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ABSTRACT 

Manual Material Handling is one the major causes which contributes to a large 

percentage of musculoskeletal disorders. In a manufacturing environment, associates lift 

loads repeatedly which leads to physical fatigue. Human fatigue not only leads to critical 

injuries, but also lowers productivity in a work environment which has an impact on the 

entire supply chain process. Hence, physical fatigue is a challenging safety issue in a 

manufacturing environment. In this research, a Lifting fundamental skill move mimicking 

a manufacturing environment is physically simulated with the use of Hexoskin sensors 

and a motion capture framework. The motion capture framework consists of multiple 

high version cameras, a workstation to perform the experiment, Hexoskin sensors, and a 

processor that collects a catalog of Bio-MoCap data on a time-series. The main goals of 

the study are to 1) determine the correlation of the physiological variables with the 

subjects RPE level of the Lifting skill move on the Borg’s scale, and 2) predict the level 

with respect to the task. In this study, we use statistical analysis and regression techniques 

to determine the relationship of the bio-factors with fatigue. A separate regression model 

is built to predict fatigue with respect to heart rate and time function. Results show the 

statistical significance of the bio-factors in the process of getting fatigued. A multi-

objective optimization method is used for posture prediction and analysis with 

consideration of fatigue effect and its application case. This research has potential to 

contribute in the field of manual material handling and can help in efficiently planning 

workforce with the available resource.    
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1. INTRODUCTION 

In manual material handling, fundamental skill moves are basic activities that are 

performed by a material handler in a repetitive basis; these activities include lifting, 

putting down, pushing, pulling, carrying or moving [1]. The fundamental skill moves are 

derived from the basic day to day operations performed by operators in a manufacturing 

environment. An effective fundamental skill move, through repetition, optimizes the 

operator’s motions necessary to carry on a task, and reduces any risks of injuries if 

performed within the natural constraints of body postures and ranges of motion. Hence, 

performing fundamental skill moves in a safe and effective manner can help in training 

the operator, standardizing their work, eliminating waste in the operator’s motion, and 

improving their health and safety [2]. Some of the challenges faced by manual material 

handling are: 

• Over Exertion: Over exertion causes 28% of all reported injuries, the bulk of 

which are due to moving, handling and/or lifting of something within a work 

environment. Lifting heavy goods beyond the operators capacity can be one of the 

main reason of physical fatigue [3]. 

• Performing Repetitive motions: Manual material handling exposes workers to 

energy consuming, repetitive activities for long duration times which leads to 

physical fatigue. The operators are generally not trained for efficient ways of 

material handling. According to the U.S Department of Labor Bureau (2016), the 

top five injuries include – encountering harmful objects, over exertion, slip and 

falls, repetitive motion and contact with harmful substances [3]. 

• Accidents due to falling objects: Manual material handling requires picking and 
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placing of loads which are generally placed at different heights. The loads that are 

stored at a higher level are of higher risk as it may cause severe injuries due to 

falling. The operator can collide with objects in a material handling environment. 

due to poor lighting or uncleaned aisles [4].     

• Time and Cost: During manual material handling, bad moves or postures can 

lead to physical fatigue. There are different types of injuries an operator 

experiences such as cuts, crushed finger and toes, contusions, and fractures. Due 

to physical fatigue in a workplace, there could be loss in the operator’s efficiency. 

Fatigue in a workplace also leads to a shortage in manpower [5]. 

Subjective evaluations, such as self-report questionnaires and interviews, estimate 

fatigue in the operators as a function of length of time-on-task, workplace, and timing of 

rest breaks [6]. Mamman et al. [4], for instance, propose an approach to monitor and 

detect physical fatigue using wearables such as heart rate monitors, Inertial Measuring 

Unit (IMU’s), Electromyography (EMG’s), and Electroencephalography (EEG’s). The 

sensors collect the cardiovascular data of the subject performing the experiment for data 

analysis. A few factors used in the model are the fitness-for-duty test, sleeping habits of 

the operators, intrusive monitoring of the brain activity, and the change in muscle 

movement. Results show the fatigue level of every operator who have performed the 

experiment. The paper does not work towards improving or being able to predict fatigue.  

There is very low emphasis on how to use the sensory data from multiple sensors and 

successfully evaluate risk. [4].  

Lee et al. [7] propose a control approach with a goal to reduce muscle fatigue of a 

human. The overloading torque is analyzed at various joints of the human and an 
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optimization technique is followed to reduce the torque at every joint. A statistical model 

and center of pressure is calculated to estimate the force on the joints. An optimization 

technique is used to reduce the force and the center of pressure on the human. Some of 

the constraints used in the optimization model are the human stability, task constraints, 

and ergonomics. Results show an optimal value of torque generated on the joints. The 

author detects and optimizes human physical fatigue; however, the paper does not work 

on the causes and impact of fatigue. There is no study of the behavior of bio-factors 

which is a critical part in the human getting fatigued  [7]. 

1.1 Research Objective 

Most of the research papers focuses on detecting fatigue of a human operator. 

These papers don’t address the impact each motion has on fatigue. There is very low 

emphasis on the human bio-factors and ways it impacts physical fatigue of an operator. 

Earlier research mostly focusses on human fatigue detection, and not talking about 

fatigue prediction. There are two main research objectives to address the gaps. 

1) This thesis will fill the gaps by extending research on the significance of bio-factors 

in manual material handling and the impact it has on physical fatigue.  

Justification:  

Previous literature shows very low emphasis on the human respiratory system’s 

responses to material handling and physical fatigue. When an experiment commences, 

the respiratory system varies with time and intensity. It is studied that; heart rate 

increases with respect to time and intensity of the activity. Other respiratory factors such 

as breathing rate and VO2 max (maximum rate of oxygen consumption measured during 

incremental exercise) also show an increasing trend if the activity intensity is high and 
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the duration is short [8]. It is clear that the trend and significance of bio-factors can 

change according to different tasks.  

In this study, the literature review was conducted using main keywords such as; 1) 

manual material handling 2) physical fatigue 3) industry 4.0 4) bio-factors and fatigue 5) 

NIOSH 6) fundamental skill moves 7) working capacity of male and female. Around 40-

50 records were found relevant to this study out of which 9 records were key papers. The 

literature survey is interpreted in the next chapter. We used many engineering and 

technology research databases for this study. Some of the main research databases used 

were 1) IEE Xplore, 2) Engineering Village-2, 3) Compendex, 4) Science Direct, 5) 

NIOSH, and 6) Google scholar. There is no study done in observing the correlations 

between different bio-factors and physical fatigue. There is no record found which 

predicts physical fatigue in a manual material handling environment.        

Proposed methods: 

The objective of the research is to determine the significance of the bio-factor 

based on information extracted from the wearable Hexoskin sensor. A lifting fundamental 

skill move is performed by different subjects in a bio-motion capture framework to build 

a catalog of datasets containing the bio-factor data and time information. The Borgs data 

(i.e. a measurement of rated perceived exertion or RPE) is recorded for every subject 

performing the task until the subject is fatigued. Once the data is collected and pre-

processed, a multiple regression analysis is performed for both the “Male-only” and 

“Female-only” datasets. The goal of the regression model is to study the statistical 

significance of the bio-factors with respect to fatigue.      
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2) The second objective of this study is to build a data-driven model to predict fatigue 

with respect to the heart rate and the time taken by the subject performing the Lifting 

experiment. 

Justification:  

In manual material handling, fatigue can be an important factor in the loss of time 

and revenue. The entire supply chain is affected due to physical fatigue in a material 

handling environment. Fatigue in a workplace also leads to a shortage in workforce 

making it unclear whom to assign next to accomplish the task. High labor and medical 

costs add to the challenges [5]. Previous literature focusses largely on detecting and 

estimating the level of fatigue physical fatigue. This research will contribute to building a 

data-driven regression model which can potentially predict fatigue with respect to time 

and the task. This research objective would potentially help in planning workforce and 

assignment of tasks effectively.       

Proposed methods: 

A potential approach to model fatigue development is to use Regression 

techniques to fit the function f. Based on the experiment and the bio-factor information 

collected, we perform an additional Multiple Linear Regression for both male and female 

datasets. The goal of the second regression is to determine Yborgs = f(X), where X is a 

vector containing the features x (i.e. seconds, heart rate, minute ventilation, activity, 

breathing rate, interval, and distance). The actual Borg’s Scale values are used in the 

data-driven regression technique. If the models are accurate in predictions, we can 

determine whether a worker is physically fatigued or not.  
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In the predictive model, the heart rate and time information are taken as the 

dependent variable and the Borgs data is taken as the independent variable. The Borg’s 

scale is a relative scale which matches how hard it is to work with numbers from 6 to 20. 

The scale starts with “no feeling of exertion”, which rates a 6, and ends with “very hard” 

which rates a 20 [4]. We split 80% of the number of datasets into a training set and the 

rest 20% as the test set. We run the regression model on the training set (80% of the total 

number of datasets for male and female) and fit the function Yborgs on the test set (20% of 

the total number of datasets for male and female). The r2 is computed for the training set 

and test to make comparisons for validation.   

1.2 Hypothesis Testing 

Null hypothesis (H0) = The data of the bio-factors do not correlate with the subject’s 

Rate of Perceived Exertion level. 

Alternative hypothesis (Ha) = The data of the bio-factors correlate with the subject’s 

Rate of Perceived Exertion level. 

1.3 Summary of Proposed Experiments 

The testing and analysis of these hypothesis will generate the insight needed to 

answer the following questions: 

1) When will the worker reach the fatigue level with respect to the task? 

2) What is the impact on fatigue level with respect to actions performed? 

3) At what time, one should assign an alternate worker for the task in case the human    

reaches fatigue level? 
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This research paper will 1) develop a physical simulation, 2) integrate datasets to 

generate a catalog of BioMoCap datasets, and 3) analyze the datasets to detect presence 

or build-up of fatigue. 

The dataset is created by performing physical simulation on Leg Lifting which is 

one among the following fundamental skill moves [9].  

Table 1 provides a summary of data which has been defined by [4] to estimate 

fatigue. The table shows the factors used by [10] to create a model of fatigue. The table 

also shows the data collected by the Hexoskin sensors. 

Table 1: Hexoskin Sensors 

Hexoskin Sensor Functions 

Cardiac Sensors ECG, Heart Rate, Quality (30-220 BPM, 

1Hz), QRS event detection, RR intervals 

Breathing Sensors Breathing Rate, Tidal Volume, Minute 

Ventilation, Inspiration and Expiration 

Events 

Movement Sensors Acceleration, Activity Level, Step 

Counting, Cadence, Energy Expenditure 

 

Datasets are created for the leg lifting fundamental skill move simulation. The 

following responses is collected by using Hexoskin devices. 

Response: 

• Breathing rate: Tells us the rate at which the human performing the task is 

breathing. The unit is respirations per minute (RPM) [4]. 

• Heart rate: Tells us the heart rate of the person performing the task. The unit is 

beats per minute (BPM) [4]. 

• Minute Ventilation: Measures the amount of air moving in and out of the lungs. 

The unit is Liters per minute (L/min). 
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• Activity: Tells us the intensity, steps and pace of the activity the human is 

performing. The unit is Grams (g). 

The following factors will be varied in the experiment in order to test the impact each 

skill move has on the Borg’s scale. 

Factors: 

• Interval: the rate of interval between lifts. The unit is seconds [11]. 

• Gender: Determines the gender of the person who is performing the experiment 

[4]. 

• Height: Determines the height of the person performing the experiment. The unit 

is ft in [4]. 

• Distance from shelf to ground: the distance from ground level to the shelf in 

which the load is to be placed. The unit is cm [12]. 

1.4 Data Dictionary 

• Breathing rate: Tells us the rate at which the human performing the task is 

breathing. The unit is respirations per minute (RPM) [4]. 

• Heart rate: Tells us the heart rate of the person performing the task. The unit is 

beats per minute (BPM) [4]. 

• Minute Ventilation: Measures the amount of air moving in and out of the lungs. 

The unit is Liters per minute (L/min). 

• Activity: Tells us the intensity, steps and pace of the activity the human is 

performing. The unit is Grams (g). 

• Distance: Tells us the Lifting distance between ground level to shelf level. The 

unit is Centimeters (cm). [12] 
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• Interval: Tells us the intervals between lifting the load. The unit is Seconds. [11] 

• Borgs: The Borg’s scale is a relative scale which matches how hard it is to work 

with numbers from 6 to 20. The scale starts with “no feeling of exertion”, which 

rates a 6, and ends with “very hard” which rates a 20 [4]. 

1.5 Organization of Thesis 

The organization of the thesis research is as follows. Chapter 2 is an extended 

version of previous research work and literature. We discuss in detail about material 

handling and how physical fatigue is studied. Research gaps are identified in this section 

and explains how the thesis research addresses the literature gaps. Then, we present our 

methodology for model development and evaluation in Chapter 3. We provide our results 

and discuss their statistical significance. Finally, Chapter 4 offers our conclusions and our 

opinions about future research directions.  
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2. LITERATURE REVIEW 

2.1 Preamble 

 Chapter 2 describes the literature review of past published work in material 

handling and the study of human fatigue. Previous studies focus on detecting and 

estimating fatigue level by descriptive, predictive, and prescriptive methods. Fatigue 

detection models are built to prevent the loss of critical injuries and maximize 

productivity in the workplace. In earlier research, the fatigue models use human bio-

metric data, which is collected using wearable sensors. The literature survey discusses the 

research gaps and uncertainty in the study of human fatigue models which aims to reduce 

injuries and increase productivity in a workplace. As was discussed earlier, this thesis has 

two main objectives.  

• This paper will fill the gaps by extending research on the significance of bio-

factors in manual material handling and the impact it has on physical fatigue.  

• The second objective of this study is to build a data-driven model to predict 

fatigue with respect to the heart rate and the time taken by the subject performing 

the Lifting experiment.  

In this chapter, we will be providing the literature survey on previous work done 

in the study of human fatigue due to material handling. The literature will also emphasize 

on the use of wearable sensors and biometrics in the study of human fatigue.  
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2.2 Relevant Research  

Seo et al. [13]  propose a simulation-based framework to study about the physical 

demands and muscle fatigue. A discrete event simulation evaluates how factors such as: 

sleep hours, taking voluntary rests, Gender, and Body Mass Index (BMI) affects time and 

cost performance of the planned operation. Results prove that the workers’ excessive 

physical demands result in an excessive loss of time and increase in cost for the 

respective operation. Based on the results obtained, the author concludes that operators 

should be given work according to their physical capacity.  

Calzavara et al. [6] propose fatigue level real-time monitoring for an order-

picking operation, and they compare this method to traditional methods such as self-

report, questionnaires, direct measure of EMG, and energy expenditure. The aim of the 

paper is to evaluate the data obtained from devices which are used in an order picking 

task to detect fatigue. The author uses data for several variables such as, distance to be 

covered by the operator, experience of the operator, the measurement of the heart rate, 

duration of the activity, the value of energy expenditure and measurement of muscular 

fatigue in the analysis. Statistical data analysis techniques are used to evaluate the quality 

of fatigue detection, and comparisons are made between the traditional methods and the 

method which can be applied in a picking context. Results show that the fatigue detection 

has the highest statistical significance in the heart rate monitoring device. The author 

concludes that the data obtained by the devices in an order picking context has higher 

significance than the traditional method of measuring fatigue.   

Maman et al. [4] use of wearable sensors to detect and quantify physical fatigue 

in three different simulated manual tasks, which contains elements of assembly, 
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supply/pickup/insertion and manual material handling. In this experiment, the author 

makes use of the Borgs scale to measure the level of fatigue while performing the tasks. 

The Borg’s scale is “a relative scale which matches how hard it is to work with numbers 

from 6 to 20”. The scale starts with “no feeling of exertion”, which rates a 6, and ends 

with “very hard” which rates a 20. Factors such as handedness, gender, age, height and, 

weight of the subjects are considered in the model. The authors use a penalized logistic 

regression and multiple linear regression to correlate physical fatigue with sensory data 

such as: - wrist acceleration, hip acceleration, wrist jerk, torso jerk, ankle jerk and ankle 

acceleration and heart rate. Results show that wrist acceleration, torso jerk, hip 

acceleration, heart rate, wrist jerk, and ankle jerk have a positive relationship, whereas 

torso acceleration, hip acceleration, and hip jerk had a negative relationship. The author 

concludes by estimating the level of fatigue with Borgs scale for every participant and 

shows us the relationship between fatigue and the sensory data collected.   

Liu et al. [14] propose an electro-encephalogram (E.E.G) based evaluation for 

mental fatigue. The authors design an experiment to classify four levels of fatigue from 

relaxation level to high difficulty level. The experiment is conducted with seven male 

participants from 21 years-26 years.  The E.E.G data is collected from the participants 

using a 14 Channel Emotiv device which is mounted on their head. The authors use 

machine learning techniques to match the E.E.G data with the respective level of fatigue. 

The subjects are then asked to fill a fatigue Checklist Individual Strength (CIS) 

questionnaire with points for every question. The CIS questionnaire are “a set of 

questions regarding the subjective feeling of fatigue, concentration, motivation, and the 

physical activity”. Higher points in the CIS questionnaire indicate higher level of fatigue. 
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Results show a 93.45 percent accuracy using six statistical features with Linear Support 

Vector Machine method. The authors conclude by making comparisons between the 

machine learning fatigue detection model and fatigue questionnaire which has 82% 

accuracy.   

Avital et al. [15] propose a simulation-based optimization methodology to study a 

a manual material handling task. In this optimization problem, the objective is to 

maximize workers productivity and have good ergonomic conditions. The workplace and 

work are simulated using a modelling and analytical software. The best design of the 

workplace and work are found by using an optimization algorithm. Results show an 

increase in productivity by 105% compared to methods used in previous studies. 

Idrees and Farooq [16] conduct a study based on energy of detail wavelet 

coefficient for muscle fatigue detection in the upper limb. Seven subjects participate in 

three trials each using three channels related to biceps, bronchi, flexor carpii radial 

muscles respectively. Findings from the experiment show that the energy of detail 

coefficient of the 3rd, 4th and the 5th level of wavelet decomposition increases as the 

muscle fatigue level increases. Results show that the 3rd level of wavelet decomposition 

had the maximum value of energy followed by the 4th and the 5th level respectively. 

Fatigue is detected among subjects when the average final energy value is five times the 

initial value for 15.6-62.5 Hz range. 

Xi Peng et. al [17] propose a deep neural network-based framework to capture  

full body three-dimensional poses of subjects performing a lifting task. An inverse 

algorithm calculates L5/S1 joint kinetic motion using the 3-D body pose and the subject’s 

anthropometric. The lifting data is collected from 12 subjects to calculate the kinetic 
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force and moment at L5/S1 joint using sensors. Results are validated against a marker-

based motion capture (MoCap) system as reference. The author concludes that the 

proposed method provides a reliable tool for assessment of the lower back joint kinetics 

during lifting. 

Kodama et al. [18] develop a worker-wear assistance suit to reduce arm muscle 

fatigue for repetitive motion involving shoulders. A lifting experiment is conducted using 

six subjects who are 22-26 years old. The aim of the experiment is to measure the muscle 

activities of the six subjects wearing the suits. The authors perform a mathematical 

simulation in order to determine the feasibility and functionality of the layout. The 

simulation model determines the statistical significance of the torques of the elbow and 

shoulder joints using the suits. Results show 45% improvement in shoulder and arm 

muscle injuries.  

Sibarani et al. [19] analyze the different lifting and moving activities with an aim 

to optimize energy spent in material handling. Experiments are conducted where the 

subjects carry and transport a load weighing 15 kgs between two locations. The study 

aims at finding an efficient method to determine the optimal amount of energy to carry 

and transport the 15-kg load. The workload is assessed using the method of 

cardiovascular strain load where labor type, age and fitness level are significant factors 

that affect the cardiovascular load. The authors use statistical techniques to determine the 

significance between the workload and energy spent while doing the task. Results show 

that there are high correlations between energy spent while doing the task and the 

workload. The subject who did not experience fatigue received a percentage strain below 

30%.  The authors conclude that the subjects with appropriate posture while lifting loads 
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conserves more energy and suffers less injuries. However, the reason behind the subjects 

getting fatigued remain unanswered.  

Carolyn et al. [20] evaluate the performance of manual material handling 

operations in a moving environment. The authors analyze how the task performance, 

posture control and lower limb muscle changes with respect to the material handling task. 

The tasks which are examined are 1) lifting operations 2) mental arithmetic task and 3) 

visual processing task. Results show that the visual tracking task has a negative impact by 

motion while the arithmetic task performance are unaffected. It was also found that the 

postural control remained unaffected by the presence of motions in the tasks. Lifting is 

the only task where the postural control is negatively affected as the participants engaged 

in lower limb muscle activation. 

Kamarudin et al. [21] measure and analyze the muscle contraction of the muscle 

during lifting tasks in manual material handling. Different factors like height, load of the 

material, angle of twisting and lifting frequency are considered. In this experiment, 14 

subjects performed the lifting operation task with different loads ranging from 10 kgs-

24kgs. The experiment is done with lifting height positions of 70 cm and 130 cm, 

performed at a rate of 1-6 lifts per minute. Fatigue levels of the subjects are measured 

through an assessment where the authors evaluate whether the subject has reached the 

fatigue level. The Electromyogram (EMG) system is used to record the movement of the 

biceps and triceps. The sensory data collected by the system is used to analyze the 

contraction movement of the muscle. The authors use statistical analysis to determine the 

relationship between muscle contraction and weight of the load. An additional model is 

built to determine the correlation between fatigue and muscle contraction. Results show 
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statistical significance between muscle contraction and the weight of the load, but at the 

same time, it shows no statistical significance between fatigue and muscle contraction. 

The authors conclude that this approach effectively determines the weight load limit that 

can be lifted by the subject during the lifting task. 

Singh and Kumar [22] investigate the effect of the operator’s lumbosacral 

bending movement in a steel rolling mill. The experiment is conducted with different 

load weights and horizontal location of the load. The authors aim to evaluate the strain on 

the L5/S1 joint while performing the bending movement in the lifting task. The authors 

make use of Design of Experiments (DOE) and Analysis of Variance (ANOVA) to 

determine the level of importance of the parameters on bending moment at L5/S1 joint. 

Results show a reduction in the bending moment at L5/S1 after utilizing a lifting device 

which reduces injuries by 22%-38%. The resulting model is also capable of predicting 

bending moment at L5/S1 to a reasonable accuracy. The research reduces fatigue by 

using a lifting device while carrying heavy loads. The study predicts the bending moment 

at L5/S1 joint.   

Aziz and Nicholas [23] assess the effect of visual feedback techniques to enhance 

the performance of humans in a virtual environment while carrying out manual lifting 

operations. The study aims to reduce back injuries by allowing the users to monitor their 

own back conditions while performing the lifting task in an augmented reality (AR) 

environment. Lifting experiments are conducted to analyze and evaluate the effectiveness 

of the feedback on performance. In this study, several variables such as time, percentage 

of harmful lifts, and response time are used to evaluate fatigue.  Results show that the 

combined visual feedback technique was able to detect bad moves and help the operator 
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track fatigue based on the errors made while lifting. The authors conclude that the visual 

feedback can be a potential way to avoid injuries and improve productivity in a 

manufacturing industry.  

Murugappan et al. [24] analyze the lifting task performed in a manufacturing 

industry which involves different body postures like squat lifting, and stoop lifting. The 

humans performing the lifting task tend to use improper body postures and have an effect 

to human lower-back region over extended period. The authors propose a mathematical 

model to represent the lower extremity of human body during lifting operations. A two-

dimensional space kinematics open chain approach is used to build the mathematical 

model to analyze the extremity on the human body while performing the lifting task. The 

moments of the human body are captured using a motion capture system. The torque 

acting on every joint of the body is measured and the effect it has on the lower back 

region is analyzed and determined. The authors conclude that this method helps to lower 

the number of back injuries in a material handling environment. 

Bonato et al. [25] made a comparison study of the localized muscle fatigue in 

back muscles vs dynamic contractions. The Surface Electromyography data is recorded 

as it is very effective in quantifying paraspinal muscle impairments. In this paper, back 

impairment classification is based on muscle fatigue derived from the Surface 

Electromyography signals. The authors present a mathematical procedure to measure 

localized muscle fatigue during dynamic contractions. The authors plot contour plots of 

the TF distribution derived from two SEMG signals. The plots show different levels on 

the contour that indicate relative magnitude of fatigue. The results show that the dynamic 

contractions of paraspinal muscles are more fatigued when compared to static 
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contractions of paraspinal muscles. 

Sparto et al. [26] analyze the adaptation to fatigue during a repetitive lifting 

operation in a manufacturing industry. Twelve subjects participated in the experiment of 

performing repetitive lifting task until exhaustion. A load weight which is 25% of the 

subjects inertial lifting capacity is lifted and lowered at a maximal lifting rate from mid 

tibia to waist height. The motion capture (MoCap) data is captured by a video system and 

is stored in a database. The authors make use of statistical techniques to determine the 

changes in the kinematic stability of the subject at every stage of the task. It is observed 

that knee and hip range of motion are significantly decreased, while peak and trunk 

flexion increased at the end of the lifting task. The subject’s postural stability decreases 

and tend to extend their knee, hip and spine earlier in the lifting phase which caused 

fatigue. 

Terada and Hanawa [27] determine the relationship between fatigue and foot 

pressure while walking. The center of pressure (COP) is studied as a metric to detect 

fatigue. Walking experiments are conducted to collect the gait data of the subject. The 

center of pressure is analyzed, and changes are observed. The authors use a Pedar-in-shoe 

pressure system to measure the pressure distributions. The Pedar insole is 1.9 mm thick 

and has up to 99 sensors. The authors use statistical regression technique to find the 

relationship between COP and fatigue. Results show the fatigue level by continuously 

measuring the foot pressure data of the subject.  

Chopra et al. [28] create a system by detecting bad posture by using sensors and a 

wearable device. The wearable device is designed in the form of a belt and helps detect 

postures of the human operator while manually handling materials. The belt is also 
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designed to detect areas of stress and provides time information of the subject. The goal 

of the study is to detect correct and incorrect postures. The incorrect posture is detected 

by calculating the angle of tilting with the help of an accelerometer. The belt sends a 

warning signal if a bad posture is detected. This study can be used to reduce fatigue and 

back injuries in workplaces.  

Yee et al. [29] use two different Mechanomyography sensors to make 

comparisons and detect the muscle fatigue during muscle contraction. The two 

Mechanomyography based sensors used in this study are vibromyography sensor and 

muscle contraction sensor. The subjects with back injuries participated in the experiment 

to perform knee extension for the strength and fatigue test. The data is collected from 

each of the MMG-based sensors for data analysis. Regression and time series analysis are 

used to determine the effects and correlations between the MMG sensor readings and 

fatigue. Results show that the data of sensors correlated with the measured output torque 

to identify the linearity of sensor signals with output. The sensors with coefficient of 

correlation nearest to one is considered more reliable in muscle activity and fatigue 

detection. The authors conclude that the muscle contraction sensor is better in detecting 

and measuring muscle movement activity for the subject, whereas the vibromyography 

sensor is better for detecting and measuring muscle fatigue. 

Rong et al. [30] use a time frequency method to detect muscle fatigue. An 

experiment is performed by ten subjects to record the Surface Electromyography (EMG) 

signals on the right upper limb. In the initial phase of analysis, the EMG signals are 

analyzed in a time-frequency method since the signals are non-stationary and non-linear. 

The authors use a neural network system to recognize the state of the muscle based on the 
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EMG signals. The model accuracy is then computed statistically. The test findings show 

that the first sample has the highest accuracy with 81.5%, whereas, the other six samples 

has around 75% accuracy. However, the number of training sets are not enough to 

classify the testing sets correctly and can be potentially improved in the future. 

Kim and Nussbaum [31] propose a three-classification algorithm to classify 

manual material handling tasks. Manual material handling tasks are performed by 10 

volunteers between 19 to 29 years old. The experiment is performed in 6 different ways 

(i.e. carry and walk, asymmetric lifting, lifting from knuckle height, pushing, pulling, and 

placing). In this study, the authors use three mathematical classifiers namely: - 1) linear 

discriminant analysis (LDA), 2) K-nearest neighbors (KNN), and 3) multilayer 

feedforward neural network to classify the manual material handling tasks. The use of 

classifiers helps in identifying and distinguishing patterns in the datasets. The results 

show that the algorithms classify the MMH tasks with a statistical significance of eighty 

percentage. The authors conclude that LDA and KNN classifiers are effective choices, 

however classifiers like the Bayesian decision-making, support vector machines, and 

Markov models can be explored for higher statistical accuracy. 

Ciriello [12] analyze the effects of vertical distance and the box size on maximum 

acceptable weights (MAW) of lifting and lowering, the effects of height on maximum 

acceptable weights of lowering, and the effect of a four component combination task on 

maximum acceptable weight. Experiments are conducted with eight male industrial 

workers as subjects. The subjects perform 27 variations of lifting, lowering, pushing, 

pulling, and carrying. The selected subjects are analyzed through a psychophysical 

methodology. The results show that MAWs of lowering are not significantly affected by 
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distance of lowering, height of lowering, or the box size except for the 25cm lowering 

task. The results also show that MAWs of lifting large boxes are not significantly 

affected by distance of lift and MAWs of lowering are not significantly different from 

lifting. 

Snook et al. [11] perform experiments to study and assess the effects of different 

factors such as size, distance, height and frequency on material handling tasks. The first 

experiment is conducted to evaluate the frequencies. Ten male industrial workers 

performed 51 variations of lifting, lowering, pushing, pulling and carrying operations. 

The frequencies varied from 5 seconds to once in 8 hours. The second experiment is 

conducted to investigate object size, distance of lift and height of push/pull. Lifting task 

is performed at high frequencies once in 9 seconds and 14 seconds depending on the 

lifting height. Results show that the lower frequency task has forces which are lower 

compared to the ones in the previous studies and the maximum acceptable weight and 

forces for female workers are significantly lower, but proportional with the maximum 

acceptable weights and forces for male and female workers. 

Strimpakos et al. [32] study the correlations between electromyography (EMG) 

and Borgs scale assessment of the neck muscles. In the experiment, thirty-three 

volunteers performed an isometric contraction test from a standing position with neck 

movements. The authors estimate fatigue by employing the Borg’s scale. Intra class 

correlations coefficient, standard error of measurement, smallest detectable difference 

indices and correlation coefficient are calculated for the analysis. Results show that the 

normalized median frequency slope has low repeatability for the muscles of each 

movement. Initial median frequency had moderate to good reliability and small error. The 
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authors conclude that the Borgs scale assessment is more reliable than the EMG results. 

Zulkifle et al. [33] aim to predict a body exhaustion threshold based on the 

electrocardiogram feature using artificial neural network. An Electrocardiogram device is 

used in the experiment with an electrode connected to the upper thorax. The fatigue level 

is determined using the Borgs scale. The Borgs scale and time to exhaustion are used as 

the target data and the sensory ECG data provides specific information for the input. 

Results show that exhaustion is highly correlated with the ECG data, and r2 is 91 

percentage. The highest fatigue threshold prediction contributed to 89.3 percentage to the 

model. The authors conclude that this method is promising for the prediction of 

exhaustion threshold in order to replace the qualitative with quantitative measure.  

Li and Liu [34] conduct a study on manual material handling tasks performed on 

floors under three frequency levels. The aim of the study is to determine the maximum 

acceptable weight of handling (MAWH) for an operator. Lifting experiments are 

performed by eight male subjects from 22 years to 26 years. Sensors are used to record 

the bio-factors such as heart rate, maximum rate of oxygen consumed (VO2) and rate of 

perceived exertion (RPE). The rate of perceived exertion (RPE) is collected for every 

subject based on the Borgs scale. The authors conduct an analysis of variance test for all 

the bio-factors including the RPE. Results show that the MAWH was significantly 

affected by time frequency. The frequency of three per minute had significantly higher 

MAWH than the other two frequencies. Heart Rate and VO2 was statistically significant 

at a 0.05 level of significance. However, the effects of frequency on the rate of perceived 

exertion is significantly low.  

Surang et al. [35] focus on physiological indicators related to accumulated fatigue 
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and heat stress. Biomechanical factors such as heart rate, body temperature, and sweating 

rate of soldiers during training period are recorded. A wristwatch device is used to record 

the body temperature and heart rate of the subject performing the experiment. A time 

series analysis is performed to observe the trend of the sensory data. Results show an 

increasing trend of the moving average of the heart rate for three participants and the 

others have a stable trend. The skin temperature showed an increasing trend for one 

subject. However, the other two subjects had a decreasing trend of skin temperature. The 

authors perform a regression to determine the correlations between skin temperature and 

fatigue, and results showed very low significance. The authors conclude that the resting 

heart rate can be used to as a sign for accumulated fatigue while there is no trend on the 

skin temperature. 

2.3 Summary 

Most of the previous research papers focuses on detecting fatigue of a human 

who’s doing the task. The authors measure the amount of fatigue on critical joints in the 

human body. Various papers study manual material handling in a manufacturing industry 

and optimize bad lifting postures. The published literatures don’t talk about the impact a 

task has on fatigue. In other words, it only detects when the human has attained fatigue. 

The studies by Snook focus on factors such as size, distance, height and frequency 

on material handling tasks. The maximum acceptable weight for both genders is studied. 

These papers also design intervals between lifts which is very essential in this thesis. 

This research will fill the gaps in the literature of manual material handling by 

finding out how much the lifting fundamental skill move impacts the Borg’s scale. The 

Borg’s scale is a relative scale which matches how hard it is to work with numbers from 
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6 to 20. The scale starts with “no feeling of exertion”, which rates a 6, and ends with 

“very hard” which rates a 20 [4]. This research primarily focuses on the significance of 

the human bio-factors while performing the task. The study aims to build a predictive 

model for male and female subjects with respect to their heart rate and time. The study 

will help us to determine the fatigue level of the human operator at different time frames. 

Table 2 shown below is a literature review matrix summarizing previous studies 

in fatigue-related problems. Based on the literature survey, the fatigue related problems 

are listed below along with the methods followed in the respective research. The table 

shows the research gaps based on the literature survey.  

Table 2: Key Literature and Gaps 

Problem Descriptive Methods Predictive 

Methods 

Prescriptive 

Methods 

Fatigue Estimation Calzavara M et al. 

(2017) 

 

- Kim et al. 

(2018) 

Fatigue detection using 

Smart Sensors 

Pollock K et al. (2011) 

Maman et al. (2017) 

 

- Sanjay 

Sood et al. 

(2016) 

Optimization of bad 

moves in material 

handling using smart 

sensors 

Mendez et al. (2018) - - 

Optimization of Fatigue Strimpakos et. al - Sibarani J et 

al. 

Study of bio-factors and 

fatigue 

Li and Liu (2018) 

 

- Decho 

Surang 

(2019) 

Study of acceptable loads 

& frequency for humans 

Ciriello (2003) 

Sunwook et al. (2014) 

- Snook 

(1978) 

Fatigue prediction & study 

of bio factors using 

wearables 

This work This work - 
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3. USING WEARABLE SENSORS TO EVALUATE MATERIAL HANDLING 

OPERATOR’S FATIGUE IN REPETITIVE ACTIVITIES: A DESIGN OF 

EXPERIMENTS APPROACH 

3.1 Introduction 

The material handling industry employs over 700,000 workers [3]. Material 

handling operators lift loads repeatedly over a long period of time, which leads to 

physical fatigue. Physical fatigue is defined as a reduction of force which is generated 

when a human performs muscular activities [13]. Physical fatigue often occurs due to the 

need to travel from one location to the other, and the need to carry heavy loads to a 

certain height on the rack or shelf [6]. 

Physical fatigue of an operator could lead to order picking inefficiency and longer 

picking times [6]. Physical fatigue can also result in injuries and long-term health effects, 

such as chronic fatigue syndrome and reduced immune [4]. Manual material handling, in 

general, causes 28% of all reported injuries, the bulk of which are due to moving, 

handling and/or lifting of something within a work environment [3]. The operator could 

stop working several weeks, and in some cases lead to permanent disabilities. According 

to the United States Department of labor, it has been estimated that employers 

compensate $1 billion dollar every week due to workplace injuries [3].     

In this study, the fundamental skill move is studied since it is one of the most 

intense moves and one of the most common in a material handling environment [9]. 

According to NIOSH, lifting fundamental skill move is defined as an act of grasping an 

object/load, and vertically moving the object without mechanical assistance [2].  Lifting 

postures often change after repetitively performing the pick and place task. Lifting can 
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also lead to bracing of torso when the lifting posture is unrestricted. The operators 

frequently fail to follow the NIOSH safety guidelines after performing repetitive lifts 

thereby leading to critical injuries.  

The aim of modelling human fatigue is to provide quantitative information on the 

factors causing fatigue or risk associated in a workplace. Fatigue modelling is highly 

important as it provides evidence and helps in optimizing the problem thereby improving 

the workers efficiency and reducing work-place injuries. Some of the key factors that 

causes work-place injuries are manual material handling, sleep pattern, bad ergonomics, 

and not following the OSHA standards. Seo et al. [13]  propose a simulation-based 

framework to study about the physical demands and muscle fatigue. A discrete event 

simulation evaluates how factors such as sleep hours, taking voluntary rests, gender, and 

the body mass index (BMI) affects time and cost performance of the planned operation.  

Simulation-based results show that the operators’ physical demands result in a loss of 

time and increase in cost for the respective material handling operation. Sparto et al. [26] 

analyze human muscle fatigue during a repetitive lifting operation in the manufacturing 

industry. The authors make use of a statistical technique to determine changes in the 

kinematic stability of subjects at every stage of the task. Results of the statistical model 

show that a decrease of knee and hip range of motion concurrently with an increase of in 

peak and trunk flexion range of motion. Maman et al. [4] attempt to examine the use of 

wearable sensors to detect physical fatigue in a simulated task, and estimate the fatigue 

level over time. Three experimental tasks are conducted with eight participants; the 

sensory data are recorded for each participant. The tasks are related to assembly, supply, 

pick up and insertion and manual material handling. Once the task is performed, fatigue 
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data is collected with the use of Borgs scale. The author makes use of a penalized logistic 

regression to correlate physical fatigue and the level of estimation. The resulting model 

for fatigue detection and fatigue development are similar in terms of the features selected 

and their performance in training and testing. 

Calzavara et al. [6] propose fatigue level real-time monitoring for an order-

picking operation, and they compare this method to traditional methods such as self-

report, questionnaires, direct measure of EMG, and energy expenditure. The aim of the 

paper is to evaluate the data obtained from devices which are used in an order picking 

task to detect fatigue. The author uses data for several variables such as distance to be 

covered by the operator, experience of the operator, the measurement of the heart rate, 

duration of the activity, the value of energy expenditure and measurement of muscular 

fatigue in the analysis. Statistical data analysis techniques are used to evaluate the quality 

of fatigue detection, and comparisons are made between the traditional methods and the 

method which can be applied in a picking context. Results show that the fatigue detection 

has the highest statistical significance in the heart rate monitoring device. The author 

concludes that the data obtained by the devices in an order picking context has higher 

significance than the traditional method of measuring fatigue.   

Strimpakos et al. [32] study the correlations between electromyography (EMG) 

and Borgs scale assessment of the neck muscles. In the experiment, thirty-three 

volunteers performed an isometric contraction test from a standing position with neck 

movements. The authors estimate fatigue by employing the Borg’s scale. Intra class 

correlations coefficient, standard error of measurement, smallest detectable difference 

indices and correlation coefficient are calculated for the analysis. Results show that the 
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normalized median frequency slope has low repeatability for the muscles of each 

movement. Initial median frequency had moderate to good reliability and small error. The 

authors conclude that the Borgs scale assessment is more reliable than the EMG results. 

Mendez et al. [36] propose a Motion Capture framework to study the repetitive 

motions of humans in a manufacturing environment. The authors make use of motion 

capture cameras, markers which are attached to the operator’s body, and sensors to 

collect data on subjects performing the task. The sensory data is analyzed using machine 

learning techniques like, regressions, time series, and classifications techniques. Results 

identify the bad motions and the most optimal motions of the subjects.  

Kim and Nussbaum [31] propose a three-classification algorithm to classify 

manual material handling tasks. Manual material handling tasks are performed by 10 

volunteers between 19 to 29 years old. The experiment is performed in 6 different ways 

(i.e. carry and walk, asymmetric lifting, lifting from knuckle height, pushing, pulling, and 

placing). In this study, the authors use three mathematical classifiers namely: - 1) linear 

discriminant analysis (LDA), 2) K-nearest neighbors (KNN), and 3) multilayer 

feedforward neural network to classify the manual material handling tasks. The use of 

classifiers helps in identifying and distinguishing patterns in the datasets. The results 

show that the algorithms classify the MMH tasks with a statistical significance of eighty 

percentage. The authors conclude that LDA and KNN classifiers are effective choices, 

however classifiers like the Bayesian decision-making, support vector machines, and 

Markov models can be explored for higher statistical accuracy.    

Snook et al. [11] perform experiments to study and assess the effects of different 

factors such as size, distance, height and frequency on material handling tasks. The first 
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experiment is conducted to evaluate the frequencies. Ten male industrial workers 

performed 51 variations of lifting, lowering, pushing, pulling and carrying operations. 

The frequencies varied from 5 seconds to once in 8 hours. The second experiment is 

conducted to investigate object size, distance of lift and height of push/pull. Lifting task 

is performed at high frequencies once in 9 seconds and 14 seconds depending on the 

lifting height. Results show that the lower frequency task has forces which are lower 

compared to the ones in the previous studies and the maximum acceptable weight and 

forces for female workers are significantly lower, but proportional with the maximum 

acceptable weights and forces for male and female workers. 

Ciriello [12] analyze the effects of vertical distance and the box size on maximum 

acceptable weights (MAW) of lifting and lowering, the effects of height on maximum 

acceptable weights of lowering, and the effect of a four component combination task on 

maximum acceptable weight. Experiments are conducted with eight male industrial 

workers as subjects. The subjects perform 27 variations of lifting, lowering, pushing, 

pulling, and carrying. The selected subjects are analyzed through a psychophysical 

methodology. The results show that MAWs are unaffected by lowering distance, height, 

or the box size, except for the 25cm lowering task. The results show that MAW values 

between lifting and lowering are not significantly different from lifting. 

Li and Liu [34] conduct a study on manual material handling tasks performed on 

floors under three frequency levels. The aim of the study is to determine an operator’s 

maximum acceptable weight of handling (MAWH). Lifting experiments are performed 

by eight male subjects from 22 years to 26 years. Sensors are used to record the bio-

factors such as heart rate, maximum rate of oxygen consumed (VO2) and rate of 
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perceived exertion (RPE). The rate of perceived exertion (RPE) is collected for every 

subject based on the Borgs scale. The authors conduct an analysis of variance test for all 

the bio-factors. Results show that the MAWH was significantly affected by time 

frequency. The frequency of three per minute had significantly higher MAWH than the 

other two frequencies. Heart Rate and VO2 are statistically significant at a 0.05 level of 

significance. However, the effects of frequency on the rate of perceived exertion is 

significantly low.  

Physical fatigue is a prevalent issue in a material handling environment. It is 

important to know the operator’s capacity and predict the time of fatigue based on the 

task to plan and allocate work in manufacturing unit. Our review of the published 

literature has identified a lack of research for predicting fatigue, particularly as a function 

of physiological factors. This study aims to build a statistical design of experiments 

approach to build a metamodel for predicting operator’s fatigue for a lifting task. The 

model predicts rated perceived exertion with respect to several time series related to 

physiological factors, such as breathing rate, heart rate, minute ventilation, and activity. 

In our unique approach to the execution of the factorial experimental design, state-of-the-

art physiological wearable devices are mounted in operators to collect large scale datasets 

of the response. The novelty of this research is in the applications of the meta model as 

part of a large-scale digital twin framework to monitor the operator’s performance and 

health in real time as a lifting activity is carried out in a production setting.   

 The rest of the thesis is organized as follows: Chapter 3.2 gives us a brief 

background of the research where we discuss about the use of a digital twin technology in 

this research, and the potential ways it can be helpful to optimize material handling 
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operations. Chapter 3.3 discusses about the methodology followed to prove our 

hypothesis and gain additional insights about physiological factors and the impact it has 

on fatigue. In this chapter, we discuss about the lifting experiment, participants recruited, 

and the system configurations designed in a motion capture framework. Chapter 3.5 

discusses about the design of experiments, where an experiment based on factors 

specified in the lifting experiments is designed from the Hazard Analysis Tool. We 

provide the factors and factor levels considered in this research. Chapter 3.6 and 3.7 

present the development of the male and female model. We provide the statistical results 

obtained for the models and make conclusions. Finally, Chapter 4 offers conclusions of 

the research and our opinions about future research directions.      

3.2 Background   

In this research, we use a digital twin approach with an aim to optimize a material 

handling task for operators. A digital twin is defined as “a virtual representation that 

interacts with a physical object throughout its lifecycle and provides intelligence for 

evaluation, optimization, and prediction of processes” [37]. A digital twin bridges the gap 

between a physical system and its digital representation with the ability to exchange 

information between each other [38]. A digital twin is widely used in industry 4.0 with 

the combination of technological devices. Automated industries or industry 4.0 optimize 

operations by collecting real-time data directly from the production line and help in 

eliminating the underlying process and identifying the bottle necks [38]. To the best of 

our knowledge, the digital twin technology is not widely used in industry, where there are 

significant opportunities to optimize manual material handling operations, particularly to 

assist in reducing the operator’s fatigue [39]. In this study, we develop a digital twin 



 

32 

technology with a combination of high-performance motion capture cameras and 

wearables featuring physiological sensors. The digital twin framework collects real-time 

data to optimize the material handling task. The technology helps in modelling fatigue 

and standardizing the operation. We analyze the digital twin in a monitor for 

discrepancies and can make necessary changes in the process. There is a wide scope in 

using augmented reality to communicate with human operator in real-time [40].  

Our digital twin is structured into four modules. The first module is the data 

collection module where we obtain range of motion and exertion data from motion 

capture cameras and sensors to characterize the digital twin project. The data is integrated 

and stored in a cloud-based database for further analysis. The next module is the data pre-

processing module where we clean the datasets for bad sensory readings and errors. In 

the data analysis module, we develop statistical models to predict fatigue and determine 

the significance level of the operator’s physiological factors with respect to fatigue. The 

statistical models aim to optimize the material handling operation and improve the overall 

productivity of the operator. Figure 1 shows us the module framework of proposed 

operator centric Industry 4.0 environment [39].  

 

Figure 1: Industry 4.0 - Module Framework 
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Figure 2: Real-time Digital Twin system 

The use of a digital twin technology for a human operator can be a significant 

contribution to reduce workforce in manufacturing industries. The digital twin can help in 

optimizing repetitive motions and reduce the operator’s fatigue. Many companies use a 

digital twin to reduce the cycle time and increase throughput of the respective operation. 

A digital twin along with a combination of statistical, mathematical and simulation 

techniques can generate insights on the behavior of the operator’s physiological data in a 

material handling environment.  

3.3 Methodology 

3.3.1 Physical simulation activity     

A material-handling-based physical simulation mimics a manufacturing pick and 

place task in an assembly process. In the experiment, a group of participants performs a 
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leg-lifting fundamental skill move; see Figure 3. The experiment is performed in the Bio-

MoCap framework, which consists of a total of nine Qualisys Oqus 510 cameras, and one 

Opus 210c video camera positioned so that at least three of them covers all motion 

markers on the subject. While performing the lifting task, participants wear a Hexoskin 

sensor to collect physiological data (i.e., respiratory rate, heart rate, minute ventilation, 

and intensity of activity) with respect to time. The experiment is based on the number of 

factors and factors levels that are discussed in the Section 3.5. The Hexoskin sensor 

records data at the rate of 256 frames per second. The data collected is then stored in Bio-

MoCap database for further analysis. Below are the physiological factors which are 

recorded and stored:  

• Breathing rate: rate at which the human performing the task is breathing. The 

unit is respirations per minute (RPM) [4]. 

• Heart rate: heart rate of the person performing the task. The unit is beats per 

minute (BPM) [4]. 

• Minute Ventilation: amount of air moving in and out of the lungs. The unit is 

Liters per minute (L/min). 

• Activity: intensity, steps and pace of the activity the human is performing. The 

unit is Grams (g). 
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Figure 3: Lifting task in a MoCap environment 

The experiment also collects the rate of perceived exertion using the widely 

known Borg’s scale. More specifically, the Borg’s scale is a measure of the rate of 

perceived exertion ranging from 6 to 20. The scale starts with “no feeling of exertion”, 

which rates a 6, and ends with “very hard” which rates a 20 [41]. The Borg’s scale data is 

collected every 60 seconds until the subject is fatigued from the lifting operations. The 

data is recorded manually by asking the subject an estimate of his or her RPE. The 

subject is presented during the experiment a color-coded chart with brief descriptors of 

what clues to look for in regard to fatigue and physical body performance in each 

particular scale. 

3.4 Participants 

In this study, eleven subjects (7 males, 4 females) were recruited over a period of 

two months (approx.). All the subjects performing the task are university research 

assistants between 18-27 years of age. Subjects recruited are mainly graduates and 
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undergraduates from Texas State University. The subjects wear the Hexoskin suit and 

place the markers around their body according to the system protocol. Once the subject is 

equipped with the Hexoskin suit and markers, the cameras are simulated and made sure it 

captures every marker on the subject’s body. In this experiment, we do not assign a 

warm-up time since 2-3 subjects are made to perform the task per day, and on an 

alternate basis if needed. Hence, there is a resting opportunity once the subject completes 

the task. Subjects perform the lifting experiment where an object is leg lifted from the 

ground level and placed on the shelf level to complete one repetition. The measurement 

of the object used in the experiment are 21 inches length, 15 inches width, and 12 inches 

height. The ground level is considered as the start position and the shelf level as the end 

position. The experiment is designed for time intervals of 9 seconds and 14 seconds 

between each repetition. There is no opportunity for rest between repetitions, and the 

subject should complete each repetition in the assigned interval for some repetitions after 

the subject reaches the 15-level in the Borg’s scale. Once the experiment is performed, 

the sensor is detached and sent for a data transfer process. The time for performing each 

combination ranges between 5 minutes to 30 minutes depending on the respective 

participant. The data was collected on Thursdays and Fridays for 2-3 hours for 2 months 

(approx.). The experimental procedures are approved by the Institutional Review Board, 

a committee established to review and approve applications for research projects 

involving human subjects. 

3.5 Design of Experiments 

We design an experiment specified in Table 3 based on factors specified in the 

lifting experiments in the Hazard Analysis Tool [42] aiming to build a predictive meta-
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model and optimize the material handling task. Snook developed a series of tables for 

evaluating the design of manual handling tasks. These tables present maximum 

acceptable weights for the male and female genders to 10, 25, 50, 75 and 90% industry 

population. The factors considered in this experiment are interval, gender, height, and 

distance. The interval factor levels considered are 9 seconds (low) and 14 seconds (high) 

and the distance factor levels are 51 cm (low) and 76cm (high). We consider two factor 

levels for the height of the subject: 5’2”-5’11” classified as medium, and height above 

5’11” classified as tall. We design the factors for 50% of the population with respect to 

their factor levels. Based on the gender, interval, and distance, the weight-lifting capacity 

is determined for each combination of the factorial experiment. The boxes to be lifted 

during the experiment were prepared prior to the start of the experiment according to the 

maximum lifting capacity specified for each combination. We consider 50% industry 

population to avoid bias. The full factorial experiment consists of 20 combinations. 

Table 3: Training and validation parameters 

Factors Name Levels Number of levels 

A Intervals Low, High 2 

B Gender Male, Female 2 

C Height Medium, High 2 

D Distance Low, High 2 

 

The regression models are built separately for the male and female datasets. There 

are many differences between the male and female physiology as per the American 

Physiological Society Education Committee. It is scientifically proven that the genders 

have differences in the physiology of cardiovascular, musculoskeletal, and immune 

systems [43]. This research shows that males have more muscle mass, more bone mass, 

and a lower percentage of body fat in a person. Based on the physiological factors, two 
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separate regression models are created for males and females. The statistical summary is 

analyzed for the male and female models separately to gain insights [43].  

Figure 4 [44] shows a cube plot with different factors designed in this experiment 

along with their factor levels. Each corner of the cube shows the different levels in their 

respect side.  

 

Figure 4: Cube Plot - Factors and factor levels 

3.6 Model Development 

The dataset generated from the experiment is segregated into a training dataset 

and a test dataset. In the training phase, 80% of the number of datasets are trained, and in 

the validation phase, rest of the 20% of the sample size are tested. The split of the 

training set and test set for male and female datasets are shown in Table 4 and Table 5. A 

higher percentage of the dataset is trained and we fit the regression model to the data. If 

the split of the training set is too small, then the parameters might have a higher variance. 

On the other hand, if the test set is too small, the model performance or validation might 

be unreliable. If the sample size is too large, the split size of the training set can be 

reduced if the method is computationally intensive. A recommended starting point is 80-
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20, however it all depends on the size of the data used in the model [45]. Hence, based on 

the sample size used in this thesis, we use the 80-20 split. 

We aim to find the respective coefficients of the independent variables (β0, β1, β2) 

and the value of constant. The mathematical equation for multiple regression is shown 

below. 

Yi = β0 + β1x1 + β2x2 + .... + βpxp       (1) 

where,  

Yi = dependent variable 

x = independent variables 

β0 = y-intercept 

βp = slope coefficients 

It is made sure that the training set contains a uniform proportion of data for both 

male and female modes to increase modeling accuracy. We then apply the estimated 

model on the test set which consists of data that is independent from the data used to fit 

the model. 

Table 4: Split percentage for male data 

 Male Training set Test set Total 

Number of datasets 10 3 13 

Number of datapoints 113 37 150 

 

Table 5: Split percentage for female data 

 Female Training set Test set Total 

Number of datasets 5 2 7 

Number of datapoints 56 15 71 

 

We build multiple linear regression models for both the male and female datasets 

considering a significance level of  𝛼=0.05 in this study. The main goal of conducting the 
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analysis is to determine the significance level of the independent variables on the 

dependent variable. The results also determine if the null hypothesis is rejected or true.   

3.7 Results and Discussion 

In this chapter, the computation and development of the statistical models are 

explained. The Borgs score is coded as the independent variable (Yi). The corresponding 

section discusses the statistical results for the male model and the female model.  

3.7.1 Male model  

In the preliminary phase of analysis, we visualize a correlation plot as shown in 

Figure 5. The correlation plot shows the correlation level between the bio-factors, 

variables and Borgs on a scale from -1 to 1. We can observe that the correlation plot 

gives us significance levels when the variables interact with each other. The correlation 

plot summarizes our dataset and identifies patterns during interactions. For instance; 

heartrate and seconds correlate with the Borgs score. They also show high correlation 

when interacted with each other. The plot is also used as a diagnostic to our regression 

models for an additional insight. The correlation plot for male is shown below.  

 

Figure 5: Correlation plot - Male 
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Preliminary Model I 

We build regression models in the preliminary phase to study about the trends of 

the data collected. This study helps us to determine if the factors and variables are fit for 

building a robust regression model. We check for variables which are collinear, since the 

presence of multicollinearities leads to instability in the model. In the preliminary phase, 

we use interactions to determine if there is an impact on the regression model. We 

include the study of data by interpolating the Borgs score in the regression model. Based 

on the regression models calculated in the preliminary phase, we develop to build a 

robust regression model in the final analysis.  

We calculate a multiple regression analysis to predict the Borgs score based on 

the subject’s physiological variables (heartrate, breathing rate, activity, minute 

ventilation) and factors (intervals, distance) with a considered significance level of 

𝛼=0.05. We use 2-way interactions between factors and variables as the independent 

variable and the Borgs score as the dependent variable. In the preliminary models, we 

perform the analysis with a different combination of training set and test set compared to 

the final male model. The different use of sample is to experiment and identify different 

patterns from the results, which would help us build a robust regression model. In this 

model, we interpolate the Borgs score since the data is collected every 60 seconds and 

has missing data points. Hence, the sample size of the model is 7790 datapoints. We split 

the data as 80% of the total sample size and validate 20% of the sample size.  

From the regression results, we can infer that activity does not show correlations 

with the Borgs score. The interactions between seconds and interval do not show 

correlations. The statistical summary shows all other variables and their interactions 
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significant. The R2 statistic was found to be 80.82% for the training phase and 77.37% for 

the validation phase. The difference in the R2 in the training phase and the validation 

phase is very less, which seems to be unreliable. Since the dataset is interpolated, it can 

be argued that the significance is the product of a sample size that is large but also 

unrealistic. We have interpolated data for almost 90 percent of the sample size and hence, 

can be fake data. This information can be misleading, and we conclude that interpolation 

in this case is unrealistic. 

Based on the above results, we do no use interpolation for the Borgs score since it 

makes the data unrealistic. We build a separate multiple regression model with all the 

factors and variables of the male subjects to predict Borgs.          

Preliminary Model II  

A multiple regression analysis is calculated to predict the Borgs score based on 

the subject’s physiological variables (heartrate, breathing rate, activity, minute 

ventilation) and factors (intervals, distance) with a considered significance level of 

𝛼=0.05. In this model, we do not use interpolation since the results was unreliable due to 

the sample size.   

It is estimated that seconds and heart rate have high correlation with the Borgs 

score. The distance factor shows high multicollinearity in the model and therefore shows 

no stats in the summary. The regression model shows that minute ventilation, activity, 

breathing rate, and interval are not significant. We obtain a R-squared value of 64 percent 

for the male training set. We use the Variance Inflation Function (VIF) in R to detect for 

multicollinearities in the model. We perform the VIF in R since the regression model 

becomes unstable with the presence of multicollinearity. As a rule of thumb, the VIF 
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value exceeding 5 or 10 indicates multicollinearity. In this study, we consider a more 

conservative VIF value of 5. The heart rate VIF value was found to be 7.5 which exceeds 

the considered limit. Therefore, we can conclude that the regression model is unstable 

and do not compute the equation of the model. 

From the preliminary phase of analysis, we develop the modelling phase and 

build two multiple linear regression models. We found that heart rate and time accounts 

for a high R-squared percentage. Hence, we build a predictive model eliminating all the 

other variables keeping in heart rate and time. In the subsection, we present the regression 

models for the final analysis.  

Model I 

We conducted a multiple regression analysis on the Borgs score for the male 

model’s training set. The heartrate and time data are the independent variables. The 

purpose of using the heartrate and time data is to build a predictive model. In the analysis, 

the Borgs score is rescaled from 60 to 200 for better data visualization. We do not factor 

the other variables in the predictive model since our preliminary analysis show that the R2 

statistic is low when the other variables are taken into consideration. Instead, we aim to 

build a separate regression model with the other variables to determine their significance 

levels on the Borgs score. 

 The statistical results as shown in Table 6 indicate that the heartrate and time 

have high significance with respect to the Borgs score. The regression results estimated 

for the predictive model shows (t(6.43), p(3.29e-09)) seconds and (t(14.13), p(2e-16)) 

heart rate are significant and have correlations with fatigue as shown in Table 6. The 

estimated regression equation for the male training set is shown in Equation 2. 
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Yborgs = -36.75 + 0.03 seconds + 1.28 heartrate   (2) 

We obtained a R-squared value of 84.93 percent in the training phase. The results 

indicate a positive slope, and an increase in fatigue when the heartrate and time factors 

are increased from low to high level. From the Equation 2, we can interpret that, for 

every additional BPM of heartrate, the expected Borgs score level increases by 1.28 on 

average, holding all other variables as constant. As mentioned earlier the Borgs score is 

scaled from 60 to 200. Similarly, we can infer that for every additional second, the 

expected fatigue level increases by 0.03 on average, holding all other variables as 

constant. The model did not show the presence of multicollinearity. The statistical 

summary is shown in Table 6.  

Table 6: Statistical summary - Male model I 

Variables Coefficients Std-error t-value P-value 

Seconds 0.03 0.004 6.43 3.29e-09 

Heart rate 1.28 0.09 14.13 2e-16 

Intercept -36.75 9.57 -3.83 0.0002 

 

Residual std error: 14.72 on 110 degrees of freedom 

Multiple R-squared: 0.8493 

F-statistic: 310 on 2 and 110 DF, p-value: < 2.2e-16 

 

 

The male test set prediction of the Borgs score is visualized in Figure 6. The plot 

consists of the actual Borgs score, predicted Borgs score, and their confidence level. The 

Borgs score is scaled from 60 to 200 for better visualization. From the analysis, we can 

conclude that the male subject’s heart rate and the time performing the task correlate with 

fatigue and satisfy our significance level.  
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Figure 6: Fatigue with respect to time - Male 

In the validation phase, the training set’s regressor is used for the test set data. 

The R2 statistic is computed to get a more realistic assessment of the goodness of fit of 

the model. The R-squared value for the test set sample was 72 percent. From the 

statistical results, we can conclude that the model has 72 percent prediction accuracy of 

fatigue. 

The model shows an increasing trend of Borgs with respect to time. The plot 

shows the visualizations for the male test set data which consists of 20% of the male 

sample size. Thus, we observe a wave like trend which increases overall with time and 

does not increase constantly. The model shows that the male subjects get fatigued after 6 

minutes of lifting (approx.). 

Model II   

Now, we build a separate regression model for the male subjects with an aim to 

determine the statistical significance of the other variables and to check if they correlate 

with fatigue. Since it was estimated that the preliminary model was unstable due to 

multicollinearity, we eliminate heart rate and distance from the regression model. Similar 

to Equation 2, we build a regression model on the Borgs score for male on a significance 
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level of 𝛼=0.05. In this model, we factor in seconds, breathing rate, minute ventilation, 

interval, and activity. The result obtained shows that the multiple regression equation is 

significant and has correlations between the bio-factors and Borgs. The obtained 

regression equation for the male training set is shown in Equation 3. 

Yborgs = 68.76 + 0.075 seconds – 15.3 interval + 1.145 breathing rate + 25.33 activity 

+0.0004 minute ventilation  (3) 

The regression results estimated for the predictive model shows (t(12.43), p(<2e-

16)) seconds, (t(-3.615), p(0.0004)) interval, and (t(4.12), p(7.13e-05)) are significant and 

have correlations with fatigue as shown in Table 7. From the regression results, we found 

that the variables in Equation 3 have high correlation except for minute ventilation and 

activity. We obtained a R-squared value of 73 percent in the training phase. From 

Equation 3, we can interpret that, for every additional second, the expected fatigue level 

increases by 0.075 on average. Similarly, for every additional RPM of breathing rate, the 

expected fatigue level increases by 1.145 on average. The interval between repetitions 

shows a negative slope with fatigue. There is an increase in fatigue when intervals are 

decreased from low to high level. It can be interpreted that, for every second decreased in 

interval, the expected fatigue level increases by 15.3 on average. The interpretation is 

with respect to the rescaled Borgs score. We can infer from the statistics that breathing 

rate, seconds, and interval correlate with fatigue. The variables minute ventilation and 

activity do not correlate with fatigue based on the considered significance level in the 

hypothesis. The statistical summary for the regression model is shown in Table 7.  
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Table 7: Statistical summary – Male model II 

Variables Coefficients Std-error t-value P-value 

Seconds 0.075 6.08e-03 12.43 2e-16 

Intervals -15.3 4.23e+00 -3.61 0.0004 

Breathing rate 1.145 2.77e-01 4.12 7.3e-05 

Activity 25.33 16.17 1.566 0.12 

Minute Ventilation 0.0004 0.0003 1.473 0.14 

Intercept 68.76 5.58e+00 12.32 2e-16 

 

Residual std error: 19.83 on 107 degrees of freedom 

Multiple R-squared: 0.73 

F-statistic: 59.08 on 5 and 107 DF, p-value: < 2.2e-16 

 

     

Minute ventilation and activity have a significance level of 0.14 and 0.12 

respectively. Activity and minute ventilation do not satisfy the considered level of 

significance and are eliminated. Therefore, we can conclude that activity and minute 

ventilation are not correlated with the Borgs score. The new estimated regression 

equation with the significant variables is shown in Equation 4. 

Yborgs = 68.76 + 0.075 seconds – 15.3 interval + 1.145 breathing rate  (4) 

In the validation phase, the training set’s regressor is used for the test set data. 

The R2 statistic is computed to get a more realistic assessment of the goodness of fit of 

the model. The R-squared value for the test set sample was 64.91 percent. From the 

statistical results, we can conclude that the model has 64.91 percent prediction accuracy 

of fatigue. 

Inference – Male model 

We consider the heartrate and time data with respect to the Borgs score to build a 

fatigue predictive model. Based on the preliminary model, we do not include activity, 

minute ventilation, breathing rate, interval and distance in the predictive model since it 

affects the R-squared value. From the analysis, we can conclude that fatigue is correlated 
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with the male’s heartrate and time and shows a R2 statistic of 72 percent. Table 7 shows 

that interval, seconds, and breathing rate satisfy the significance level. Minute ventilation, 

and activity of the male subjects does not satisfy the significance level considered in this 

hypothesis. Hence, we can conclude that minute ventilation and activity do not correlate 

with Borgs score. We can conclude that Equation 2 has a higher R-squared value when 

compared to Equation 4.  

3.7.2 Female model  

We follow the similar methods for the female model. In the preliminary phase of 

analysis, we visualize a correlation plot as shown in Figure 7. The plot shows the 

correlation level between the bio-factors, variables and Borgs on a scale from -1 to 1. The 

correlation plot gives us insights on the correlation levels when the variables interact with 

each other. For instance; we find that seconds and heartrate show high significance. 

Similarly, the plot shows correlations between seconds and intervals. The correlation plot 

for female is shown below.  

 

Figure 7: Correlation plot - Female data 
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Preliminary Model I 

 In the preliminary phase of modelling for the female dataset, a multiple regression 

analysis is calculated to predict the Borgs score based on the subject’s physiological 

variables (heartrate, breathing rate, activity, minute ventilation) and factors (intervals, 

distance). We use 2-way interactions between factors and variables as the independent 

variable and the Borgs score as the dependent variable. In the preliminary models, we 

perform the analysis with a different sample set compared to the final female model. The 

different use of sample is to experiment and identify different patterns from the results, 

which would help us build a robust regression model. We interpolate the Borgs score 

since the data is collected every 60 seconds and has missing data points. Hence, the 

sample size of the model is 2440 datapoints. We split the data as 80% of the total sample 

size and validate 20% of the sample size. 

 From the regression results, distance show high multicollinearity with the 

variables it interacts with and by itself. The R2 statistic was found to be 96% for the 

training phase and 93% for the validation phase. The difference in the R2 in the training 

phase and the validation phase is very less, which seems to be unreliable. Since the 

dataset is interpolated, it can be argued that the significance is the product of a sample 

size that is large but also unrealistic. We can also conclude that the model is unstable due 

to the presence of collinearity. 

Preliminary Model II   

It is estimated that seconds, heart rate, breathing rate and intervals have high 

correlation with the Borgs score. The distance factor shows high multicollinearity in the 

model and therefore shows no stats in the summary. The regression model shows that 
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minute ventilation and activity are not significant. We obtain a R-squared value of 81 

percent for the male training set.  We use the Variance Inflation Function (VIF) in R to 

detect for multicollinearities in the model. As mentioned earlier, we perform the VIF in R 

since the regression model becomes unstable with the presence of multicollinearity. The 

heart rate VIF value was found to be 17.5 which exceeds the considered limit.  

Based on the insights, we develop the model and build two multiple linear 

regression models for the female. From the preliminary phase of analysis, we found that 

heart rate and time accounts for a high R-squared percentage similar to the male model. 

Hence, we build a predictive model eliminating all the other variables keeping in heart 

rate and time. We use the VIF to check for the presence of multicollinearity. 

Model I 

We conducted a multiple regression analysis on the Borgs score for the female 

model’s training set. The heartrate and time data are the independent variables. The 

purpose of using the heartrate and time data is to build a predictive model. We do not 

factor the other variables in the predictive model since our preliminary analysis for the 

female dataset shows that the R2 statistic is low when the other variables are taken into 

consideration. Instead, we aim to build a separate regression model with the other 

variables to determine their significance levels on the Borgs score. In the analysis, the 

Borgs score is rescaled from 60 to 200 for better data visualization. 

 The statistical results as shown in Table 8 indicate that the heartrate and time 

have high significance with respect to the Borgs score. The regression results estimated 

for the predictive model shows (t(4.19), p(0.0001)) seconds and (t(9.2), p(1.43e-12)) 
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heart rate are significant and have correlations with fatigue as shown in Table 8. The 

estimated regression equation for the male training set is shown in Equation 5. 

Yborgs = -18.67 + 0.04 seconds + 1.07 heartrate  (5) 

The variables in the regression equation satisfy the considered significance level. 

We obtained a R-squared value of 95 percent in the training phase. The results indicate a 

positive slope, and an increase in fatigue when the heartrate and time factors are 

increased from low to high level. From Equation 5, we can interpret that, for every 

additional BPM of heartrate, the expected fatigue level increases by 1.07 on average, 

holding all other variables as constant. Similarly, we can infer that for every additional 

second, the expected fatigue level increases by 0.04 on average, holding all other 

variables as constant. The model did not show the presence of multicollinearity. The 

statistical summary is shown in Table 8.  

Table 8: Statistical summary – Female model I 

Variables Coefficients Std-error t-value P-value 

Seconds 0.04 0.01 4.19 0.0001 

Heart rate 1.07 0.117 9.2 1.43e-12 

Intercept -18.67 10.72 -1.74 0.087 

 

Residual std error: 8.35 on 53 degrees of freedom 

Multiple R-squared: 0.95 

F-statistic: 512.7 on 2 and 53 DF, p-value: < 2.2e-16 

 

 

In the validation phase, the training set’s regressor is used for the test set data. 

The R-squared value for the test set sample was 86 percent. From the statistical results, 

we can conclude that the model has 86 percent prediction accuracy of fatigue. The female 

test set prediction of the Borgs score is visualized in Figure 8. The plot consists of the 

actual Borgs score, predicted Borgs score, and their confidence level. The Borgs score is 
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scaled from 60 to 200 for better visualization. From the analysis, we can conclude that 

the female subject’s heart rate and the time performing the task correlate with fatigue and 

satisfy our significance level. 

 

Figure 8: Fatigue with respect to time - Female  

The model shows an increasing trend of Borgs with respect to time. The plot 

shows the visualizations for the female test set data which consists of 20% of the female 

sample size. The model shows that the female subjects get fatigued after 7-8 minutes of 

lifting (approx.).  

Model II 

Now, we build a separate regression model for the female subjects with an aim to 

determine the statistical significance of the other variables and to check if they correlate 

with fatigue. Since it was estimated that the preliminary model showed multicollinearity 

for heart rate and distance, we eliminate heart rate and distance from the regression 

model. We build a regression model on the Borgs score for female on a significance level 

of 𝛼=0.05. In this model, we factor in seconds, breathing rate, minute ventilation, 
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interval, and activity. The estimated regression equation for the male training set is 

shown in Equation 6. 

Yborgs = 53.31 + 0.11 seconds – 16.4 interval + 0.8 breathing rate + 22.15 activity 

+0.0002 minute ventilation  (6) 

The regression results estimated for the predictive model shows (t(10.05), 

p(1.35e-13)) seconds, (t(-3.48), p(0.001)) interval, and (t(2.72), p(0.008)) breathing rate 

are significant and have correlations with fatigue as shown in Table 9. From the 

regression results, we found that the variables in Equation 6 have high correlations except 

for minute ventilation and activity. We obtained a R-squared value of 92 percent in the 

training phase. From Equation 6, we can interpret that, for every additional second, the 

expected fatigue level increases by 0.11 on average. Similarly, for every additional RPM 

of breathing rate, the expected fatigue level increases by 0.8 on average. The interval 

between repetitions shows a negative slope with fatigue. There is an increase in fatigue 

when intervals are decreased from low to high level. It can be interpreted that, for every 

second decreased in interval, the expected fatigue level increases by 16.4 on average. 

Minute ventilation and activity have a significance level of 0.12 and 0.18 respectively. As 

discussed earlier, we do not consider activity and minute ventilation since it does not 

satisfy the considered level of significance. The statistical summary for the regression 

model is shown in Table 9. 
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Table 9: Statistical summary – Female model II 

Variables Coefficients Std-error t-value P-value 

Seconds 0.11 0.01 10.05 1.35e-13 

Intervals -16.4 4.72 -3.48 0.001 

Breathing rate 0.8 0.29 2.72 0.008 

Activity 22.15 16.32 1.35 0.12 

Minute Ventilation 0.0002 0.0001 1.55 0.18 

Intercept 53.31 5.70 9.341 1.52e-12 

 

Residual std error: 10.95 on 50 degrees of freedom 

Multiple R-squared: 0.92 

F-statistic: 115.6 on 5 and 50 DF, p-value: < 2.2e-16 

 

 

Minute ventilation and activity have a significance level of 0.18 and 0.12 

respectively. Activity and minute ventilation do not satisfy the considered level of 

significance and are eliminated. Therefore, we can conclude that activity and minute 

ventilation are not correlated with the Borgs score. The new estimated regression 

equation with the significant variables is shown below. 

Yborgs =  53.31 + 0.11 seconds – 16.4 interval + 0.8 breathing rate   (7) 

In the validation phase, the training set’s regressor is used for the test set data. 

The R2 statistic is computed to get a more realistic assessment of the goodness of fit of 

the model. The R-squared value for the test set sample was 79 percent. From the 

statistical results, we can conclude that the model has 79 percent prediction accuracy of 

fatigue. 

Inference – Female model 

We consider the heartrate and time data with respect to the Borgs score to build a 

fatigue predictive model. We do not include activity, minute ventilation, breathing rate, 

interval and distance in the predictive model since it has lower significance levels 
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compared to the heartrate and time. Equation 5 suggests that fatigue is correlated with the 

female’s heartrate and time and shows a R2 statistic of 86 percent. Table 9 shows that 

interval, seconds, and breathing rate satisfy the significance level. Minute ventilation, and 

activity of the female subjects do not satisfy the significance level considered in this 

hypothesis. Hence, we can conclude that minute ventilation and activity do not correlate 

with Borgs score. Seconds, intervals, and breathing rate show correlations with the Borgs 

score. We can conclude that Equation 5 has a R-squared value when compared to 

Equation 7. 

From the statistical results for the female model, we can conclude that it is 

comparable to the male model. The female model has a higher prediction accuracy of 

fatigue compared to the male model. The models show similar margin of error and has a 

negative constant. Both the female and the male models show that heartrate has high 

significance on Borgs. The trends show that the male subjects get fatigued after 6 minutes 

of lifting and the female subjects get fatigued after 7-9 minutes of lifting. The difference 

in the weight designed and the physiological factors of the genders can be reasons behind 

the difference in the fatigue time. From the male and female models, we estimate 

comparable coefficients of variables and comparable statistical summary. The male and 

female models show that activity and minute ventilation are the only two factors which 

are not significant. On the other hand, seconds, breathing rate, and intervals show 

significance with respect to fatigue. As mentioned earlier, the distance and heartrate 

factor show high multicollinearity when included in the second model for males and 

females.  
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3.8 Conclusion of Results 

 This research uses a MoCap framework and physiological data of subjects with an 

aim to analyze human fatigue and optimize material handling operations in 

manufacturing industries. We use statistical techniques to build predictive model for the 

male and female subjects performing a lifting task. Our goal is also to determine the 

important correlations between the physiological data and human fatigue. The heartrate 

and time frame data are factored in to predict fatigue using a regression algorithm. Based 

on the DOE parameters, the statistical results show that the male model predicts fatigue 

with 72% accuracy, and the female model predicts fatigue with an 86% accuracy. On a 

general note, we find the physiological variables heartrate, and breathing rate highly 

significant and correlated with human fatigue. Based on the model, we also find the 

factors seconds, and interval highly significant and correlated with fatigue. The results 

show that the subject gets fatigued as time, heartrate, breathing rate increases and the 

interval decreases. The physiological variables activity and minute ventilation did not 

satisfy the level of significance considered in this model. However, we could conclude by 

saying that activity and minute ventilation are considerably significant with respect to 

fatigue. Finally, the fatigue plot for the male and female proves that fatigue increases 

with time of the task, and heartrate is an essential physiological variable with respect to 

fatigue. Based on the results, we provide answers to the following questions in section 1. 

1) When will the worker reach the fatigue level with respect to the lifting task? 

As discussed earlier, it is highly important to efficiently plan workforce in a 

material handling environment. In a manufacturing industry, the entire process in 

an assembly line may come to a halt when the operator experiences physical 
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fatigue. Supervisors are unaware of each operator’s capacity for performing the 

respective task, and hence, planning workforce becomes complicated. The results 

from the thesis addresses this issue by building a model which can predict the 

operator’s fatigue based on a lifting task. From Equation 2 and Equation 5, we can 

estimate the time of fatigue with the Borgs score (RPE) and heartrate information. 

Borg considers an RPE score of 150 (rescaled value) as the subject’s fatigue level. 

By using Borgs value and heartrate information in the equations, the time of 

fatigue can be estimated for males and females. Using the regression equations (4) 

and (5), the supervisors can efficiently plan workforce as he has an estimate of 

when the operator reaches fatigue level.    

2) What is the correlation between fatigue level and the activity performed? 

There is a need to determine the correlation between fatigue level and the task 

performed in material handling. A material handling environment includes 

different tasks like lifting, walking with loads, pushing, and pulling. A solution to 

the question would help the supervisor gain insights if he needs skilled or 

unskilled operators to perform the task based on the difficulty. For instance, if 

there is correlation between fatigue and the task, the supervisor may assign skilled 

operators to perform the operation. The thesis results help in answering the above 

question. The statistical models for male and female show that there is high 

correlation between fatigue level (Borgs score) and the lifting task. Figure 6 and 

Figure 8 show that the Borgs score has a positive relation with time. The plots 

show an increasing trend of the Borgs score with time. Hence, we can conclude 

that the lifting task may need skilled labors.     
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3) At what time, one should assign an alternate worker for the task in case the human    

reaches fatigue level? 

The solution to this question may help the supervisor to assign the next operator 

for the task without wastage of time. When the Borgs is 150, it is considered that 

the operator is fatigued. The fatigue predictive models for male and female 

(Model I) can give the time of fatigue information depending on the subjects. 

With the “time of fatigue” information, one can calculate the time he needs an 

alternate operator to complete the task.   
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4. CONCLUSION 

In this research, a manual material handling environment was set up in a MoCap 

framework. A manufacturing pick and place task in an assembly process is simulated 

using a digital twin project. The goal of this study is to optimize a lifting operation and 

researching about human fatigue. We use wearable sensors to build a catalog of datasets 

considering multiple factors and factor levels as discussed in chapter 3. In this study, 

statistical and analytical techniques were used to determine two key facts: - 

1) To determine the significant Bio-factor variables which correlate with the 

subject’s rate of perceived exertion level. 

2) To predict the Borg’s score with respect to time and the task performed by the 

subject. 

The Bio-MoCap environment was designed with the help of NIOSH equations 

and the use of fundamental skill moves. The leg lifting experiment was designed based 

on metrics from the Snook’s table. The data collected is stored and segregated in separate 

databases respectively. The datasets are cleaned and pre-processed for further analysis. A 

multiple linear regression model for the male and female genders are built separately to 

determine the statistical significance level of variables and predict fatigue with respect to 

time and task performed.  

The validation phase is performed an aim to compare the R-squared values 

between the training set data and the test set data. The regression algorithm is applied to 

the training set prior to the validation phase. The predictions of fatigue were found to be 

72 percent for males and 86 percent for females. The predictive model can be used in 

material handling industries to plan workforce efficiently and save time.  
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The fatigue plots help analyze the predicted Borgs data and the actual Borgs data 

for all the subjects who performed the task. The plots prove that the subjects get fatigued 

with respect to time as we observe an increasing trend. We can infer that heartrate and 

breathing rate are highly corelated with fatigue. It can be concluded that there are 

correlations between fatigue and the Bio-factors, and the system can predict fatigue with 

respect to time.  

This study emphasizes the importance of industry 4.0 and the use of digital twin 

technology in material handling and fatigue modeling. The proposed model can be used 

in manufacturing industries where manual material handling is a major operation in their 

process. The manufacturing industries can use the model with an aim to reduce fatigue of 

operators and plan their workforce efficiently. As discussed earlier, based on the metrics 

and damages caused due to fatigue, the model can be used by manufacturing industries to 

save money and reduce fatigue by optimizing material handling operations.  

4.1 Challenges 

There were two challenges faced in this study, 

1) The resource was limited in this study since the experiment was conducted in a 

university environment, thereby making the sample size more considerate. 

2) In this study, time was a significant constraint in the analysis. 
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4.2 Limitations 

1) The sample size used in the experiment is minimal. 

2) The subjects who participated in the experiment are not completely trained, and 

hence the predictions might not be very accurate for a bigger sample size with a 

mix of skilled labors and unskilled labors. 

3) The number of factors considered while performing the experiment are very 

limited. More accurate predictions may have been generated if a greater number 

of factors were considered. 

4) While performing the experiment, the Borg’s data is recorded manually. The 

process can be more efficient if this can be automated. 

5) Since this thesis was performed in a university environment, the age group of 

participants recruited for the activity range from 20-27 years old. In a 

manufacturing industry, the age group of operators generally range between 20-50 

years old with different skill level. The age factor causes a difference in their skill 

level and performance. Hence, the age group of the participants considered in the 

model is a limitation to address the problem.     

4.3 Future Work 

In this research, a Bio motion capture (Bio-MoCap) framework is used to analyze 

the human Bio-factors while performing the lifting fundamental skill move. The future 

work of this research can concentrate on adding more factors like: - 1) Handedness, 2) 

Grip/No Grip 3) Skilled/Unskilled subject 4) Electrodermal Activity, etc. The future 

researcher can focus on collecting more data, thereby increasing the sample size. 
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The future researcher can work on an Artificial Intelligence technology, where the 

AI model can not only predict fatigue, but can tell us the human recovery time. A 

potential approach would be to collect the subject’s rest time data. The researcher can use 

the Borg’s scale to capture the time, the subject recovers back to “no exertion” (6 on the 

scale) once he completes the lifting task. The human recovery time can be factored in an 

AI model to train the system.  
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APPENDIX SECTION 

Male  

Preliminary model 1 

Variables Coefficients Std-error t-value P-value 

Seconds 0.22 0.009 25.36 <2e-16 

Breathing rate -1.98 0.2777 -7.14 9.6e-13 

Minute Ventilation  -2.5e-03 2.688e-04 -8.81 3.91e-16 

Activity 10.85 15.16 0.71 0.47 

Heartrate  0.35 0.052 6.70 2.16e-11 

Interval -9.07 2.32 -3.899 9.73e-05 

Distance -21.37 2.087 -11.103 <2e-16 

Seconds*Breathing rate -3.97e-04 1.39e-04 -2.85 0.042 

Seconds*Minute Ventilation -2.5e-06 1.40e-07 -17.98 <2e-16 

Seconds*Activity 8.01e-03 5.99e-03 1.33 0.181 

Seconds*Heartrate -8.3e-04 7.43e-05 -11.1 <2e-16 

Seconds*Intervals -1.69e-04 1.13e-03 -0.14 0.88 

Seconds*Distance 7.091e-03 8.92e-04 7.94 2.24e-15 

Breath rate*Min Ventilation 5.35e-05 3.7e-06 14.277 <2e-16 

Breathing rate*Activity -.242 2.72e-01 -0.889 0.374 

Breathing rate*Heartrate 0.01 2.59e-03 6.05 1.51e-09 

Breathing rate*Intervals 5.53e-01 3.83e-02 14.43 <2e-16 

Breathing rate*Distance 0.67 0.033 20.25 <2e-16 

Minute Ventilation*Activity 5.47e-04 3.26e-04 1.707 0.087 

Min Ventilation*Heartrate 1.65e-05 2.60e-06 6.36 2.07e-10 

Minute Ventilation*Interval -4.07e-04 4.80e-05 -8.46 <2e-16 

Minute Ventilation*Distance -4.26e-04 3.80e-05 -10.97 <2e-16 

Activity*Heartrate 0.16 0.146 -1.10 0.2711 

Activity*Interval 5.002 2.09 2.388 0.01 

Activity*Distance 3.198 1.86 1.7 0.08 

Heartrate*Interval 0.049 0.024 2.02 0.04 

Heartrate*Distance 0.123 0.09 6.19 6.29e-10 

Interval*Distance -5.670 0.3 -18.32 <2e-16 

Intercept 42.10 5.04 8.34 <2e-16 

 

Residual std error: 14.57 on 6973 degrees of freedom 

Multiple R-squared: 0.8005 

F-statistic: 999 on 28 and 6973 DF, p-value: < 2.2e-16 
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Preliminary Model II 

Variables Coefficients Std-error t-value P-value 

Seconds 0.06 0.0093 6.431 5.5e-0.8 

Heart rate 0.08 0.0014 5.63 9.12e-07 

Minute Ventilation  5.69E-05 0.00002 0.555 0.581 

Activity 8.11 9.404 0.863 0.393 

Breathing rate 0.03 0.241 0.162 0.872 

Distance NA NA NA NA 

Interval 2.24 3.10 0.7 0.691 

Intercept 2.841 9.85 0.288 0.774 

 

Residual std error: 16.72 on 107 degrees of freedom 

Multiple R-squared: 0.6493 

F-statistic: 119.2 on 7 and 107 DF, p-value: < 2.2e-16 

 

 

Female 

Preliminary Model I 

Variables Coefficients Std-error t-value P-value 

Seconds 0.335 0.015 22.304 <2e-16 

Breathing rate 0.44 0.33 1.33 0.18 

Minute Ventilation  -5.47e-04 9.64e-05 -5.679 1.56e-08 

Activity -59.49 20.59 -2.89 0.003 

Heartrate  0.31 0.108 2.87 0.0004 

Interval -8.549 3.835 -2.29 0.02 

Distance NA NA NA NA 

Seconds*Breathing rate -9.8e-04 3.83e-04 -2.55 0.01 

Seconds*Minute Ventilation -9.7e-07 9.665e-08 -10.124 <2e-16 

Seconds*Activity -8.77e-03 0.07 -0.489 0.62 

Seconds*Heartrate -9.83e-04 7.69e-05 -12.71 <2e-16 

Seconds*Intervals -5.06e-04 0.005 -0.101 0.91 

Seconds*Distance NA NA NA NA 

Breath rate*Min Ventilation 5.23e-07 1.097e-06 0.477 0.633 

Breathing rate*Activity 0.299 0.40 0.747 0.45 

Breathing rate*Heartrate 0.002 0.004 0.636 0.52 

Breathing rate*Intervals -2.89e-01 6.74e-02 -4.197 2.82e-05 

Breathing rate*Distance NA NA NA NA 

Minute Ventilation*Activity 2.58e-04 8.267e-05 3.12 0.018 

Min Ventilation*Heartrate 4.20e-06 9.924e-07 4.234 2.40e-05 

Minute Ventilation*Interval 8.45e-05 1.68e-05 5.099 3.75e-07 

Minute Ventilation*Distance NA NA NA NA 
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Activity*Heartrate 0.16 0.146 -1.10 0.2711 

Activity*Interval 5.002 2.09 2.388 0.01 

Activity*Distance NA NA NA NA 

Heartrate*Interval 0.206 0.045 4.520 6.57e-07 

Heartrate*Distance NA NA NA NA 

Interval*Distance NA NA NA NA 

Intercept 42.10 5.04 8.34 <2e-16 

 

Residual std error: 0.177 on 107 degrees of freedom 

Multiple R-squared: 0.94 

F-statistic: 1584 on 21 and 1930 DF, p-value: < 2.2e-16 

 

 

Preliminary Model II 

Variables Coefficients Std-error t-value P-value 

Seconds 0.0431 0.004 8.94 1.58e-14 

Heart rate 1.29 0.11 11.914 <2e-16 

Minute Ventilation  -0.0004 0.0002 -3.673 0.379 

Activity -4.07 1.09 -3.72 0.710 

Breathing rate 0.9 1.87e-01 5.332 0.0056 

Distance NA NA NA NA 

Interval -3.39 2.78 -4.29 3.9e-05 

Intercept -3.511 9.42 -3.7 0.0031 

 

Residual std error: 6.72 on 48 degrees of freedom 

Multiple R-squared: 0.812 

F-statistic: 289.2 on 6 and 48 DF, p-value: < 2.2e-16 
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