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MULTIPLE NODAL SOLUTIONS OF NONLINEAR
CHOQUARD EQUATIONS

ZHIHUA HUANG, JIANFU YANG, WEILIN YU

Commumnicated by Claudianor O. Alves

ABSTRACT. In this article, we consider the existence of multiple nodal solutions
of the nonlinear Choquard equation

—Au+u= (2|7 % |u/P)|uP~2u in R3,
ue H'(R?),

where p € (5/2,5). We show that for any positive integer k, the above problem
has at least one radially symmetrical solution changing sign exactly k-times.

1. INTRODUCTION

In this article, we consider the existence of multiple nodal solutions for the
nonlinear Choquard equation

—Au+u=(|z|7" * [ulP)|ulP"?u in R3, 1
u e H'(R?) (1)
where p € (5/2,5).

In the case p = 2, equation is the Choquard-Pekar equation introduced by
Pekar in [27], see also Section 2.1 in [I1], to describe the quantum theory of a polaron
at rest and proposed by Choquard [I§] in the study of a certain approximation to
Hartree-Fock theory for one component plasma. Further physical consideration of
, known as the Schrédinger-Poisson equation, can be found in [I6 23] as a
model of self-gravitating matter and in [I7] as a non-relativistic model of boson
stars.

In the 1980’s, the nonlinear Choquard equation was studied in [I8] 20} 2T],
22] by the variational method, and recently, this problem and its generalization
have attractive the attention of many researches. Existence and qualitative prop-
erties of solutions have been investigated in [6l 8, [, [14], 24} [25] 26] and references
therein. In particular, the existence of nodal solutions for the Choquard equation
was investigated in 7], @, 10, [I4], by the variational method, that is, by seeking for
critical points of an associated functional. The energy functional associated with
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the Choquard equation (1.1)) is defined for each v in H(R?) by

_1 2 Ju(@)Pluly)l?
1) =5 [ (Vuf + e o [ ORI gy 12

By the Hardy-Littlewood-Sobolev inequality, the functional I is well defined on
H'(R3) if p € (3,5). Hence, critical points of I(u) are weak solutions of problem
(1.1), and necessarily contained in the Nehari manifold

N ={uec H (R :u#0,(I'(u),u) = 0}.

A standard way to find critical points of I is to seek for minimizers of the functional
I constraint to the Nehari manifold . This idea was used in [14] in constructing
a sign-changing solution for the Choquard equation in an odd Nehari manifold.
Another way to construct a nodal solution is to find a critical point of I in the
Nehari set

No = {u e H'(R®) : u® # 0, (I'(u), u™) = 0}.

However, A is not a manifold. The argument then among other things, lies in
showing that there is a minimizer of I constraint on Ny, and verifying that the
minimizer is a critical point of I. Using this approach, a sign-changing solution
is constructed in [I4] for the Choquard equation, and in [I, 29] for the nonlinear
Schrodinger-Poisson system and in [2} [I3] for the Kirchhoff equation, further results
can found in references therein.

In this paper, we intend to show that for every fixed integer k, there exists a
radial solution of problem which changes sign exactly k times. Particularly,
for k = 2, there is a radially sign changing solution of problem .

For every integer k > 0, it was proved in [3] and [B] independently that, there is
a pair of solutions u,f having exact k nodes of

—Au+V(|lz))u= f(|z|,u) in RY,

ue HY(RY). (13)
Such solutions of are obtained by gluing solutions of the equation in each
annulus, including every ball and the complement of it. However, this approach
cannot be applied directly to problems with nonlocal terms, because nonlocal terms
need the global information of u. This difficulty was overcome by regarding the
problem as a system of k + 1 equations with k£ + 1 unknown functions u;, each
u; is supported on only one annulus and vanishes at the complement of it. This
argument relies on, among other things, constructing a functional Fj and a Nehari
type manifold Ny, then finding a minimizer of E} constraint on Nj. In this way,
Kim and Seok [I5] found infinitely many nodal solutions for Schrédinger-Poisson
system, and then Deng et at [12] treated Kirchhoff problems in R? in a similar way.
However, this argument can not be simply carried out to deal with the Choquard
equation , because in the proof of A, being a manifold for problems considered
n [12] and [I5], a key ingredient used is that the related matrix is diagonally
dominant at each point of Ny, but this is not the case for the Choquard equation
(1.1). In this paper, we find a way to show that the matrix associated to our
Nehari type set N}, is nonsingular, the fact eventually allows us to verify that N
is a manifold. This method might be possible to apply to analogous problems. Our
main result in this paper is stated as follows.
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Theorem 1.1. Suppose 5/2 < p < 5. For every positive integer k, there exists a
radial solution of (1.1), which changes sign exactly k-times.

This theorem will be proved by the variational method. We will define in Section

2 a functional £ = E(uy,...,ug+1) on Hg = Hy X -+ X Hgy1, where H; are Hilbert
spaces for ¢ = 1,...,k 4+ 1. Then, we consider the variational problem
Epin = (ul,...,ir:i)eNk E(uyy ..., upt1),
where
N ={(u1,...,uks1) € Hi :wi # 0,04, E(uy, ..., ups1)u; = 0 for each 4.}
is a Nehari type set. We will show that each component of a minimizer (uq, ..., ug4+1)

in NV}, of Eny is a solution of the problem on decomposed regions. Hence, it is nec-
essary to verify that A is a manifold, where a difficulty arises. Nodal solutions
of problem will be constructed by gluing each component of a minimizer
(U1, ... uks1) € Ng of Epin together.

This paper is organized as follows. In Section 2, we present variational framework
to deal with problem and find a minimizer of the related minimization problem.
Nodal solutions of problem will be constructed in Section 3.

2. PRELIMINARIES

In this section, we present the variational framework and modify the energy
functional I to a functional corresponding to a system of (k + 1)-equations. For
each k € Ny, we define

T = {rk:(rl,...,rk)eRk:O:ro<r1<~~<rk<rk+1:oo},
and denote
By =B*={zcR*:0< |z| <},
Bi=B*={zeR®:r;i_y < |z| <}

for i =2,...,k+ 1. Therefore, By is a ball, Ba, ..., By are annuli and By is the
complement of a ball. Fix ry = (rq1,...,7) € I'y and thereby a family of {Bi}fill,
we denote

H; = {ue Hy(B;) : u(z) = u(|z|),u(z) =0 if v ¢ B; }
fori=1,...,k+ 1. It can be verified that H; is a Hilbert space with the norm

Jul? = / (IVuf? + u?)dz.

Let Hx = Hy X - -+ X Hgy1. We define the functional F : Hx — R by
s k+1

2 |uz |uz )|p
B, wns) Z il - Z/ / D dy
1 (2.1)
J#v |x -
where u; € H;, i =1,...,k+ 1. It is obvious that

k+1
B(u, ... ugg1) = 10> us).
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Moreover, if (u1,...,ur+1) € Hy is a critical point of E, then each component w;

satisfies
k+1

7Aui+ui: 1‘71* Uip Uipiz’u,i, SCEBi
(2l ™+ 13wl )

Nodal solutions of problem (|1.1)) will be constructed by gluing solutions of problem
(2.2),¢=1,...,k+1. In order to find critical points of E with nonzero component,
we consider the minimization problem

Eryin = inf Euy,...,u 93
(w1, s uk41)ENg ( 1 k+1) ( )

constrained on the Nehari type set
Nk = {(Ul,...,uk+1) € Hy @ u; 7é 0,8uiE(u1,...,uk+1)ui =0,t=1,...,k+ 1},

where

Ou, E(ur, ... ups1)u;
) \uz )P |uz - |uz )P |uJ (y)[?
= fJua]? — " dwdy — }j dz dy.
|17 B J#i =

It is necessary to show that the set A, is nonempty, and then E,;, is well defined.
We know that a minimizer u of E,;, is a critical point of E,,;, constrained on N, if
N is a manifold in Hy, hence, each component u is possibly a solution of problem
. In this section, we will prove these facts, and find a solution of problem
for each 7. We commence with proving the set A} is nonempty.

Lemma 2.1. Assume that p € (5/2,5). For (u1,...,ur+1) € Hi with u; # 0 for
i =1,...,k+ 1, there is a unique (k + 1)-tuple (t1,...,tp+1) of positive numbers
such that (tyu1, ..., tkr1ugy1) € N.

Proof. Fix (u1,...,upt+1) € Hg with u; # 0, i = ..,k + 1. Then we have
(trug, .. tk+1u19+1) € Ny, for some (t1,...,tk41) € (R> )E+1if and only if

p p
t2|| z||2 21)/ / |ul | Iul )| dxdy
|z =yl

k+1 pP4p
tt i (2)|Plu P
—Z// i@ P @ 0 o
|z —y|

J#i
fori=1,...,k+ 1. Hence, the problem is reduced to verify that there is only one
solution (t1,...,tg+1) of system with ¢; > 0, for each ¢ = 1,...,k+ 1. To
this end, we introduce a parameter 0 < g < 1, and consider the solvability of the
following system of (k + 1) equations

Giltr, ... togs) =t ||ul||2—t2p// [w@Pl@ ;o

(2.4)

lz =yl
k+1 Dyp (2~5)
tt i (2)|Plu p
WS @l
oy |z -yl

fori=1,...,k+ 1. Let
Z = {p :0 < p<1and (2.5) is uniquely solvable in (R>0)k+1}. (2.6)
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Apparently, 0 € Z, so the set Z is nonempty in [0,1]. We claim that Z = [0, 1],
which implies the result. To prove the claim, it is sufficient to show that Z is both
open and closed in [0, 1].

We first prove that the set Z is open in [0,1]. Suppose that py € Z and
(t1,- . tks1) € (Rso)**! is the unique solution of with g = pg. To apply the
implicit function theorem at pp, we calculate the matrix

M = (Mij) = (04, Gi)ij=1,... k+1- (2.7)

Each component of the matrix M is then given by

M = 21 |Jug |7 — 2pt;"~ 1/ / @@ 5 g,

|z -y
k41 )P P
’Uq u
_’uopfplz// £ Jui () [Plug (y)] g dy
G#i |$_y|
= @ pnlul iyt [ [ TR 1oy
-yl

fori=1,...,k+ 1, where we have used | -, and
Mij — _Mopifig 1/ / |ul | |u] )l dl‘dy

|z =yl
fori # j,4,7=1,...,k + 1. Therefore,

-1 k+1
det M = ,(7)

det M, (2.8)
T test

where components of the matrix M= (]\Zj) are given by

U; wi(
V= - 2l g [ [ 1O 4

fori=1,...,k+1, and

M;j = popttt / / Jui (@ |x| [ W)I” dedy, fori#j i,7=1,....k+1.
By Lemma [4.3]in the appendix, we obtain det M # 0. Hence, the implicit function
theorem 1mphes that there are an open neighborhood Uy of pg and a neighborhood
Ao C (Rsg)**! of (f1,...,f441) such that system is uniquely solvable in
U() X Ao.

Now we show is uniquely solvable in Uy x (Rsg)**?!, this means Uy C
Z, and Z is open. Suppose, on the contrary, that there is u; € Uy such that
there exists the second solution (1,...,fx11) € (Rsg)*t! \ Ao of - By the
implicit function theorem, we can find a solution curve (u, (£1(u), ..., try1(p))) in
(1 — e, 11 +€) x (Rso )’”‘1 \ Ag). If o < p1, we extend this curve as much as
possible. Since it cannot be defined at pg and enter into Uy x Ag, there should
have a point ps € [ug, 1) such that (¢1(u),...,tk+1(p)) being defined in (po, 1]
and blowing up as y — u3. However, this is impossible, since if (¢1,...,t,41) has
sufficiently large norm, the left-hand side of is strictly negative for at least
one 4. This gives a contradiction. Thus, Uy C Z. The case po > p1 can be proved
in the same way.
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Next, we show that the set Z is closed in [0,1]. Let {u,} be a sequence in Z
converging to o € [0,1] and (t7,...,t7, ) € (Rso)*™ be the solution of
for p,. By the preceding argument, we see that the sequence (t?,...,tZH) is
bounded above. Thus we may assume that (t7,...,¢} ;) converges to a solution

(t9,..., 12, 1) € Rxo)* ! of 2 for to. Let v™ = t{‘ul—l— At ug 1. Since {v,}
is umformly bounded in Hyg, by 2.5)) and the Hardy-Littlewood-Sobolev inequality,

we derive
tn Uu; 2 tn // |uZ ||'LL1 )| d dy
(12?2 = |x_y|

k+1 wi(@) Pl ()P
mZ// Pla@Pls @l

oy Iw*yl

ey / / . vajuzjl 2 e w (2.9)

+I§/ /B )P |wi () |P|us (y) P dx dy

oy |.1: — |

'n. p p
R3 |~T - y|

<01 t") il llo™ Iy < Co(t)P lluill7

B

This implies that 0 < C; < t}* holds uniformly inn. As a result, t? > C; > 0
for i = 1,...,k+ 1, that is, (¢7,...,t0,,) € (Rs0)*™. By the implicit function
theorem again, (t{,...,t), ) is the unique solution of in (R-o)**!. Hence, Z
is closed. The conclusion of Lemma [2.1] then follows. (I

Lemma 2.2. For any 5/2 < p < 5, Ni is a differentiable manifold in Hy. More-
over, all critical points of the restriction E|Nk of E to Ny, are critical points of E
with no zero component.

Proof. We show that A} is a manifold first. We may write
Nk = {(ul, . ,uk+1) € Hy :u; 7é O,F(ul, . ,uk_H) = 0},
where F = (F, ..., Fyy1) : Hy — RFFL is given by

F(Ul,.. Uk+1 = HU"LHQ / / |ul | |u1 )| dx dy

|z — v
k1 ()P sy ()7 (2.10)
3 ) R ey
J#i ==yl

fori=1,...,k+ 1.
To prove that N}, is a differentiable manifold in Hj, it suffices to check that the
matrix

N = (Nyj) = ((5uiFj(U17 e 7Uk+1),ui))i7j:1,m7k+1 (2.11)

is nonsingular at each point (u1,...,ur+1) € Nk, since it implies that 0 is a regular
value of F. By direct computations, we have

U; u;(
Va2l -2 [ [ IO 4,



EJDE-2017/268 NONLINEAR CHOQUARD EQUATIONS 7

k+1

3 [ [ g aa

J#i

u; ui(y)
=2 -p)lluwl; - //l |$| |dxdy7

fori=1,...,k+1, and

Vo=-»f | [P gy gy,
|z =yl

for i # jand 4,5 = 1,...,k + 1. By Lemma [£.3] we may verify as the proof of
Lemma [2.1] that det N # 0 at each point of . So N, is a differentiable manifold
in Hk.

Next, we verify that any critical point (u1,...,ux+1) of E‘Nk is a critical point
of E. Indeed, if (u1,...,urs1) is a critical point of E|Nk’ then there are Lagrange
multipliers Ai,..., Agy1 such that

MF{(uty oo upsn) + o M Frg (uns s upgn) = E'(un, o upgn). (2.12)
The values of the operator identity (2.12)) at points

(’11,1,0,...,0)7 (0,U2,07...,0), ey (0,...,0,uk+1)
form a system
A1 0
Nl =1
Ak+1 0
Since the matrix N is nonsingular at each point of Ny, A1,...,Axs1 are all zero
and (u1,...,uk+1) is a critical point of E.

Finally, for any (u1,...,ur+1) € Ni, we may derive as inequality (2.9) that each
u; is bounded away from zero. Thus, critical points of E in N} cannot have any
zero component. The proof is complete. ([

For a fixed (u1,...,uk+1) € Hi with nonzero component, by Lemma there
exists a unique vector (f1,...,¢x+1) such that (tjuq,...,tkr1ukr1) € Nix. The
vector (t1,...,tg4+1) has the following property.

Lemma 2.3. The vector (t1,...,tx+1) is the unique mazimum point of the function
¢ : (Rsg)**! — R defined as

qﬁ(cl, PN ,Ck+1) = E(clul, e ,ck+1uk+1).
Proof. By Lemma we know that (¢1,...,¢tk+1) is the unique critical point of ¢
in (R>)**1. Since p € (5,5), it is observed that ¢(c1,...,cp41) — —oo uniformly
as |(c1y ..., Ccht1)| — +00, so it is sufficient to check that a maximum point cannot
be achieved on the boundary of (Rso)*™!. Choose (cf,...,c) ) € d(Rsq)**?,
without loss of generality, we may assume that ¢§ = 0. Since

¢(tacgv~"acg+l) = E(tulacgu27" Cg+1uk+1)
U U
e
B, JB, |95 -

k+1 k+1

th/ / |U1 | ‘C ul(y)| dz dy+1zl|cu||2

[z =y —
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k+1

cui(z)|Plciu p
Z//|z||mww
P |z =yl
is increasing with respect to t if ¢ is small enough, (0,¢9,. .., cg +1) is not a maximum
point of ¢ in (Rso)**!. The assertion follows. (I

Finally, we have the following existence result for problem (2.2)).

Lemma 2.4. For any 5/2 < p < 5 and fized v, = (r1,...,1;) € Ty, there is a
minimizer (wy,...,wk+1) of E’Nk such that each (—1)"w; is positive on B; for
i=1,...,k+ 1. Moreover, (w1,...,wki1) satisfies (2.2).

Proof. By the Hardy—Littlewood Sobolev inequality and Sobolev embedding theo-
rem, we deduce for (ug,...,ury1) € Ny that

sl = // '”| '“’ O gz ay
Y

< Clluillp llullsy

< CHUII”IIWII?

< Clluilff-
Hence, there exists a constant a; > 0 such that |Ju;l|; > a; >0,i=1,...,k+1. If
(u1,...,ups1) € Ng, there holds
1 k+1
E(u1, ... upp1) = (= Z luil|? > >0 (2.13)
for some o > 0. This implies that any minimizing sequence {(u7,... ,uz_i_l)} of
E|,. is bounded in Hj;. We assume that the minimizing sequence (uf, .. ugy )
weakly converges to an element (u{, ... ,ugﬂ) in Hg.
We claim that uf # 0 for each ¢ = 1,...,k+1. Indeed, if (uf,..., uf, ) strongly
converges to (ud,... 7“2+1) in ‘Hj, we may show in the same way as the proof of

[2:9) that [[ul(|? < C|lup||? for each i, In other words, [[ul; > p; > 0, thereby
ludli >p? >0fori=1,....k+ 1.

Suppose now that (uf,...,up, ;) # (uf,...,uj, ) strongly in Hj as n — oo.
That is, ||ul|; < liminf, . [|u?||; for at least one i € {1,...,k + 1}. Again, we
have uf # 0 for each i = 1,...,k + 1. Indeed, since (uf,...,uf ) € N,

ul )2 = // [u"( xIIIU()Ipd a0

and the inclusion H}(R?) — Lq(R3) is compact for 2 < ¢ < 6,

p p p
/ / L @P i @I g, dy%/ / @I g, (2.14)
wls,  lr—yl wls,  le—yl

as n — 00, we obtain

)P p
[|u?]|? <hmlnf||u"||2 < lim / / [ (@) Pl ()" dz dy
R3

n—o0 e—yl

p P
= [, [ O gy < oy,
R3 |ZL' —
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implying that there exists a constant o > 0 such that ||u?(|; > g > 0.

Since each component of (uf, ..., u ) is nonzero, by Lemma one can find
(t9,...,t2,) € Rso)* ™t and (#9,...,t9,,) # (1,...,1) such that
(99, ... 7tk+1“2+1) € N;,. But, in thls case, by and Lemma we derive
that

inf E(uy, ..., ugt1)
(w1, upy1) ENg ’ ’
0,0 0 .0
< E(tjuy, -t ugy )
s k+1

< lim inf{ Zto [ ;L||2f7 // Jui( Jj“'( [ @ Pl WP g
ek ( )Iplu?(y)lp
Z/ / Iw—yl o dy}

J#l
< liminf E(uy, ... ug )
n—oo
= (ul,.u,ﬂil)e\fk E(u1, ... ukt1),
which is a contradiction. Therefore, (uf, ..., uj, ) converges strongly to
(ul, ... upq) in H and (uf,...,uf), ) € N} is a minimizer of E|Nk'

Furthermore, we can check that

(U)1, .. awk-i-l) = (|U’(1)|a _‘Ug|7 sy (_1)k|u2+1|)

is also in NV}, and is a minimizer of F | N Hence, it is a critical point of E N By
Lemma it is also a critical point of E and satisfies (2.2]). The strong maximum
principle yields that each (—1)i"1w; is positive in B;. The assertion follows. ([l

3. EXISTENCE OF SIGN-CHANGING RADIAL SOLUTIONS

It is known that for any ry = (r1,...,7%) € I'g, there is a solution w"™ =
(wi*, ..., wpf ) of which consists of sign Shanging_components. We will find
a Ty = (F1,...,7) € Ty such that w™ = (wi*,...,w}%,) is a solution of
which is characterized as a least energy solution among all elements in I'y; with
nonzero components. Using this solution as a building block, we will construct
a radial solution of that changes sign exactly k times. Denote by B;* the
nodal domain and by E™* the functional related to rjy. Note that wi* is C*(Bj*)
for each ¢ by standard elliptic regularity results. Hence, it is enough to match the
first derivative with respect to the radial variable, of adjacent components w}* and
w;%, at the point r; to ensure the existence of a solution of equation with k
times sign changing.

T find a least energy radial solution of among elements in I'y, with nonzero
components, we need to estimate the energy of the solution (wi*,..., wj" ) of (2.2).
To this end, we first define the function ¢ : I'y — R by

Y(rg) = (e, ... re) = E™(wi, .. wpfy)

— ; Tk (4 Tk Ty (3.1)
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Lemma 3.1. Suppose 5/2 < p < 5. For any positive integer k, let vy, = (r1,...,7k)
inT'y. Then
(i) if r; — i1 — 0 for some i € {1,...,k}, then ¥(ry) — +oo;
(i) if rp — oo, then ¢ (ry) — +00;
(iil) ¢ is continuous in T'y.
In particular, there is a Ty, = (71, ...,7Tk) € Ty such that

Y(Tx) = rkifellf,k Y(r).

Proof. (i) Suppose that r;, — r;,—1 — 0 for some ig € {1,...,k}, by the Hardy-
Littlewood-Sobolev inequality, Hélder inequality and Sobolev inequality, we have

|w™ () [P|wiy (y) 7
Hw //rk .y dx dy

< Ollw™ I lwig Hep

(3.2)

< Cllwiy 17,1 By

which 1mp11es [lwi*|;, — +o0 as r;, —ri,—1 — 0since 5/2 < p < 5. Thus, we derive

from ) that
W(ry) = B (wi*, ... ,w?j_l) > (

Therefore, the first item holds.
(ii) By the Strauss inequality [28], that is, for u € H}(R?), there exists C' > 0,
such that

) HZO

1 1

12
5 %)Ilwiﬁj‘llio — 00,

lu(z)| < C’% a.e. in R3,

we deduce, as in , that
[w*™ (z)[P|wify (y) P
ol = [, [, 20 vy

\x -yl
» 5/6
< 0(/ |w,1;’jrl(x)|de>
Bk
k+1
v 15—6p
k 5 .
S C||wk+1||k+1 15 k: )

that is,
6p—15
Tk

9
Since 5/2 < p < 5, we deduce that Hw;}LHkH — 400 as r, — oo. Then, by (2.13)),

we obtain
1

Y(ry) = E™ (wi*, ... >w23-1) > (5 p)”wk+1”k+1 — 00,
and the conclusion in (ii) holds.
(iii) Take a sequence {rp}>2, = {(r},..., )} C I, such that
I‘k — T = (Tl,...,fk) eIy

The assertion follows by showing
P(T) > limsupy(ry), ®(Tr) < limsupy(ry). (3.3)

n— oo n—oo
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First, we prove ¢ (T;) > limsup,,_, . ¥(r}). Defined v:z : [rq, 7] — R such
that L
i —Ti-1

n
T

o (1) = e (
fori=1,...,k and

(= riy) +7Zi71>
— T

n . i
Ty _n Iy _Rr
Uk+1(t) = tk+1wk+1 (Tgt),

where 7§ =0, rp,; =00 afd each T(Lt}’, e 7t%+1) is a unique (k—l—l)—tupﬂle of posi;cive
real numbers such that (v}*,...,v% ) € N3*. By the definition of (wi*, ..., wk ),
We have n n n n
BT (ot vt y) > BTt wp ) = ()
Therefore, for n large enough, we have
loj* H2 = (1) [w;* 2, +o(1)
and

ry Pl Tk p

v; X (o
/n/|l<mjwnm@
B/ JBk lz -yl

w pw p
(P ()P / / | DIy )l dxdy + o(1).
rk rk

\x—yl

. ry
Since (vl’“,...,vkﬂ) ENk , we have

p p
Hvrknzrn / / )P (y)] d dy
Iw—yl

k+1 pv p
o RO LI
B’“ Bk |~’C* yl

J#i
fori=1,...,k+ 1, which implies

P wi* () P|wf* (y)|P
(tn) ||,w k||2"k tn 2p/rk/rk | | | ( )| dmdy

Ifﬂ —yl
& o) P () 4
- Z P (t;)? / / | | dzx dy = o(1).
o k k r—1Y
Hence, the fact (w}*, ... wZ’fH) € ./\/',:"', namely,
i |wi* ()P [wi* ()P
[Jw; ’“Ilgrk / / it ( da dy
i |z -y
3.5
ki1 o)l W) (3
>, / oy dedy =0
o S T —y
and (3.4 . yield lim,,_, ¢} = 1 for all ¢. Consequently,
Y(Fp) = E™ (wi*, ..., w};’;l) = lim sup E*k (vfz, . ,v;al)
> lim sup E™* (w{;, e 7w2§_1) = lim sup ¢ (ry).

n—oo n—oo
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This also implies that

s : )P wit ()
hrnsup [|w; H . < 00, limsup dedy < co.  (3.6)
Bk JpTk

B, n— 00 |x - |
Next, we turn to prove ¢ (Tx) < lim supnﬁoo P(ry).
In the same way, we define functions 11 : [Fi—1,7;] — R such that
r? ry T.:L(L -1
o) = sttt (D5 ) i)
Ty —Ti—1
fori=1,...,k and
1‘ n

n r
N Ty k
'l)k+1(t) = $k+1wk+1 (at),

where 7 = 0, r,; = oo and each (s{,...,sp, ;) is a unique (k + 1)-tuple of
positive real numbers such that (v}*,. .. ,172’_11) € N;*. Then, by the definition of
(wi’“, . 7wi’fH), we have

B (%o ) > BT (wi L wik ) = ().

Similarly, we may derive that

n p p
(ST-L)ZHM% H2 " |w ‘ |w (y)| dx dy
i i M grk
i B, "k

Ia? —
= Dk’ ()]P (37)
Tl ”/ / dzdy = o(1)
oy I:C —
and n n
" Tk Ptk p
i - [ [ MR
B*  Jpk JB* |z =yl
(3.8)

|z -y

for each i = 1,...,k+ 1. We deduce from (3.7) and (3.8) that lim,_,o s? =1 for
all 4. Therefore,

k+1 Ty plo Tk P
w, *(x)|P|lw;
SR et
B;* JB*

() = B (wik, ... wph ) < 1gglongfk G @,‘ggl)
= linrr_1>i£f ET% (wllrA yee 7wk’js_l) = lilniiorgf@/}(r@.
This completes the proof of (iii).
As aresult, we infer from (i)—(iii) that there is a minimum point ¢, = (71,...,7%)
in 'y, of 9. O
Finally, we show that the solution (w}*, ... ,wi’fH) of (2.2)), corresponding to the
point Ty = (71,...,7) € T’y which we found in the previous lemma, is the exact

element which gives the solution of ([1.1)) with desired sign changing property.

Proof of Theorem[I.1. Suppose on the contrary that Zf? w;* is not a solution of

(1.1)), there would exist I € {1,...,k} such that
dw;* (1) dwpt, (t)

_=1 lim
wo = fim g A i
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Denote w;(t) = w*(t) and wy41(t) = wfjl(t) Fix a small positive number §
and set

wy (), if t € (f-1,71 —0),
g(t) = w7y — 8) + LT = (4 7y 4 5),if € (7 — 6,7+ 0),
wiy1(t), if t € (7 +0,7141)-

There exists a unique §; € (7;—1 — J, 741 + 0) such that

J(B)lt=s =0

since g(7—1 — 6)y(7; + 0) < 0. Define a (k + 1)-tuple of functions (Z1,. .., Zx4+1) as
follows.

zi(t) = y(t), fort e (F-1,5),
Zl+1(t) y(t), forte (5,7141),
zZi(t) = (t) for t € (Fi_1,7;) if i £ 1,1+ 1.

By Lemma there is a unique (k + 1)-tuple (¢1,...,%511) € (Rs0)**! such that

(Zf7 Ceey z,i+1) = (5121, . ,£k+12k+1) S N,f
with § = (71,...,7—1,8,T1+1,-..,7k). On the other hand, we can verify that
(1, thg1) — (1,...,1) (3.10)

as § — 0. Let W(t) := Y5l (t) € HY(R?) and Z(t) := Y1 25(t) € H}(R?).
Then
E(W) = E™(wi*, ... w0t ,) < B5(:5,...,55,4) = E(Z). (3.11)

On the other hand, for any f € H!(R3), the solution ¢ of —Ap = f is radial
and it can be expressed as

= 1/000 f(s)smin{s,t}ds

for t > 0. Therefore, W satisfies

/ W2+ W?dt = / / 8)|[P|W (t)|Pst min{s, t} ds dt (3.12)
0
and
E(W) = %/ (W' + W2)t2dt
0
—i/ / [W (s)|P|W (t)|Pst min{s, t} ds dt (3.13)

2 9, / / $)[PIW (¢)|P st min{s, t} ds dt.
We deduce from

that
W(r — ) = —ow— + o(9). (3.14)
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Since W satisfies
—(EWY 12w = / §)|Pstmin{s, £} ds|W [P~21 (1)

for 7, — § <t <7y, and W(7;) = 0, thereby (tQW’)/(ﬁ) = 0, we obtain
(71 — 0)*W' (7 — 8) = Frw_ + 0(0). (3.15)

We write

E(Z)=%/O (Z’2+Zztdt— / / $)|P|Z(t)|Pst min{s, t} ds dt

1 71+0
/ +/ (Z’2 + Z%)t%dt + = / (Z"% + ZHt%dt
0 71+0 2 =0
1 o0 o0
- —/ / |Z(s)|P|Z(t)|P st min{s, t} ds dt.
2pJo Jo
By (3.10]), we see that
71 —0 71 —0
/ (22 + Z2)2 dt = / (W72 1+ W22 dt + o(5).
0 0
Integrating by parts and using (3.14)) and (3.15)), we obtain that
1 —0
/ (W2 + W22 dt + o(5)
0
—W Tl—(S)W(’I"l—(S)(Tl—(S)
71 —0
/ / $)[PIW (t)|P st min{s, t} dsdt
'I”l (5
= / / $)[P|W (t)|Pst min{s, t} ds dt.

Thus,

,”75
/ (27 + Z*)t* dt
0

. (3.16)
= )27 Jr/ / $)[P|W (t)|Pst min{s, t} ds dt 4 o(9).
In the same way,
/ (Z7? + Z*)t* at
e (3.17)
§(w, )% +/ / $)[P|W (t)|P st min{s, t} ds dt + o(d).
T+
It is readily to verify that
71+0 1
/ 278 dt = L w, +w 5 4 o(d), (3.18)
71—98

7140
/ Z21% dt = o(6). (3.19)
71 —0
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From —-, we obtain
'r‘l (5
BZ) =t / / $)|P|W (£)[Pst min{s, £} ds dt

— $)|PIW (t)|P st min{s, t} ds dt

+ ZF?(“}-S- +w_ / / s)[PIW (¢)|Pst min{s, t} ds dt
+ 0(9).
Consequently,
E(Z)— E(W)

0 5
= gty —w.)?

/ /T,M / (s)[P|W (t)|P st min{s, t} ds dt

— —/ / |[W (s)|P|W (t)|P st min{s, t} dsdt (3.21)
- = / / $)|PIW (t)|P st min{s, t} ds dt + o(0)

5 71 +0
= —fo(w+ - - f/ / S)PIW ()|P st min{s, t} ds dt
+ 0(0).
This and the fact
71 +6
/ / $)|P|W (t)|Pst min{s, t} ds dt = o(0)

yields
E(Z)—-EW) = fgf?(m —w_)?+0(5) <0
if 6 > 0 sufficiently small, which contradicts . The proof is complete. ([l
4. APPENDIX: NON-SINGULARITY OF MATRICES

We show in this section that the matrices M and N defined in and ( -
respectively are nonsingular. For f, g € LIOC (R3), we recall that the Coulomb energy

is defined in [19] by
/ / F@)g(w)la -y d dy.

It is proved in [19], Theorem 9.8] the following result.
Lemma 4.1 ([19, Theorem 9.8]). Let N > 1 and f,g € L%, then

IDn(f,9)1* < Dn(f, f)Dn(g,9),
with equality for g # 0 if and only if f = Cg for some constant C.

Denote D(f,g) = Ds(f,g). Let
A(R?) 1= {f € Lho (%) : D(f, ) < o0}.
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Lemma 4.2. A(R3) is a linear subspace of L (R3) with the inner product D(f, f).

loc

Proof. By Lemma for any f,g € A(R?), we have
D(f+g,f+9) <D(f,f)+ D(g,9) +2vD(f, f)D(g,9)-

It is then readily to verify that A(R®) is a linear subspace of Li (R3). It is also
standard to see that D(f,g) is an inner product in A(R?). O

Now, we show that the matrices M and N defined in (2.7)) and (2.11)) respectively
are nonsingular. We only prove the matrix IV is nonsingular, since for the matrix
M, the proof is similar.

Lemma 4.3. The matriz N defined in (2.11) is nonsingular.

Proof. Denote v; := |u;(z)|P. Then v; € A(R3), for i = 1,...,k + 1. Apparently,
V1,...,V+1 are linear independent. Let

L = span{vy, ..., 0541}

So L is a subspace of A(R?). Denote by {ey, ..., exs1} the orthogonal basis obtained
from {vy,...,vk41} by the Gram-Schmidt Orthogonalization procedure. We may

assume v; = E?illaijej fori=1,...,k+ 1. Then, the matrix
ail ai2 e A1(k+1)
A1 =
A(k+1)1  Q(k+1)2 -+ Qk+1)(k+1)

is invertible.
Denote Dij = ViV = D(Ui, ’Uj) for i,j = 1, ey k+1. The matrix (Dij)(k+1)x(k+1)
can be written as

U1
(Dij) (k1) x (k+1) = : (v1 vz ... Vgg1) .
Vk+1
Using the fact that v; = Z?illaijej fori =1,...,k+ 1 and (e1,...,exy1) is a
orthogonal basis, we deduce
U1
(v1 Vo o o... Uk+1)
Vk+1
ail a2 e A1(k+1) aiy a1 e A(k+1)1
Ak+1)1 O(k+1)2 -+ Qk4+1)(k+1) A1(k+1)  @2(k+1) -+ Qk4+1)(k+1)
Therefore,

(Dij) (k1) x (1) = Aks145 41
Since Ay is invertible, the matrix (D;;)r+1)x (k+1) 1S positive definite.
Let d; = ||w;||?,i=1,...,k+ 1. It is obvious that

det N = (—1)F*! det N, (4.1)
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where
pD11 + (p — 2)dy pD12 e PD1(k+1)
7o pDa1 pDap + (p—2)dy ... PDa(k41)
PD 1)1 PD(j41)2 oo DDy (hr1) (P — 2)dita
dy
d>

= p(Dij) (k+1)x (k+1) + (P — 2)

di41

So N is positive definite if 5/2 < p < 5 since d; > 0 for all 7 and (Dj;)(k41)x (k+1)
is positive definite. The conclusion then follows. O
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