinst is the floating point

instruction performance counter. The next step is to decide how to classify a success

or failure in the context of frequency switching.

After collecting data from the features selected, a heuristic is necessary to

classify what is good and what is a bad case. The ideal good case is a configuration

in which power consumption is lowered and execution time is also lowered when the

frequency is switch to a lower setting. This is not realistic nor physically possible.

The realistic good case that is being searched for is one where the penalty in

execution time is mitigated against the power savings of making the switch. A bad

case is where that balance is not met. In other words, the time penalty is too much

23

for the power savings to be worth the switch in frequencies. Essentially, the

prediction being made is what frequency to run the program or workload at. Since

the data collection is in real time if another program is added mid execution the

prediction models will account for it.

4.3 Training Data Generation

Features that were selected from set-up are then collected for use in training the

models. The data collection process involves some steps. First, wkldgenneeds to be

configured to run the programs to be profiled. Once it is established what programs

are to be profiled it is necessary to figure out the codewords that reference the

performance counters on chip. Both Perf and Likwid have different names for the

same performance counter which makes it confusing so, stick with one. The models

in this thesis were generated using data collected through Perf but, it is also doable

using Likwid. The preference for Perf comes from the large overhead from using

Likwid. Also, from experience using Likwid some performance counters exhibit

inaccuracies which need to be cleaned up manually. The data that is collected is

then processed through R to get an average value from the entire execution of a

program. This is done for each frequency step chosen. A table in excel is created

with the values generated and exported from R.[R Core Team, 2014] This excel

table has three additional columns of information added. There is a column that is

the multiplication of power and execution time. The next column is the Ei/Ej ratio

and the last column is the classification of the frequency step. There are twenty of

24

these tables which represents the frequency steps between 1.2 Ghz and 2.0 Ghz.

The Ei/Ej ratio is a heuristic in which the multiplied power and execution time

value (PxE) is divided by two frequency rows. An example is dividing the 2.0 Ghz

PxE value with the 1.8 Ghz PxE value. This generates a ratio that if greater than 1

means the frequency switch is beneficial while a value less than 1 means the switch

is not. Beneficial in this context is the power savings worth it in comparison to the

execution time penalty. The Ei/Ej ratio will expose what programs benefit from

under clocking.

Table 4.3: Frequency table 2.0 Ghz to 1.8 Ghz for workload Canneal/Raytrace

Freq CacheM CU% dTLB UnCor FPIns Time Power PxE Ei/Ej class

2.0 3979833 66 2774811 6143341 28710112 211 28 5931 1.018 good

1.8 3649193 59 2203711 5679636 26411418 229 25 5825 1.018 good

1.6 3289830 52 1978288 5297132 23706746 255 22 5850 1.018 good

1.4 2864456 46 1685495 4646520 20872948 289 20 5974 1.018 good

1.2 2511332 39 1889318 4197877 18210645 331 18 6162 1.018 good

The frequency tables are then cross-validated in Weka using k-fold.[Witten

and Frank, 2005] Cross-validation is important since it gives a picture about how

well that data will conform to the models generated. The first models that were

generated were using single programs from the PARSEC benchmark suite. This

included eleven different programs all with there own characteristics. All of the

programs in the suite are parallel applications and at minimum have PThread

parallelization. After this was successfully done it was stepped up to Multiprogram

25

workloads from the same suite. This included combinations of two programs from

the suite run at the same time. The percentage accuracy from cross validating using

k-fold with a value of 10 was 95%.

26

CHAPTER V

EXPERIMENTAL RESULTS

5.1 Experimental Setup

There are two computers that were used for this project. Both of them were running

Ubuntu 12.04 LTS and as of recently were upgraded to 14.04 LTS. One of them runs

an Intel Xeon processor. It is one of the few current processors that supports access

to the power performance counter. Their currently is a shortlist of processors that

have this specific feature. Another feature of this processor is the ability to disable

parts of the processor through the BIOS. Such features as Intel SpeedStep as well as

HyperThreading can be disabled. While consumer processors have been adopting

more options there is significantly more flexibility with enterprise products.

5.1.1 Platform

All the data collected came from a 12-core Intel Xeon Processor with a 15 MB cache

and 4 GB of RAM. The system itself is a Dell Workstation and the Xeon line of

processors are meant to be server optimized and enterprise grade. That means they

are designed to handle large volumes of tasks hence why it has so many cores that

operate at 2.0 Ghz. The other system which was used for power estimation was an

Intel Core 2 Quad running at 2.40 GHz. It has a cache size of 4 MB and 4 GB of

RAM. It is a consumer grade processor that does not contain features associated

with the Xeon processor. The Core 2 Quad system was only used for exploring

27

power estimation on a system without power performance counters.

5.1.1.1 Benchmark Tools

There are two benchmarking tools that were used for the purposes of this thesis.

They are PARSEC and stress. Stress is a Linux program that gives the user the

ability to run specific synthetic benchmarks on the system. It has worker threads

that run square root calculations, memory accesses from cache, as well as hard drive

usage. Stress ended up being a successful platform for testing extreme cases in

frequency. It was used as a verification tool for dynamic frequency switching. Stress

confirmed the changes in frequency and power consumption from the manipulation

of frequency in the Linux environment.

PARSEC is a contemporary multithreaded benchmarking suite that includes

various parallel programs provided by different contributors. PARSEC allows the

user to run a program which they can apply a series of arguments to such as thread

count, data size, and more program specific settings. The suite itself has programs

that are compute intensive and memory intensive.

5.1.2 Workloads

Selecting the right workloads to use is essential to having significant results. It

means that the programs that are selected need to have some diversity. That

diversity comes from multiple factors which include cache usage, computations,

regular code usage, irregular code usage, and other features. PARSEC ends up

28

0 50 100 150 200 250

0
20

40
60

80
10

0

Time (seconds)

C
or

e
U

til
ilz

at
io

n
(P

er
ce

nt
ag

e)
 /

P
ow

er
 (

W
at

ts
)

Figure 5.1: Core utilization’s relation to power consumption

being the right fit since it provides a fairly comprehensive list of programs that

touch various aspects of programming.

5.2 Accuracy of ML Models

Accuracy is an important part of making critical decisions. Weka provides

information about the accuracy of a model and a direct way of checking is by

looking at the Correctly Classified percentage. Correctly Classified is a verification

of the data collected against the model generated. The higher the percentage is the

29

more accurate the predicted result will be. Since decisions are binary the room for

error is minimized. Table 5.1 shows the accuracy of the three machine learning

models that were used. The Mp and Sp moniker denotes whether the model is using

multiprogram data or single program data. The Sp models use eleven programs in

the PARSEC benchmark out of twelve and those eleven are shown in Table 5.2. The

Mp data is a subset of possible combinations of two program configurations coming

from PARSEC. Those program configurations that were used to train the models

are listed in Table ??. The accuracy of Sp is a few percentage points higher than

Mp. This result has to do with the fact that the amount of data fed to Sp models

was the entire program space. The Mp models had more to contend with since the

amount of configurations expanded and the complexity in program interactions

increased. There are still some strange results where minimum accuracy is a

concern. SVM Sp and Bayes Sp share minimum accuracies just as DTree Mp and

Bayes Mp. Single program workloads and multiprogram workloads benefit the most

from a Decision Tree model when evaluating for mean accuracy.

Table 5.1: Accuracy of machine learning models for multiple and single programs

Bayes Mp Bayes Sp Dtree Mp Dtree Sp SVM Mp SVM Sp

Mean Accuracy % 94 97 95 98 93 96

Min Accuracy % 85 89 85 94 80 89

Max Accuracy % 100 100 100 100 100 100

30

5.3 Energy Efficiency

The next step after the machine learning models are generated is to apply them to

an experiment. The values in table 5.2 show interesting results, specifically, the last

two programs in the set have power savings that are on par with the time penalty.

Those programs are memory intensive applications that require streaming in data.

Canneal needs to read an entire input file before it is executed and streamcluster

dynamically classifies information that is streamed. Canneal and streamcluster are

both rated to run at the lowest frequency possible according to the models

generated. The power savings percentage is derived from the average power

consumption over the entire run of the program as reported by Likwid.

Multiprogram workloads have significant differences from single program

workloads. There are some unexpected results if compared with the single program

results. The execution time penalty and power savings gain for most multiprogram

workloads were close. The exeception was the block of values in the x264 section of

the table. In those cases, the power savings is doubled compared to the time

penalty percentage.

5.3.1 Single Program Workloads

Single program workloads do not seem to exhibit exploitable characteristics that

benefit energy efficiency. Also, it is not apparent what combinations of programs

could benefit from sDVFS heuristic. The reason for this has to do with how the

31

Table 5.2: Power savings and execution time penalty for single programs using SVM

model

Program Name Model Power Savings Execution Time Penalty

*** bodytrack *** svm -10.26% -4.43%

*** blackscholes *** svm -4.30% -27.15%

*** ferret *** svm 2.34% -18.79%

*** facesim *** svm 0.87% -27.63%

*** fluidanimate *** svm 5.13% -31.08%

*** freqmine *** svm 2.15% -35.10%

*** raytrace *** svm -4.61% -26.75%

*** swaptions *** svm 1.33% -26.35%

*** x264 *** svm 2.27% -33.10%

*** canneal *** svm 19.95% -22.07%

*** streamcluster *** svm 15.28% -14.62%

model was trained and classified. The classification technique will take a ratio that

benefits power and since the execution time penalty was not significant enough it

chose low frequencies. The average power savings across all the programs and all

the models is 3.18%. The average execution time penalty is -23.87%. While these

results are not promising the addition of more programs yields better results25

5.3.2 Multi Program Workloads

Multi program workloads had the biggest benefit from the smartDVFSheuristic.

Trends that are visible in Table 5.2 do not have much bearing on the multiprogram

32

Table 5.3: Power savings and execution time penalty for multi programs using DTree

model

Program Name Model Power Savings Execution Time Penalty

*** x264 bodytrack *** DTree 12.62% -11.38%

*** x264 blackscholes *** DTree 20.56% -11.83%

*** x264 ferret *** DTree 8.76% -11.76%

*** x264 facesim *** DTree 8.59% -9.25%

*** x264 fluidanimate *** DTree 23.40% -11.34%

*** x264 freqmine *** DTree 23.46% -11.05%

*** x264 raytrace *** DTree 27.13% -10.82%

*** x264 swaptions *** DTree 21.39% -11.30%

*** x264 x264 *** DTree 26.00% -10.40%

*** x264 canneal *** DTree 20.47% -7.50%

*** x264 streamcluster *** DTree 9.50% -5.87%

*** canneal raytrace *** DTree 0.71% -9.28%

*** canneal swaptions *** DTree -3.42% -12.27%

*** canneal x264 *** DTree 4.72% -5.21%

*** canneal canneal *** DTree 5.86% -7.13%

*** canneal streamcluster *** DTree -0.17% -7.38%

*** streamcluster raytrace *** DTree -4.04% -8.29%

*** streamcluster swaptions *** DTree 2.83% -7.65%

*** streamcluster x264 *** DTree 8.68% -7.34%

*** streamcluster canneal *** DTree 0.42% -5.98%

*** streamcluster streamcluster *** DTree 4.68% -6.28%

results. But, what is noticeable is the performance of x264 in combination with a

few other programs. In fact the power savings on average across all the programs

and all models beats the execution time penalty. The average power savings is

10.52% and the average execution time penalty is -9.02%.

33

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

sDVFStime OSTime

(a) Bayes Execution Time

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11

sDVFSpower OSPower

(b) Bayes Power

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

sDVFSPxEScaled OSPxEScaled

(c) Bayes PxE Scaled

Figure 5.2: Single program results for Bayes model

34

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

sDVFStime OSTime

(a) Decision Tree Execution Time

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11

sDVFSpower OSpower

(b) Decision Tree Power

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

sDVFSPxEScaled OSPxEScaled

(c) Decision Tree PxE Scaled

Figure 5.3: Single program results for DTree model

35

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

sDVFStime OSTime

(a) SVM Execution Time

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11

sDVFSpower OSpower

(b) SVM Power

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

sDVFSPxEScaled OSPxEScaled

(c) SVM PxE Scaled

Figure 5.4: Single program results for SVM model

36

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFS time OS Time

(a) Bayes Execution Time

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFS power OS Power

(b) Bayes Power

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFSPxEScaled OSPxEScaled

(c) Bayes PxE Scaled

Figure 5.5: Multi program results for Bayes model

37

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFS time OS Time

(a) Decision Tree Execution Time

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFS power OS Power

(b) Decision Tree Power

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFSPxEScaled OSPxEScaled

(c) Decision Tree PxE Scaled

Figure 5.6: Multi program results for DTree model

38

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFS time OS Time

(a) SVM Execution Time

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFS power OS Power

(b) SVM Power

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

sDVFSPxEScaled OSPxEScaled

(c) SVM PxE Scaled

Figure 5.7: Multi program results for SVM model

39

CHAPTER VI

CONCLUSION

The results are surprising in that it is possible to obtain power savings that

significantly outweigh the execution time penalty. By feeding the right program

characteristics into ML models smartDVFS was able to produce frequency selections

that are beneficial to power while minimizing damage to execution time. There is a

possibility that exploring the whole search space for PARSEC two program

workloads might generate further improvement in power consumption. The

framework is a foundation in which to explore possible power saving strategies

throught smart heuristic evaluations.

40

BIBLIOGRAPHY

Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The parsec benchmark suite:
characterization and architectural implications. In Proceedings of the 17th
international conference on Parallel architectures and compilation techniques,
PACT ’08, pages 72–81, New York, NY, USA. ACM.

Jung, H. and Pedram, M. (2010). Supervised learning based power management for
multicore processors. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 29(9):1395–1408.

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P.
(2009). Mcpat: an integrated power, area, and timing modeling framework for
multicore and manycore architectures. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages
469–480, New York, NY, USA. ACM.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Shen, H., Lu, J., and Qiu, Q. (2012). Learning based dvfs for simultaneous
temperature, performance and energy management. In Quality Electronic Design
(ISQED), 2012 13th International Symposium on, pages 747–754.

Singh, K., Bhadauria, M., and McKee, S. A. (2009). Real time power estimation
and thread scheduling via performance counters. SIGARCH Comput. Archit.
News, 37(2):46–55.

Treibig, J., Hager, G., and Wellein, G. (2010). Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments. In Proceedings of
PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco, 2nd edition.

41

