ELECTROSTATIC EFFECTS ON THE STRUCTURE OF INTRINSICALLY DISORDERED PROTEINS

by

Lance R. English, B.S.

A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of M aster of Science with a M ajor in Biochemistry
 August 2016

Committee M embers:
Steven T. W hitten, Chair
Karen A. Lewis
Sean M. Kerwin

COPYRIGHT

by
Lance R. English
2016

FAIR USE AND AUTHOR'S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the U nited State (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. U se of this material for financial gain without the author's express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Lance R. English, refuse permission to copy in excess of the "Fair Use" exemption without my written permission.

DEDICATION

To my parents, Kenneth A. English and E. Jill English, and my brother, Clay "Clayton" English. N one of this would have been possible without your support.

ACKNOWLEDGEMENTS

I would like to thank my research advisor, Dr. Steven T. W hitten, for giving me the opportunity to work in a flexible lab environment that encourages creativity, discovery, and freedom. I would like to thank my committee members, Dr. Karen A. Lewis and Dr. Sean M. Kerwin, and my undergraduate research advisor, Dr. RobertJ. C. M cLean, for always being available when I needed assistance with troubleshooting or needed to borrow equipment or reagents. I would also like to thank my lab colleagues Erin C. Tilton and Leona A. M artin. We started and finished this degree together. We shared many days, nights, and weekends together in frustration, contemplation, collaboration, and eventually joy.

M ost importantly, I want to thank Dr. Rachell E. Booth. For the past three years, she has been my number one source for troubleshooting, proofreading, idea pitches, advice, inspiration, equipment borrowing, and extracurricular opportunities.

Lastly, I want to thank Dr. Stacie A. Brown and Jimmy D. Gollihar for being the initial sparks that drove me towards a career in research science.

TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF ABBREVIATIONS xii
LIST OF EQUIPMENT AND REAGENT SUPPLIERS xiv
ABSTRACT xV
CHAPTER
I.INTRODUCTION 1
1.1 A Common M otif in Biological Systems. 3
1.2 Polyproline II Content M odulates Charge Effects 6
1.3 Project Goals 9
II. MATERIALSAND METHODS 11
2.1 M aterials 11
2.2 Sequences 13
2.3 Expression and Purification of Recombinant p53(1-93) 15
2.4 Circular Dichroism Spectroscopy 23
2.5 Size Exclusion Chromatography 26
2.6 Additional Figures 31
III. RESULTSAND DISCUSSION 46
3.1 Introduction 46
3.2 Size Exclusion Chromatography Results 48
3.3 Circular Dichroism Spectroscopy Results 58
3.4 Discussion 77
3.5 Conclusions 85
REFERENCES 86

LIST OF TABLES

Table Page
2.1 Properties of folded protein standards 26
3.1 SEC results at pH 7.0 49
3.2 Comparison of SEC results to previously published work 49
3.3 SEC results at pH 6.0 52
3.4 SEC results at pH 5.0 54
3.5 SEC results at pH 4.5 56
3.6 Percentage of charged residues for p53(1-93) at each pH 79

LIST OF FIGURES

Figure Page
2.1 Sequence for the intrinsically disordered N -terminus of the human tumor suppressor protein p53(1-93) WT 13
2.2 Sequence for p53(1-93) Ala 14
2.3 Sequence for p53(1-93) Pro 14
2.4 Nucleotide sequence for p53(1-93) WT plasmid 31
2.5 Nucleotide sequence for p53(1-93) Ala plasmid 33
2.6 Nucleotide sequence for p53(1-93) Pro plasmid 35
2.7 Chromatograph for nickel affinity purification of p53(1-93) WT 37
2.8 Chromatograph for nickel affinity purification of p53(1-93) Ala 38
2.9 Chromatograph for nickel affinity purification of p53(1-93) Pro 39
2.10 Chromatograph for anion exchange purification of p53(1-93) WT 40
2.11 Chromatograph for anion exchange purification of p53(1-93) Ala 41
2.12 Chromatograph for anion exchange purification of p53(1-93) Pro- 42
2.13 Example SEC chromatograph 43
2.14 Silver stained polyacrylamide gels for each p53(1-93) variant 44
2.15 Acid/base titration of Staphylococcal nuclease by normalized fluorescence 45
3.1 SEC results at pH 7.0 50
3.2 Theoretical charge for p53(1-93) variants at each pH 51
3.3 SEC results at pH 6.0 53
3.4 SEC results at pH 5.0 55
3.5 SEC results at pH 4.5 57
3.6 Summary of CD results for p53(1-93) WT 59
3.7 CD results for $\mathrm{p} 53(1-93) \mathrm{WT}$ at pH 7.0 60
3.8 CD results for $\mathrm{p} 53(1-93) \mathrm{WT}$ at pH 6.0 61
3.9 CD results for p53(1-93) WT at pH 5.0 62
3.10 CD results for p53(1-93) WT at pH 4.5 63
3.11 Summary of CD results for p53(1-93) Ala 65
3.12 CD results for p53(1-93) Ala at pH 7.0 66
3.13 CD results for p53(1-93) Ala at pH 6.0 67
3.14 CD results for p53(1-93) Ala at pH 5.0 68
3.15 CD results for p53(1-93) Ala at pH 4.5 69
3.16 Summary of CD results for $\mathrm{p} 53(1-93)$ Pro 71
3.17 CD results for p53(1-93) Pro at pH 7.0 72
3.18 CD results for p53(1-93) Pro at pH 6.0 73
3.19 CD results for p53(1-93) Pro at pH 5.0 74
3.20 CD results for p53(1-93) Pro at pH 4.5 75
3.21 Zoomed in view of CD results for p53(1-93) Pro at pH 4.5 76
3.22 K_{D} range for folded protein standards in comparison to IDPs 82
3.23 Lin's concordance correlation for the set of folded protein standards verses the set of IDPs. .83
3.24 Charge-dependent unfolding of p53(1-93)... 84

LIST OF ABBREVIATIONS

Abbreviation	Description
A 280	Absorbance at 280 nm
Ala	p53(1-93) with 12 alanine to glycine substitutions
Alb	Chicken egg albumin
ampr	Gene that codes for β-lactamase (ampicillin-resistance)
BD-DNP-Asp	Blue dextran-DNP-Aspartate
CA	Bovine carbonic anhydrase
CD	Circular dichroism
DE3	Designation given to cells carrying an IPTG-inducible chromosomal copy of T7 RNA polymerase
DEAE	Diethylaminoethyl
FRET	Förster resonance energy transfer
IDP	Intrinsically disordered protein
IPTG	Isopropyl β-D-1-thiogalactopyranoside
K	Partition coefficient
lacl	Gene that codes for the lactose repressor protein
LB	Lysogeny Broth
LB+Amp	Lysogeny Broth containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin
MRE	M ean residue ellipticity
MRW	M ean residue weight
M yo	H orse heart myoglobin
Ni-NTA	Nickel-nitrilotriacetic acid
NMR	Nuclear magnetic resonance

OD 600	Optical density (absorbance) at 600 nm	
p53(1-93)	The intrinsically disordered N -terminal (residues 1-93) region of the human tumor suppressor protein p53	
PAGE	Polyacrylamide gel electrophoresis	
PBS	Phosphate-buffered saline (10 mM sodium phosphate, 100 mM NaCl , pH 7.0)	
pLysS	Plasmid containing genes for chloramphenicol-resistance and T7 lysozyme	
PP ${ }_{\\|}$	Polyproline II	
Pro	p53(1-93) with 22 proline to glycine substitutions	
PTM	Post-translational modification	
Rg_{g}	Radius of gyration	
R_{h}	Hydrodynamic radius	
rRNA	Ribosomal RNA	
SDS	Sodium dodecyl sulfate	
SEC	Size exclusion chromatography	
SN	Staphylococcal nuclease	
SOC	Super optimal broth with catabolite repression	
TBS	Tris-buffered saline (20 mM tris, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 8.0$)	
V_{0}	Void volume	
V_{E}	Elution volume	
V_{T}	Total volume	
WT	p53(1-93) wildtype	

LIST OF EQUIPMENT AND REAGENT SUPPLIERS

Supplier	Location	Website
A\&D Company	Tokyo, Japan	www.aandd.jp
Airgas	Radnor, PA	www.airgas.com
Beckman Coulter	Brea, CA	www.beckmancoulter.com
Bio-Rad Laboratories	Hercules, CA	www.bio-rad.com
Branson Ultrasonics	Danbury, CT	www.sonifier.com
DNA 2.0	M enlo Park, CA	www.dna20.com
EM D M illipore	Billerica, M A	www.emdmillipore.com
Eppendorf	Hamburg, Germany	www.eppendorf.com
GE Healthcare	Chicago, IL	www.gehealthcare.com
Geoglobal Partners	Palm Beach, FL	www.ggp-us.com
Hellma A nalytics	M üllheim, Germany	www.hellma-analytics.com
Hirayama M anufacturing	K asukabe-Shi, Japan	www.hirayama-hmc.co.jp
JASCO Analytical Instruments	Easton, M D	www.jascoinc.com
M edline Industries	M undelein, IL	www.medline.com
Pall Life Sciences	New York, NY	www.pall.com
Saint-Gobain	Courbevoie, France	www.saint-gobain.com
Sigma-Aldrich	St. Louis, M O	www.sigmaaldrich.com
Spectrum Laboratories	Rancho Dominguez, CA	www.spectrumlabs.com
Thermo Fisher Scientific	W altham, M A	www.thermofisher.com
VW R International	Radnor, PA	www.vwr.com
W elch V acuum	Niles, IL	www.welchvacuum.com

Abstract

Highly flexible and dynamic proteins with negligible tertiary structure are known as intrinsically disordered proteins (IDPs). Current literature suggests the hydrodynamic dimensions of IDPs are dominated by electrostatic effects. H owever, other studies indicate polyproline II (PP ॥) content, a non-classical secondary structure, also greatly impacts the structure of IDPs. To test these suggestions in conjunction, we used the disordered N-terminal region (residues 1-93) of the human tumor suppressor protein p53 as our model and hydrodynamic radius (R_{h}) as a size reporter. We used size exclusion chromatography to measure the R_{h} and circular dichroism to measure $\mathrm{PP}_{\|}$content at a pH range of 4.5-7.0. Previous research indicates proline and alanine as two of the residues with the highest $\mathrm{PP}_{\|}$propensities. Hence, we repeated these measurements with two mutants: one in which all proline residues were replaced with glycines (Pro^{-}) and one with all alanines replaced with glycines (Ala'). All three polypeptides have a net charge of -14.99 at pH 7.0 and should be significantly compacted at lower pH s due to a decrease in charge repulsion. As pH was decreased from 7.0 to 4.5 , the R_{h} of the wildtype decreased by 15%, Ala by 14%, and Pro by 27%. These results show that prolines increase the spacing between charge groups, weakening electrostatic repulsion. Thus, charge effects are important to IDP structure, but are heavily modulated by $\mathrm{PP}_{\|}$content.

I.INTRODUCTION

Protein folding has traditionally been viewed as a two-state transition from a random coil to an ordered, functioning protein ${ }^{1,2}$. H owever, there exists a class of proteins that are critical to all forms of life and transcend this paradigm altogether: intrinsically disordered proteins (IDPs) are biologically active proteins with negligible tertiary structure3. IDPs are most common in eukaryotes where they are involved in many functions including signal transduction ${ }^{4}$, small-molecule storage ${ }^{5}$, posttranslational modification (PTM $)^{6}$, and regulation of transcription ${ }^{7}$, translation ${ }^{8}$, and selfassembly ${ }^{9}$. The scope of IDPs extends to non-eukaryotes where recent studies have found disorder in viral proteins ${ }^{10}$, protozoal protein-protein interactions ${ }^{11}$, and bacterial secretion systems ${ }^{12}$. IDPs are extremely prevalent as well. Current literature estimates that 7-35\% of prokaryotic proteins and 15-50\% of eukaryotic proteins contain intrinsically disordered regions ${ }^{8,10}$.

Due to their wide range of functionality, characterization of IDP structure is crucial. However, their unconventional nature makes it difficult to use classical structural biology tools. X-ray crystallography and nuclear magnetic resonance (NM R) can be used to detect disorder ${ }^{13}$, but have high levels of uncertainty when it comes to structure prediction. The high flexibility found in large IDPs inhibits crystal formation ${ }^{2}$ and causes too much spectral overlap for high-resolution NM R studies ${ }^{14}$. As a result, alternative approaches such as size exclusion chromatography (SEC) ${ }^{15}$ and circular dichroism (CD) ${ }^{6}$
are being used to gain structural insight. SEC is a separatory technique that can also be used quantitatively to determine a molecule's hydrodynamic radius $\left(R_{h}\right)^{16,17}$ while CD spectroscopy is commonly used in protein studies to assess secondary structure and intrinsic backbone propensities ${ }^{18}$.

1.1 A Common Motif in Biological Systems

Before the discovery of IDPs, a precise and ordered 3D structure was viewed as a necessity for protein function ${ }^{19}$. H owever, many of the early crystal structures of biologically active proteins contained areas with no apparent electron density². This was reconciled in 1978 when the first small disordered region was discerned in the histone H 5 protein by N M R². The use of N M R in an interactome study in 1997 led to the discovery of the first entirely disordered protein ${ }^{20}$.

After the discovery of IDPs, researchers turned their attention to the characterization and prediction of IDP primary structures. The idea of order-promoting and disorder-promoting residues was proposed by comparing a database of disordered proteins to one of folded proteins ${ }^{21}$. Researchers then began to predict disorder based on primary sequence with one study successfully forecasting disorder in 95\% of large peptides ${ }^{17}$.

Disorder in biological systems is not only predictable, but extraordinarily common. Keith Dunker's group constructed a database of 110 disordered regions containing 28 distinct functions. These functions include regulation, nucleic acidbinding, membrane-association, signaling, and PTM s ${ }^{22,23}$.

There are many examples of IDPs involved in regulation. A classic example is that of disordered polyanion tail of calsequestrin which regulates sarcoplasmic reticulum
calcium levels ${ }^{24}$. A more recent study identified a disordered region in the inositol pyrophosphate PPIP5K 1 that interacts with exocysts to regulate cell migration ${ }^{25}$.

Nucleic acid binding is one of the most common functionalities for disordered peptides, generally leading to an induced folding event ${ }^{26}$. An example of disorder in DNA-binding can be seen in the transcription factor alcohol dehydrogenase regulatory gene 1. The disordered zinc-finger region of this protein becomes ordered upon binding to DNA, leading to protein dimerization ${ }^{27}$. An example of disorder in RNA-binding can be seen in the ribosomal protein S15. Upon binding to ribosomal RNA (rRNA), S15 induces the RNA in to the correct tertiary structure for further ribosomal protein binding ${ }^{28}$.

Disordered membrane-associating proteins are common in both eukaryotes and prokaryotes. In animal cytoskeletons, TypeV intermediate filaments contain both intrinsically disordered head and tail domains which function to support the nuclear membrane ${ }^{9,29}$. An example in the microbial world occurs during fd Phage infection of Escherichia coli cells. The helical coat proteins of the fd Phage transition from an ordered to disordered state as a means to penetrate the E. coli cell membrane ${ }^{30}$.

Cell signaling, generally involving PTM s, are perhaps the most studied function of IDPs. Due to their high level of flexibility and solvent exposure, disordered regions tend to be more accessible targets for PTM s than their folded counterparts ${ }^{4}$. This can be seen
in the disordered region of transcription factor Hypoxia-Inducible Factor 1 in which hydroxylation of a proline residue starts a cascade leading to proteolytic degredation ${ }^{31}$ Perhaps the predominant example of cell signaling proteins is the tumor suppressor p53. Often referred to as the guardian of the genome, p53 is a hub for PTM s and coordinates a multitude of signaling pathways. The disordered Transactivation Domain of p53 is only 60 amino acids, but contains an astounding seven phosphorylation sites ${ }^{32}$.

Phosphorylation at all of these sites regulates affinity for HDM 2, p300, and a multitude of other proteins leading to p53 upregulation, downregulation, degradation, or even cell cycle arrest ${ }^{32,33}$.

1.2 Polyproline II content modulates charge effects

Structural biologists have traditionally considered electrostatic interactions as a primary determinant of IDP structure. Because peptides with high charge density can avoid a hydrophobic collapse and obtain an extended conformation, some researchers have attempted to predict disorder based solely on net charge and hydrophobicity ${ }^{13,34}$. H owever, there exists another component that could be as important as net charge density for determining IDP structure: polyproline II ($\mathrm{PP}_{\mathrm{II}}$) content. In fact, many studies indicate that PP ॥I may be a preferred conformation in the disordered and unfolded states of proteins ${ }^{35,36}$.

The polyproline II helix ($\mathrm{PP}_{\mathrm{II}}$) is a non-classical secondary structure characterized by left-handedness and dihedral angles of $-75^{\circ}, 145^{037}$. The structure consists of 3.0 residues per turn with a rise-per-residue of $3.1 \AA^{37}$. It lacks intrachain hydrogen bonding and, due to its extended conformation, the backbone and side chains are exposed to the solvent ${ }^{13}$. A peptide with $100 \% \mathrm{PP}_{\|}$content would consist entirely of proline residues in the trans position however, all amino acids have a certain $\mathrm{PP}_{\text {॥ }}$ propensity that contribute to the overall structure ${ }^{38,39}$.

Creamer et al. was the first to publish a scale for calculating $\mathrm{PP}_{\|}$propensities by performing CD on short peptides with the structure $A c-P_{3} X P_{3} G Y-N H_{2}$ for each amino acid excluding tryptophan and tyrosine ${ }^{39}$. Since PP $_{\text {II }}$ helices have a characteristic local
maxima around 228 nm , Creamer's group calculated $\mathrm{PP}_{\| /}$propensities for each amino acid using the height of this local maxima for each respective spectrum ${ }^{39}$. They found proline to have the highest $\mathrm{PP}_{\text {॥I }}$ propensity (67%) with valine at the other end of the spectrum (49\%) ${ }^{39}$.

Kallenbach et al. expanded on Creamer's work by adding NMR J-coupling constants to the $P_{\text {|I }}$ propensity calculations ${ }^{38}$. They utilized pentapeptides with the structure $\mathrm{Ac}-\mathrm{GGXGG}-\mathrm{NH}_{2}$ for each amino acid excluding glycine and proline ${ }^{38}$. Through the use of far-UV CD spectroscopy and NM R, they calculated a scale ranking alanine with the highest $\mathrm{PP}_{\|}$content (81.8\%) and histidine with the lowest (42.8\%) ${ }^{38}$.

Hilser et al. contributed to $\mathrm{PP}_{॥}$ propensity scales by adding calorimetry as a component ${ }^{40}$. The group performed isothermal calorimetry titration on a series of small peptides with the formula $\mathrm{Ac}-\mathrm{VP}_{2} \mathrm{XV} \mathrm{P}_{2} \mathrm{R}_{3} \mathrm{Y}-\mathrm{NH}_{2}$ for each amino acid ${ }^{40}$. PP ॥ propensity was then calculated resulting in proline having the largest PP ॥ content (100\%) while glycine has the smallest ($13 \%)^{40}$.

Due to the number of amino acids with high $P P_{\|}$propensities in all three of the aforementioned scales, we hypothesized that PP ॥/ content would increase the spacing between charge groups thus weakening and modulating charge effects in intrinsically disordered proteins. To test this, we used the N -terminal region (1-93) of human p53 as a
model peptide. This region is ideal for our studies due to the large proline and alanine content, 22 and 12 residues respectively.

1.3 Project Goals

The goal of this project was to experimentally determine the effects of electrostatic interactions on IDP structure in the presence and absence of high PP ॥ content. CD was used to verify secondary structure and size exclusion chromatography was used to measure R_{h} for the wildtype protein, a mutant in which all 22 prolines were mutated to glycines (Pro $)$, and a mutant in which all 12 alanines were mutated to glycines (Ala). Each peptide and each experiment was measured at four pH s: 7.0, 6.0, 5.0, and 4.5.

At pH 7.0, all three of our peptides have a theoretical net charge of 14.99. This drops to 14.83 at $\mathrm{pH} 6.0,13.49$ at pH 5.0 , and 11.10 at pH 4.5 . If we assume electrostatic effects are directly correlated with IDP structure, we should see very little change in CD spectra or R_{h} moving from pH 7.0 to 6.0 for all three peptides, with a larger change as we move to pH 4.5. If our hypothesis that $\mathrm{PP}_{\|}$content modulates charge effects is correct, we should see a dramatically larger shift in R_{h} and CD spectra as we decrease the pH for the two mutants compared to the wildtype.

Our results matched our hypothesis. As we decreased pH , the WT decreased in size by $4.7 \AA$ (15\%) whereas the Ala mutant decreased by $4.3 \AA$ (14\%) and the Pro mutant decreased by $7.4 \AA$ (27\%).

CD spectroscopy was mostly used qualitatively to assess secondary structure. The CD spectra for the WT as a function of temperature had a peak at 221 nm , characteristic
of the $P P_{\| /}$helix ${ }^{41-43}$. As pH was decreased, this peak remained but was flattened. Similar results were observed for the Ala mutant. Since the Pro mutant is devoid of much of the PP || content seen in the other two, there wasn't much of a characteristic peak at 221 nm . As pH was decreased from 7.0 to 5.0 , the spectra flattened as expected. H owever, at pH 4.5, the spectra appeared random with no temperature dependence. By reverting the same sample back to pH 7.0, a normal temperature-dependent spectra was obtained.

In sum, our data from size exclusion chromatography and CD support our hypothesis that $\mathrm{PP}_{\|}$content modulates charge effects in intrinsically disordered proteins. While net charge certainly plays a role, it appears to be secondary to $\mathrm{PP}_{॥}$ content. It also appears that alanine, while calculated to be a prominent disorder-promoting residue in two of the three published $\mathrm{PP}_{\|}$propensity scales, has less of an effect on $\mathrm{PP}_{\|}$structure than expected.

II. MATERIALS AND METHODS

2.1 Materials

W ater used for reagents and growth media was filtered and deionized using an EM D M illipore Milli-Q Integral 3 water purification system (Billerica, MA). Equipment and growth media were sterilized using a H irayama HICLAVE HV-50 autoclave (K asukabe-Shi, Japan). All agar plates were incubated in a VW R 120 V forced air microbiological incubator (Radnor, PA). All broth cultures were incubated in a Thermo Fisher Scientific M axQ 5000 floor-model shaker (W altham, M A). Bacterial cells were lysed using a Branson Sonifier S-450A (Danbury, CT). Nickel affinity chromatography, ion exchange chromatography, and size exclusion chromatography were all performed using a Bio-Rad Biologic LP low pressure chromatography system (Hercules, CA). A Beckman Coulter $\Phi 510 \mathrm{pH}$ meter was used to adjust the pH of all solutions (Brea, CA). A\&D GH-200 analytical balance was used to weigh all materials and reagents (Tokyo, Japan). Degassing and vacuum filtration were performed using a W elch DryFast 2032 Ultra Diaphragm Pump (Niles, IL). CD spectroscopy was performed using a Jasco J-710 spectropolarimeter equipped with a Jasco spectropolarimeter power supply, and Jasco PFD-425S Peltier (Easton, M D).

All chemicals and reagents used were ACS grade or higher. Culture tubes used in this project were VW R disposable $16 \times 100-\mathrm{mm}$ borosilicate. W ooden applicators were
from M edline Industries (M undelein, IL). All dialysis was performed using Spectrum Labs Spectra/Por tubing with a 12-14 kD molecular weight cut-off (Rancho Dominguez, CA). M olecular weights for p53(1-93) variants and folded protein standards were calculated from the primary sequence using the ExPA Sy ProtParm tool ${ }^{44}$.

All centrifugation steps were carried out using a Thermo Fisher Scientific Sorvall LYNX 6000 Superspeed centrifuge unless otherwise noted.

2.2 Sequences

The intrinsically disordered N-terminus of the human tumor suppressor protein p53, containing a transactivation domain (TAD; residues 1-60) and an adjacent prolinerich region (PRR; residues 61-93) ${ }^{32}$, was used as a model peptide for this project (WT). The amino acid sequence was taken from GenBank entry AAA 59989.1 ${ }^{45}$ as shown in Figure 2.1.

$$
\begin{array}{rlllll}
1 & \text { MEEPQSDPSV } & \text { EPPLSQETFS } & \text { DLWKLLPENN } & \text { VLSPLPSQAM } & \text { DDLMLSPDD } \\
51 & \text { EQWFTEDPGP } & \text { DEAPRMPEAA } & \text { PPVAPAPAAP } & \text { TPAAPAPAPS } & \text { WPL }
\end{array}
$$

Figure 2.1. Sequence for the intrinsically disordered \mathbf{N}-terminus of the human tumor suppressor protein p53(1-93) WT. Green lettering represents the transactivation domain while orange lettering represents the proline-rich region.

Two mutant p53(1-93) peptides were used as well. One in which all 12 alanines were replaced with glycines (Ala^{-}) and one in which all 22 prolines were replaced with glycines (Pro-). These sequences are shown in Figures 2.2 and 2.3, respectively.

```
1 ~ M E E P Q S D P S V ~ E P P L S Q E T F S ~ D L W K L L P E N N ~ V L S P L P S Q G M ~ D D L M L S P D D I ~
5 1 \text { EQWFTEDPGP DEGPRMPEGG PPVGPGPGGP TPGGPGPGPS WPL}
```

Figure 2.2. Sequence for p53(1-93) Ala. Green lettering represents the transactivation domain while orange lettering represents the proline-rich region. M utation sites are bolded and underlined.

```
    1 MEEGOSDGSV EGGLSQETFS DLWKLLGENN VLSGGGSQAM DDLMMSGDDI
5 1 \text { EQWFTEDGGG DEAGRMGEAA GGVAGAGAAG TGAAGAGAGS VGL}
```

Figure 2.3. Sequence for p53(1-93) Pro: Green lettering represents the transactivation domain while orange lettering represents the proline-rich region. M utation sites are bolded and underlined.

2.3 Expression and Purification of Recombinant p53(1-93)

2.3.1 Cloning and Transformation

The following methods are for the WT peptide. The cloning and transformation procedures were identical for the Ala and Pro mutants.

The sequence in Figure 2.1 was synthesized and cloned into a pJ 404 expression vector by DNA 2.0 (M enlo Park, CA). The plasmid contains a high-copy origin of replication, a gene that confers ampicillin resistance (ampr), and a gene that codes for the lactose repressor protein (lacl). The gene coding for p53(1-93) WT plus an N-terminal $6 x$ histidine-tag and thrombin cut site was placed under the control of an isopropyl β-D-1-thiogalactopyranoside(IPTG) inducibleT5 promoter. Nucleotide sequences for all three plasmids are shown in Figures 2.4 - 2.6 at the end of this chapter.

Upon receipt, the vial containing 2-5 $\mu \mathrm{g}$ plasmid DNA was centrifuged for 2 minutes at $2,000 \times \mathrm{g}$ using a Beckman Coulter M icrofuge 16 centrifuge. The plasmid DNA was then solubilized in $200 \mu \mathrm{~L}$ DNA grade sterile water (final concentration 10 $\mathrm{ng} / \mu \mathrm{L})$ and allowed to incubate at room temperature for 10 minutes. The plasmid DNA was gently mixed by pipetting, then transferred to $5-\mu \mathrm{L}$ aliquots and stored at $-80^{\circ} \mathrm{C}$.

A $50-\mu \mathrm{L}$ aliquot of E . coli BL21 (DE3) pLysS competent cells by EM D M illipore were thawed on ice for 10 minutes. Transformation was achieved by adding $2.5 \mu \mathrm{~L}$
plasmid DNA and gently flicking 1-3 times to mix. The mixture was allowed to incubate on ice for at least 5 minutes. The cells were then heat shocked for exactly 30 seconds in a $42^{\circ} \mathrm{C}$ water bath, then immediately returned to ice for an addition 2 minute incubation. After ice incubation, $250 \mu \mathrm{~L}$ of super optimal broth with catabolite repression (SOC) media was added to the cells. The cells were then incubated at $37^{\circ} \mathrm{C}$ for 60 minutes at 225 RPM.

After the outgrowth incubation, the cells were spread on Lysogeny Broth (LB) agar plates containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin (LB+Amp). Three plates were used to maximize transformant recovery with $50 \mu \mathrm{~L}$ pipetted on the first, $100 \mu \mathrm{~L}$ on the second, and the remainder $(\sim 150 \mu \mathrm{~L})$ on the third. A glass spreader was dipped in 100% ethanol and flamed to sterilize. U pon cooling, the spreader was quenched on the agar, and the broth was gently spread on all three plates. Each plate was incubated $15-24$ hours at $37^{\circ} \mathrm{C}$.

Using a sterile wooden applicator stick, a single colony from one of the plates was transferred to a culture tube containing 3 mL LB+Amp. The tube was incubated 15-24 hours at $30^{\circ} \mathrm{C}$ with 170 RPM shaking. Glycerol stocks were made by combining $750 \mu \mathrm{~L}$ of the overnight culture with $250 \mu \mathrm{~L}$ of 50% (v/v) glycerol in a $2-\mathrm{mL}$ cryovial. The cryovial was then briefly vortexed and stored at $-80^{\circ} \mathrm{C}$.

2.3.2 Protein Expression

The following methods are for p53(1-93) WT. The expression procedures were identical for the Ala and Pro mutants.

Using the previously created glycerol stock, an LB+Amp agar plate was streaked for isolation using a sterile wooden applicator stick. The plate was incubated at $37^{\circ} \mathrm{C}$ for 15-24 hours.

The next day, a single colony was transferred to a culture tube containing 3 mL $\mathrm{LB}+\mathrm{Amp}$. The tube was incubated $25-24$ hours at $30^{\circ} \mathrm{C}$ with 170 RPM shaking.

The following day, 2 mL of the overnight broth culture was subcultured into a 2-L flask containing 1 L LB+A mp. The cells were incubated at $37^{\circ} \mathrm{C}$ with 170 RPM shaking until mid-exponential phase ($0.6 \leq \mathrm{OD}_{600} \leq 0.7$).

U pon reaching the correct optical density, 1 mL 0.5 M IPTG was added to the cell culture (final concentration 0.5 mM) to induce protein expression. The cells were incubated at $37^{\circ} \mathrm{C}$ with 170 RPM shaking for four hours. The cells were then centrifuged at $30,240 \times \mathrm{g}$ for 15 minutes at $4^{\circ} \mathrm{C}$ using a $\mathrm{F} 14-6 \times 250 \mathrm{y}$ rotor. The supernatant was discarded and cell pellets were stored at $-80^{\circ} \mathrm{C}$.

2.3.3 Nickel Affinity Chromatography

Cell pellets were thawed and solubilized in Lysis Buffer (6 M guanidine, 10 mM tris, $100 \mathrm{mM} \mathrm{Na} \mathrm{NO}_{4}, \mathrm{pH} 8.0$) then sonicated on ice at 80% duty, 50% output. Sonication was done using four cycles of 90 seconds on and 90 seconds off. The cell lysate was centrifuged at max speed $(33,746 \times \mathrm{g})$ for 60 minutes at $4^{\circ} \mathrm{C}$.

W hile the cells were centrifuging, a $1.5 \times 15-\mathrm{cm}$ Bio-Rad Econo-column was filled with 13 mL HIS-Select nickel affinity gel from Sigma-Aldrich (St. Louis, M O). The column was attached to a low pressure chromatography system and equilibrated with Equilibration Buffer (6 M guanidine, 10 mM tris, $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{PO}_{4}, \mathrm{pH} 8.0$) until the conductivity and absorbance at $280 \mathrm{~nm}\left(\mathrm{~A}_{280}\right)$ leveled off.

After centrifugation, the supernatant was loaded on the nickel affinity column, then washed with 45 mL of W ash Buffer $\# 1$ (6 M guanidine, 10 mM tris, $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{PO}_{4}$, pH 8.0). The column was then washed with 40 mL of W ash Buffer \#2 (10 mM tris, 100 $\mathrm{mM} \mathrm{Na} 2_{2} \mathrm{PO}_{4}, \mathrm{pH} 8.0$) to remove all traces of guanidine. The column was then washed with 40 mL of W ash Buffer \#3 (10 mM tris, $100 \mathrm{mM} \mathrm{Na}_{2} \mathrm{PO}_{4}$, imidazole 10 mM , pH 8.0) to remove any proteins with weak Ni^{2+} affinity. The target protein was then eluted with 40 mL Elution Buffer (10 mM tris, $100 \mathrm{mM} \mathrm{Na} \mathrm{PO}_{4}$, imidazole $10 \mathrm{mM}, \mathrm{pH} 4.3$). Collection of the eluate began as soon as the conductivity began spiking. The eluate was collected in a sterile $15-\mathrm{mL}$ conical until the A_{280} reading hit a local minimum. The eluate
was then dialyzed overnight at $4^{\circ} \mathrm{C}$ against tris-buffered saline (TBS; 20 mM tris, 100 mM $\mathrm{NaCl}, \mathrm{pH} 8.0)$.

An example chromatograph for each p53(1-93) variant is shown in Figures 2.7 2.9 at the end of this chapter.
2.3.4 Ion Exchange Chromatography

The day before running the ion exchange column, 13 -mL of DEAE Sephacel from GE Healthcare (Chicago, IL) was poured into a sterile $50-\mathrm{mL}$ conical tube and allowed to settle overnight.

The next day, the eluate was removed from dialysis and placed in a sterile $15-\mathrm{mL}$ conical tube. A $30 \mu \mathrm{~L}$ aliquot (50 U) of recombinant human thrombin from SigmaAldrich was rapidly thawed and added to the protein sample. The conical was wrapped with tin foil and taped to a Thermo Fisher Scientific Large 3-D rotator. Thrombin digestion of the HIS-tag proceeded for 4 hours at room temperature with gentle rotation (speed 2).

During thrombin digestion, the ethanol from the DEAE media was decanted and replaced with 30 mL Column M edia Buffer (20 mM sodium acetate, 25 mM NaCl , pH 3.5). The media was placed into a slurry and poured into a $50-\mathrm{mL}$ beaker. The beaker was loosely covered with paraffin film and degassed for at least 30 minutes. A fter degassing, the DEAE media was gently poured into a $1.5 \times 15-\mathrm{cm}$ Bio-Rad Econo-column.

The column was attached to a low pressure chromatography system and equilibrated with Equilibration Buffer (20 mM sodium acetate, $25 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 4.8$) until the conductivity and A_{280} leveled off.

Once digestion was completed, the protein sample was loaded on the DEAE column, then washed with 50 mL W ash Buffer $50(20 \mathrm{mM}$ sodium acetate, 50 mM NaCl , pH 4.8) to remove any weakly binding proteins. The column was then washed with 50 mL W ash Buffer 150 (20 mM sodium acetate, $50 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 4.8$). The target protein was then eluted with 50 mL Elution Buffer (20 mM sodium acetate, $400 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 4.8). Collection of the eluate began as soon as the conductivity began spiking. The eluate was collected in a sterile $15-\mathrm{mL}$ conical until the A_{280} reading began to level out. The eluate was then dialyzed overnight at $4^{\circ} \mathrm{C}$ against phosphate-buffered saline (10 mM sodium phosphate, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$).

An example chromatograph for each p53(1-93) variant is shown in Figures 2.10 -
2.12 at the end of this chapter.

2.3.5 Protein Concentration and Storage

Due to the high concentration requirements of downstream assays, the protein needed to be concentrated before moving on. The eluate was removed from dialysis and evenly aliquoted into 2-mL microcentrifuge tubes. The tubes were placed in a Thermo Fisher Scientific Savant DNA 120 SpeedV ac and run without heat until the volume of
each microcentrifuge tube was $\sim 0.2 \mathrm{~mL}$. The samples were combined and dialyzed at $4^{\circ} \mathrm{C}$ overnight against phosphate-buffered saline (10 mM sodium phosphate, 100 mM NaCl , pH 7.0).

2.3.6 Gel Electrophoresis

Purify of each protein purification was assessed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE). A mixture of $20 \mu \mathrm{~L}$ protein, $19 \mu \mathrm{~L}$ Laemmli Sample Buffer from Bio-Rad, and $1 \mu \mathrm{~L} \beta$-mercaptoethanol was created in a 500 $\mu \mathrm{L}$ microcentrifuge tube. The mixture was heated for 5 minutes at $95^{\circ} \mathrm{C}$ using an Eppendorf Thermomixer R (H amburg, Germany). During heating, a Bio-Rad 4-20\% Criterion Tris-HCl gel was placed into a Bio-Rad Criterion Cell. The unit was filled with $700 \mu \mathrm{~L}$ Running Buffer (250 mM tris, 192 mM glycine, 0.1% SDS, pH 8.3). After heating, $7 \mu \mathrm{~L}$ of protein was loaded into one of the wells. Four microliters of Bio-Rad Precision Plus Protein Standards were added to one or two other wells. The remainder of the wells were loaded with $4 \mu \mathrm{~L}$ of Laemmli Sample Buffer to ensure even electrophoresis.

The Criterion Cell was attached to a Bio-Rad PowerPac HV power supply. The gel was electrophoresed at 200 V for approximately 50 minutes at $4^{\circ} \mathrm{C}$.

2.3.7 Silver Staining

Due to the high negative charge of both Coomassie Blue and p53(1-93), gels were silver stained instead of Coomassie stained.

Upon completion of electrophoresis, the gel was soaked in Fixation Solution (30\% ethanol, 10% acetic acid) for 30 minutes. The gel was then rinsed twice with 20% ethanol for 10 minutes each. The gel was then rinsed in water for 10 minutes each.

The gel was soaked in Sensitizing Solution (0.02% w/v sodium thiosulfate) for exactly 1 minute. The gel was then rinsed twice with water for 1 minute each.

The gel was soaked in Impregnation Solution (12 mM silver nitrate) for 20 minutes. The gel was then rinsed with water for exactly 10 seconds.

The gel was soaked in Basic Developer (3% w/v sodium carbonate, 0.025\% formalin $v / v, 0.00125 \%$ sodium thiosulfate) for 3-10 minutes with careful monitoring. Once the correct contrast was met, the Basic Developer was discarded and the gel was soaked in Stop Solution (2% acetic acid, 264 mM Tris) for 30 minutes. The gel was then rinsed twice in water for at least 30 minutes each.

The gel was imaged with a Bio-Rad M olecular Imager ChemiD oc XRS+ imaging system. Example gels for each p53(1-93) variant are shown in Figure 2.13 at the end of this chapter.

2.4 Circular Dichroism Spectroscopy

CD spectroscopy was used to gain insight to the secondary structure, namely the PP ॥ propensity, of each p53(1-93) variant.

A Hellma Analytics High Precision quartz cell with 1-mm path length was filled with $300 \mu \mathrm{~L}$ PBS and placed in a JA SCO J-710 spectropolarimeter (Easton, M D). The spectropolarimeter was purged with compressed N_{2} gas provided by Airgas (Radnor, PA) at a pressure of $22,000 \mathrm{PSI}$ for 15 minutes. After the spectropolarimeter warmed up, a Geoglobal Partners FP155 water pump (Palm Beach, FL) was engaged and a JASCO PFD425 S Peltier was set to $20^{\circ} \mathrm{C}$. The N^{2} pressure was decreased to $17,000 \mathrm{PSI}$ and a blank file was created covering an absorption range of $195-250 \mathrm{~nm}$. The water pump, Peltier, and spectropolarimeter were turned off in that order. The N^{2} pressure was decreased to $12,000 \mathrm{PSI}$ and the machine was purged for an additional 15 minutes.

The same quartz cell was cleaned and filled with $300 \mu \mathrm{~L} 53(1-93) \mathrm{WT}$ at a concentration of $0.170 \mathrm{mg} / \mathrm{mL}$. The cell was placed in the spectropolarimeter, which was then purged with N^{2} gas for 15 minutes at $22,000 \mathrm{PSI}$. The spectropolarimeter was turned on, followed by the water pump and Peltier.

JA SCO Spectra M anager software was used to record spectropolarimeter measurements with the following settings. Standard sensitivity, 0.5 nm pitch, continuous
$20 \mathrm{~nm} / \mathrm{min}$ scanning, 2.0 second response, and 1.0 nm band width. Absorption was measured from 197 nm to 245 nm with 8 accumulations. Temperature was set to $5^{\circ} \mathrm{C}$.

The temperature within the spectropolarimeter was allowed to equilibrate for 10 minutes before measurements began. Before the first temperature scan $\left(5^{\circ} \mathrm{C}\right)$, the N^{2} pressure was decreased to $17,000 \mathrm{PSI}$. A fter the first scan, the N^{2} pressure was decreased to $12,000 \mathrm{PSI}$ where it remained for the remainder of the experiment. CD spectra was measured from $5^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$ in 5° increments with careful HT voltage monitoring. U pon a voltage reading greater than 700 V , the absorption range was decreased for the next temperature scan.

After all temperature scans were complete, the Peltier and water pump were turned off followed by the spectropolarimeter. The equipment was purged for an additional 15 minutes with N^{2} gas before the quartz cell was removed.

All CD measurements were converted to mean residue ellipticity (MRE) using the formula below where CD is circular dichroism (degrees), M W is molecular weight ($\mathrm{g} / \mathrm{dmol}$), I is path length (cm), n is residues (res), and c is concentration $(\mathrm{g} / \mathrm{mL})$.

$$
[\theta]_{M R E}=\frac{C D \cdot M W}{l \cdot c \cdot n} \operatorname{deg} \mathrm{~cm}^{2} \mathrm{dmol}^{-1} r e s^{-1}
$$

2.4.1 M easuring M utants and Charge Effects

A 1-mL aliquot of $\mathrm{p} 53(1-93) \mathrm{WT}$ was dialyzed at $4^{\circ} \mathrm{C}$ overnight against 10 mM sodium phosphate, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 6.0$. The above procedure for CD spectroscopy was repeated to obtain a spectra at pH 6.0 . This entire procedure was repeated until CD spectra was obtained for the WT, Ala, and Pro at pH s of $7.0,6,0,5.0$, and 4.5 each.

2.5 Size Exclusion Chromatography

SEC was used to extrapolate the R_{h} of each p53(1-93) variant from by comparing their partition coefficients $\left(\mathrm{K}_{\mathrm{D}}\right)$ to a set of folded protein standards. Chicken egg albumin, bovine carbonic anhydrase, Staphylococcal nuclease, and horse heart myoglobin were chosen as folded standards due to their wide R_{h} range. The R_{h} for each folded protein standard was estimated from the crystallographic structure by calculating the maximum distance between any two alpha carbons on a single subunit (Table 2.1).

Table 2.1. Properties of folded protein standards.

Folded Protein Standard	PD B	Residues	M.W. (D a)	$\mathbf{R}_{\text {h,crys }}(\AA \AA)$
Chicken egg albumin	10va	386	$42,861.3$	35.8
Bovine carbonic anhydrase	1 l 93	259	$28,982.5$	27.3
Staphylococcal nuclease	1 stn	149	$16,811.2$	21.2
H orse heart myoglobin	2058	153	$16,951.4$	21.8

2.5.1 Preparation of Running Buffer

Eight liters of PBS was filtered through GE H ealthcare W hatman 1 qualitative filter paper using a filter flask and a W elch DryFast Ultra vacuum pump. The buffer was allowed to sit for 10 minutes with the vacuum running to degas. The degassed PBS was transferred to a 10-L beaker and placed on an elevated benchtop.

2.5.2 Preparation of Size Exclusion M edia

Eight grams of GE H ealthcare Sephadex G-75 media was hydrated with filtered and degassed PBS to a volume of $\sim 150 \mathrm{~mL}$ and allowed to swell overnight at room temperature. The next day, a volume of PBS was gently pipetted out to leave a 75:25 media:solvent ratio. The media was placed in suspension, transferred to a $100-\mathrm{mL}$ beaker, and degassed for 3 hours.

After thorough degassing, the media was placed in suspension and poured in one continuous motion into a $1.5 \times 30-\mathrm{cm}$ Bio-Rad Econo-column. The bottom of the column was attached to a low pressure chromatography system while the top of the column was attached to a $90-\mathrm{cm}$ segment of Saint-Gobain Tygon tubing with an inner diameter of 1.59 mm and an outer diameter of 3.18 mm (Courbevoie, France). The other end of Tygon tubing was anchored to the bottom of the 10-L beaker containing filtered and degassed PBS to create a syphon. Both stopcocks were opened and the column was allowed to pack overnight.
2.5.3 Preparation of Folded Protein Standards, Blue Dextran, and DN P-Aspartate

Albumin, carbonic anhydrase, Staphylococcal nuclease, and myoglobin were chosen as protein standards

A vial of bovine carbonic anhydrase (Sigma-Aldrich C5024) was centrifuged for 2 minutes at $2,000 \times \mathrm{g}$ to remove any protein in or around the cap. The lyophilized protein
was hydrolyzed with 5 mL PBS and filtered with a Pall Acrodisc LC 25 mm syringe filter with $0.2 \mu \mathrm{~m}$ polyvinylidene fluoride (PVDF) membrane (New York, NY). The filtered protein was stored as $200 \mu \mathrm{~L}$ aliquots at $-80^{\circ} \mathrm{C}$.

Chicken egg albumin (Thermo-Fisher Scientific Acros 40045) was hydrated with PBS to a concentration of $2 \mathrm{mg} / \mathrm{mL}$. The hydrated protein was filtered with a $0.2 \mu \mathrm{~m}$ PVDF membrane and stored for short-term use at $4^{\circ} \mathrm{C}$.

H orse heart myoglobin (Sigma-Aldrich M 1882) was hydrated with PBS to a concentration of $20 \mathrm{mg} / \mathrm{mL}$. The hydrated protein was filtered with a $0.2 \mu \mathrm{~m}$ PVDF membrane and stored for short-term use at $-80^{\circ} \mathrm{C}$.

Recombinant Staphylococcal nuclease was purified by David Engelhardt as previously published ${ }^{46}$.

2.5.4 Size Exclusion M easurements

Each p53(1-93) variant and each folded protein standard, with the exception of albumin, was measured individually in the following manner. Immediately before running a sample, $90 \mu \mathrm{~L}$ BD-DNP-Asp ($3 \mathrm{mg} / \mathrm{mL}$ Blue Dextran D5751, $0.75 \mathrm{mg} / \mathrm{mL}$ DNP-Aspartate) was mixed with $10 \mu \mathrm{~L}$ of protein. The mixture was then pipetted directly to the top of the matrix bed, then covered with 3 mL PBS. The column was reconnected to the PBS reservoir to start the syphon. The start time was noted. Each p53(1-93) variant and each folded protein standard was run a minimum of three times.

Due to the large R_{h} of both albumin and blue dextran, albumin was run separately.

A $90 \mu \mathrm{~L}$ sample of BD-DNP-Asp was measured, followed immediately by a $10 \mu \mathrm{~L}$ sample of albumin. This was repeated a minimum of three times.

An example chromatograph is shown in Figure 2.13 at the end of this chapter.

2.5.5 M easuring Charge Effects

The entire procedure was repeated with running buffer at pH 6.0, 5.0, and 4.5 with the following changes. Staphylococcal nuclease was used as a control as its structure is stable from pH 7.0 to pH 4.5 ; it doesn't begin acid denaturation until pH 4.0 (Figure 2.15) ${ }^{46}$. Similar results were found in the literature for chicken egg albumin and bovine carbonic anhydrase ${ }^{47,48}$. W ong et al. reported that bovine carbonic anhydrase does not begin denaturing until pH 4.37. Ahmad and Salahuddin reported that chicken egg albumin begins acid denaturation at pH 3.5^{48}. Horse heart myoglobin, however, undergoes significant unfolding at $\mathrm{pH} 4.5^{49}$. Thus, myoglobin was not used as a standard for pH 4.5 measurements.
2.5.6 K_{D} and R_{h} Determination
K_{D} for each IDP and folded protein standard was calculated according to the equation below.

$$
K_{D}=\frac{V_{E}-V_{0}}{V_{T}-V_{0}}
$$

V_{0} is the void volume, the volume in which blue dextran elutes from the volume. V_{E} is the elution volume, the volume in which the protein of interest elutes from the column. V_{T} is total volume, the volume in which DNP-Aspartate elutes from the column.

Our project found that $K_{D} S$ are only interpretable within the context of the same column. However, within the same SEC experiment (no resuspension of column media), $K_{D} s$ are very repeatable. H ence a full set of standards were run for each p53(1-93) variant at each pH .

The crystallographic R_{h} of each protein standard (Table 2.1) was plotted against their experimental K_{D} value. Theformula for the regression line, shown below, was used to extrapolate the R_{h} for each p53(1-93) variant.

$$
R_{h}=m_{r e g} K_{D}+b_{r e g}
$$

Lin's concordance correlation $\left(\rho_{c}\right)$ was calculated for the set of folded protein standards and the IDPs using the R programming language and the epiR package (available: cran.r-project.org/web/packages/epiR) ${ }^{50}$. A 95\% confidence interval was chosen.

2.6 Additional Figures

	AATTGTGAGC	GGATAACAAT	TACGAGCTTC	ATGCACAGTG	AAATCATGAA	
61						
121	GG	TA	TTGGTTAAC		TA	
181	CATCATCACC	ATCATCACAG		GTCCCACGTG	GTTCTATGGA	
241						
301	CTG		GT			
361	AGCCCGG	ACATCGAGCA	AC	GAAGATCCGG	GTCCGGACGA	GGCGCCACGT
481	GCTCCTGC	CGAGCTGGC	GCTGTAACT	AA	gCGACACA	AATTTATTCT
541	AAATGATAAT	AAATACTGA	ACATCTT	GTAT	GT	TTATCGTTGA
	CATGT	TTTGATATC		TCCCT		ATTTATTTC
661	TTAATTCTCT	TTAACAAAC	gaAATATT	TACAA	aAATCATAA	GA
721	ATAGTTTAAT	TATAGGTG	CATCAATCG	ACG	TATCTTATT	AAAGTGCGTT
781	GC	CATTTATAAG	GT	TCTCATATAT	CAAGCAAAG	GACAGGCGCC
84	CTTAAATATT	CTGACAAAT	CTCTTTCCC	AAACTCCCCC	CATAAAAAA	CCCGCCGAAG
901	C	CGITATTTG	GGATTAACG	TTACTCGTTA	TCAGAACCGC	CCAGGGGGCC
96	CGAGCTTAAG	CTGGCCGT	GIITIACAAC	cagaatgag	ITGTAGAA	GG
1021	CCATCCGTCA	GGGCCTTC	GCTTAG	TGCCTGGCA	TTCCCTAC	CC
	GC	TCACTGACTC	G	GTCGTTCGGC	TGCGGCGAGC	
114	CACTCAAAGG	CGGTAA	GTTATCCACA	ATCAGGGG	ATAACGCAGG	TG
1	AG	GCCAGCAAAA	GCCAGGAAC	GTAAAAAGG	CGCGTTGCT	GGCGITTTTC
	C	GCCCCCCTGA	CGAGCATCAC	AAAAATCGAC	GCTCAAGTC	
13	aAcccgacag	ACTATAAAG	ATACCAGGCG	TTTCCCCCTG	AAGCTCCCT	GIGEGCIT
1381	CTGTTCCGA	T	ACCGGATAC	Grccact	TCTCCCTTC	GGGAAGCGTG
	GCGCT	ATAGCTCACG	CTGTAGGTAT	CTCAGTTCGG	TGTAGGTCGT	
1501	CTGGGCTGTG	dcacgaac	CCCCGITCAG	CCGACCG	GCGCCTTATC	GG
	CGTC	caACCCGG	AGACACGAC	TATCGCC	GGCAGCAG	AC
1621	AGGATTAGCA	GA	TGIAGGCGGI	stacagag	TCITgatg	Gggoctal
1	TACGGCTACA	tagaagaa	AGTATTTGGT	TCTGCGCTC	GCTGAAGCC	GTTACCTTC
	GGAAAAAGAG	TGGTAGCT	TTGATCCGGC	AACAAACCA	CGCTGGTAG	GG
18	TITGITGGCA	Agcagcagat	TACGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	tccitigatc
1861	TITTCTACGG	GGTCTGACGC	TCAGTGGAAC	GACGCGCGCG	TAACTCACGT	AAGGGAT
	TGGTCATGAG	TCACTGCCCG	CTITCCAGTC	GGGAAACCTG	TCGTGCCAGC	GCATTAATG
198	AATCGGCCAA	CGcGç	GAgGcogl	GCGIATIGGG	CGCAGG	GI
2041	TCACCAGTGA	GACTGGCAAC	agctgattgc	CCTTCACCGC	CTGGCCC	GA

Figure 2.4. Nucleotide sequence for p53(1-93) WT plasmid. The red region (151-517)
is the gene for $\mathrm{p} 53(1-93)$ WT plus N -terminal 6 x histidine-tag and thrombin cut site. The
blue region (1126-1929) is the high-copy origin of replication. The green region (1940-
3010) represents lacl. The gold region (3105-3953) represents ampr.

2161	GCGGGATATA	ACATGAGCTA	tCTtcGGTAT	CGTCGTATCC	CACTACCGAG	ATATCCGCAC
2221	CAACGCGCAG	CCCGGACTCG	GTAATGGCGC	GCATTGCGCC	CAGCGCCATC	TGATCGTTGG
2281	CAACCAGCAT	CGCAGTGGGA	ACGATGCCCT	CATTCAGCAT	TTGCATGGTT	TGTTGAAAAC
2341	CGGACATGGC	ACTCCAGTCG	CCTTCCCGTT	CCGCTATCGG	CTGAATTTGA	TTGCGAGTGA
2401	GATATTTATG	CCAGCCAGCC	AGACGCAGAC	GCGCCGAGAC	agaactiant	GGGCCCGCTA
2461	ACAGCGCGAT	TTGCTGGTGA	CCCAATGCGA	CCAGATGCTC	CACGCCCAGT	CGCGTACCGT
2521	CCTCATGGGA	gaAaATAATA	ctgitgatgg	GTGTCTGGTC	AGAGACATCA	AGAAATAACG
2581	CCGGAACATT	AGTGCAGGCA	GCTTCCACAG	CAATGGCATC	CTGGTCATCC	AGCGGATAGT
2641	TAATGATCAG	CCCACTGACG	CGITGCGCGA	GAAGATTGTG	CACCGCCGCT	TTACAGGCTT
2701	CGACGCCGCT	TCGITCTACC	atcgacacca	CCACGCTGGC	ACCCAGTTGA	tcgGcgcgag
2761	ATTTAATCGC	CGCGACAATT	TGCGACGGCG	CGTGCAGGGC	CAGACTGGAG	GTGGCAACGC
2821	CAATCAGCAA	CGACTGITTG	CCCGCCAGT	GTTGTGCCAC	GCGGTTGGGA	ATGTAATTCA
2881	GCTCCGCCAT	CGCCGCTTCC	ACTITTTCCC	GCGITTTCGC	AGAAACGTGG	CTGGCCTGGT
2941	TCACCACGCG	GGAAACGGTC	TGATAAGAGA	CACCGGCATA	CTCTGCGACA	TCGTATAACG
3001	TTACTGGTT	CATATTCACC	ACCCTGAATT	GACTCTCTTC	CGGGCGCTAT	CATGCCATAC
3061	CGCGAAAGGT	TTTGCGCCAT	TCGATGGCGC	GCCGCTTACC	AATGCTTAAT	CAGTGAGGCA
3121	CCTATCTCAG	CGATCTGTCT	ATTTCGITCA	TCCATAGTTG	CCTGACTCCC	CGTCGTGTAG
3181	ATAACTACGA	TACGGGAGGG	CTTACCATCT	GGCCCCAGCG	CTGCGATGAT	ACCGCGAGAA
3241	CCACGCTCAC	CGGCTCCGGA	titatcagca	ATAAACCAGC	CAGCCGGAAG	GGCCGAGCGC
3301	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA	TTAATTGTTG	CCGGGAAGCT
3361	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	CGCAACGTTG	TTGCCATCGC	TACAGGCATC
3421	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	TCATTCAGCT	CCGGITCCCA	acgatcalg
3481	CGAGTTACAT	GATCCCCCAT	GTTGTGCAAA	AAAGCGGTTA	GCTCCTTCGG	TCCTCCGATC
3541	GTTGTCAGAA	GTAAGTTGGC	CGCAGTGTTA	TCACTCATGG	TTATGGCAGC	ACTGCATAAT
3601	tCTCTTACTG	TCATGCCATC	CGTAAGATGC	TITTCTGTGA	CTGGTGAGTA	CTCAACCAAG
3661	TCATTCTGAG	AATAGTGTAT	GCGGCGACCG	AGTTGCTCTT	GCCCGGCGTC	AATACGGGAT
3721	AATACCGCGC	CACATAGCAG	AACTTTAAAA	GTGCTCATCA	TTGGAAAACG	TTCTTCGGGG
3781	CGAAAACTCT	CAAGGATCTT	ACCGCTGTTG	AGATCCAGTT	CGATGTAACC	CACTCGTGCA
3841	CCCAACTGAT	CTTCAGCATC	tITTACTTTC	ACCAGCGITT	CTGGGTGAGC	AAAAACAGGA
3901	AGGCAAAATG	CCGCAAAAAA	GGGAATAAGG	GCGACACGGA	AATGITGAAT	ACTCATATTC
3961	TTCCTITTTC	AATATTATTG	AAGCATTTAT	CAGGGTTATT	GTCTCATGAG	CGGATACATA
4021	TTTGAATGTA	TTTAGAAAAA	TAAACAAATA	GGGGTCAGTG	TTACAACCAA	TTAACCAATT
4081	CTGAACATTA	TCGCGAGCCC	ATTTATACCT	GAATATGGCT	CATAACACCC	CTTGITTGCC
4141	TGGCGGCAGT	AGCGCGGTGG	TCCCACCTGA	CCCCATGCCG	AACTCAGAAG	TGAAACGCCG
4201	TAGCGCCGAT	GGTAGTGTGG	GGACTCCCCA	TGCGAGAGTA	GGGAACTGCC	AGGCATCAAA
4261	taAaACGAA	GGCTCAGTCG	AAAGACTGGG	CCTITCGCCC	GGGCTAATTA	TGGGGTGTCG
4321	CCCTT					

Figure 2.4, continued. Nucleotide sequence for p53(1-93) WT plasmid. The red
region (151-517) is the gene for p53(1-93) WT plus N -terminal 6 x histidine-tag and
thrombin cut site. The blue region (1126-1929) is the high-copy origin of replication.

The green region (1940-3010) represents lacl. The gold region (3105-3953) represents
ampr.

1	,	TCAACAAACC	C	TGAT GAGGG	C	
61	TGGTTGCCAA	CGATCAGATG	GCGCTGGGCG	CAATGCGCGC	CATTACCGAG	TCCGGGCTGC
121	GCGTTGGTGC	GGATATCTCG	GTAGTGGGAT	ACGACGATAC	GAAGATAGC	TCATGTTATA
181	TCCCGCC	AACCACCATC	AAACAGGATT	TTCGCCTGCT	GGGGCAAACC	AGCGTGGACC
241	仡	G	GGCGG	TGAAGGGCAA	G	C
301	GAAAAG	AATACCACC	CTGGCGCCCA	atacccana	CGCCTCTCCC	GG
361	CCGATTCATT	AATGCAGCTG	GCACGACAGG	TTTCCCGACT	GGAAAGCGGG	CAGTGACTCA
421	TGACCAAAAT	CCCTTAACGT	GAGTTACGCG	CGCGTCGTTC	CACTGAGCGT	CAGACCCCGT
481	AGAAAAGATC	AAAGGATCTT	CTTGAGATCC	T1111TCT	CGCGTA	GCTGCTTGCA
541	AACAAAA	CCACCGCTAC	CAGCGGTGG	T	GATCAAGAGC	TACCAACTCT
601	TITCCG	GTAACTGGCT	TCAGCAGAGC		AATACTGTTC	A
1	GCCGTAGTA	,	тCaAgaact	TGTAGCACCG	C	CGCTCTGCT
721	AATCCTGI	CCAGTGGCTG	CTGCCAGTGG	CGATAAGTCG	TGTCTTACCG	GGTTGGACTC
781	AAGACGATAG	TTACCGGATA	AGGCGCAGCG	GTCGGGCTGA	ACGGGGGGT	CGTGCACACA
841	GCCCAGCTTG	GAGCGAACGA	CCTACACCGA	ACTGAGATAC	CTACAGCGTG	AGCTATGAGA
9	AAGCGCCACG	CTTCCCGAAG	GGAGAAAGGC	cat	CCGG	GG
961	AACAGGAGAG	CGCACGAGGG	AGCTTCCAGG	GGGAAACGCC	TGGTATCTIT	T
1021	CGGGTITCGC		GTCG	ATITITGTGA	G	GAG
1081	CCTATGG	CGCCAGCA			CTGGCCTTIT	GCTGGCCTIT
1141	TGCTCACATG	TTCTTTCCTG	CGTTATCCCC	acala	GATAACCGTA	TTACCGCCTT
1201	TGAGTGAGCT	GATACCGCTC	GCCGCAGCCG	AACGACCGAG	CGCAGCGAGT	CAGTGAGCGA
1261	GGAAGCGGAA	GGCGAGAGTA	GGGAACTGCC	AGGCATCAAA	CTAAGCAGAA	GGCCCCTGAC
1321	GGATGGCCT	TTTGCGTTTC	TACAAACTCT	TTCTGTGT	TAAAACGACG	GCCAGTCTTA
13	AGCTCGGGCC	CCTGGGCGG	TTCTGATAAC	GTAATCG	CCGCAA	TAACGTAAA
1441	AACCCGCTTC	GGCGGGIIT	TITATGGGGG	GTTAGGG	AAAGAGCATT	GTCAGAATA
1501	TITAAGGGCG	CCTGTCACTT	TGCTTGATAT	ATGAGAATTA	TTTAACCTTA	TAAATGAGAA
1561	AAAAGCAACG	CACTITAAAT	AAGATACGTT	GCTITITCGA	TTGATGAACA	CCTATAATTA
1621	AACTATTCAT	CTATTATITA	TGATITITTG	TATATACAAT	ATITCTAGTT	TGTTAAAGAG
1681	AATTAAGAAA	ATAAATCTCG	AAAATAATAA	AGGGAAAATC	AGTITITGAT	ATCAAAATTA
1741	TACATGTCA	CGATAATACA	AAATATAATA	CAAACTATA	GATGTTATCA	GTATTTATTA
18	TCATTTAGAA	TAAATITTGT	GTCGCCCTTA	TTGTGAGCG	GATAACAATT	ACGAGCTTCA
1861	TGCACAGTGA	ATCATGAAA	AATTTATITG	CTITGTGAGC	GGATAACAAT	TATAATATGT
1921	GGAATTGTGA	GCGCTCACAA	TTCCACAACG	GTITCCCTCT	AGAAATAATT	TTGTTTAACT
1981	TTTAGGAGGT	AAAACATATG	CGCGGTAGCC	ACCACCATCA	CCATCACAGC	AGCGGTITAG
2041	TCCCACGTGG	TTCTATGGAA	GAACCGCAGA	GCGATCCGTC	GGTGGAGCCG	CCGTTGTCCC

Figure 2.5. Nucleotide sequence for p53(1-93) Ala* plasmid. The green region (3659-
413) represents lacl. The red region (1980-2346) is the gene for p53(1-93) Ala plus Nterminal $6 x$ histidine-tag and thrombin cut site. The blue region (417-1220) is the highcopy origin of replication. The gold region (2716-3573) represents ampr.

					G	
2161	CGAGCCAGGG	CATGGACGAC	CTGATGCTGA	GCCCGGATGA	tatcgagcaa	TGGITTACCG
2221	AGGATCCGG	TCCGGACGAA	GGCCCGCGTA	TGCCTGAGGG	TGGCCCACCG	GTTGGCCCTG
2281	GTCCGGGTGG	CCCGACCCCG	GGTGGTCCGG	GTCCAGGCCC	GAGCTGGCCG	CTGTAACTCG
2341	AGCCCCAAGG	GCGACACCCC	ATAATTAGCC	CGGGCGAAAG	GCCCAGTCTT	tcgactgagc
2401	CTTTCGTIT	ATTTGATGCC	TGGCAGTTCC	CTACTCTCGC	ATGGGGAGTC	CCCACACTAC
2461	CATCGGCGCT	ACGGCGITTC	ACTTCTGAGT	TCGGCATGG	GTCAGGTGGG	ACCACCGCGC
2521	TACTGCCGCC	AGGCAAACAA	GGGGTGTTAT	GAGCCATATT	CAGGTATAAA	TGGGCTCGCG
2581	ATAATGTTCA	GAATTGGTTA	ATTGGTTGTA	ACACTGACCC	CTATTTGTT	ATITTTCTAA
2641	ATACATTCAA	ATATGTATCC	GCTCATGAGA	CAATAACCCT	GATAAATGCT	TCAATAATAT
2701	TGAAAAAGGA	AGAATATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC	CTITITGGG
2761	GCATTTTGCC	TTCCTGTIT	TGCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA
2821	GATCAGTTGG	GTGCACGAGT	GGGTTACATC	GAACTGGATC	TCAACAGCGG	TAAGATCCTT
2881	gagagititc	GCCCCGAAGA	ACGITTTCCA	ATGATGAGCA	CTITTAAAGT	TCTGCTATGT
2941	GGCGCGGTAT	TATCCCGTAT	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT
3001	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	GGATGGCATG
3061	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC	GGCCAACTTA
3121	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTITGCACAA	CATGGGGGAT
3181	CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG
3241	CGTGACACCA	CGATGCCTGT	AGCGATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA
01	CTACTTACTC	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	CA
3361	GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTITA	TTGCTGATAA	ATCCGGAGCC
3421	GGTGAGCGTG	GTTCTCGCGG	TATCATCGCA	GCGCTGGGGC	cagatgGtaa	GCCCTCCCGT
1	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG	ATGAACGAAA	TAGACAGATC
3541	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAAGCGG	CGCGCCATCG	AATGGCGCAA
3601	aACCTTTCGC	GGTATGGCAT	GATAGCGCCC	GGAAGAGAGT	CAATTCAGGG	TGGTGAATA
3661	GAAACCAGTA	ACGTTATACG	ATGTCGCAGA	GTATGCCGGT	GTCTCTTATC	AGACCGITTC
3721	CCGCGTGGTG	AACCAGGCCA	GCCACGITTC	TGCGAAAACG	CGGGAAAAAG	TGGAAGCGGC
3781	GATGGCGGAG	CTGAATTACA	TTCCCAACCG	CGTGGCACAA	CAACTGGCGG	GCAAACAGTC
3841	GITGCTGATT	GGCGTTGCCA	CCTCCAGTCT	GGCCCTGCAC	GCGCCGTCGC	AAATTGTCGC
3901	gGCGATTAAA	TCTCGCGCCG	ATCAACTGGG	TGCCAGCGTG	GTGGTGTCGA	TGGTAGAACG
3961	AAGCGGCGTC	GAAGCCTGTA	AAGCGGCGGT	GCACAATCTT	CTCGCGCAAC	GCGTCAGTGG
4021	GCTGATCATT	AACTATCCGC	TGGATGACCA	GGATGCCATT	GCTGTGGAAG	CTGCCTGCAC
4081	TAATGTTCCG	GCGTTATTTC	tTgatgtctc	TGACCAGACA	cCCATCAACA	GTATTATTTT
4141	CTCCCATGAG	GACGGTACGC	GACTGGGCGT	GGAGCATCTG	GTCGCATTGG	GTCACCAGCA
4201	AATCGCGCTG	TTAGCGGGCC	CATTAAGTTC	TGTCTCGGCG	CGTCTGCGTC	TGGCTGGCTG
4261	gCATAAATAT	CTCACTCGCA	atcanattca	GCCGATAGCG	gAACGGGAAG	GCGACTGGA
4321	TGC					

Figure 2.5, continued. Nucleotide sequence for p53(1-93) Ala plasmid. The green region (3659-413) represents lacl. The red region (1980-2346) is the gene for p53(1-93) Ala plus N-terminal $6 x$ histidine-tag and thrombin cut site. The blue region (417-1220)
is the high-copy origin of replication. The gold region (2716-3573) represents ampr.

1	TGG	CGA	GCG	CA	CAT	TC
121						
241	GCTTGCTG		GGCC		TCAGCT	CCAGICICAC
			CTGGCGCC	,		
421	TGA	CCT	GAGTtACGC	CGC	CACTGAGCG	CAGACCCCG
481	AGAA	AGC	TGAGA	TाT	cGCGTAAT	GCTGCTTGCA
	AACA	CCACC	CAGC	TT	GATC	
601	TTTCCC	GTA		GC	AAT	
661	GCCGTAG	GCC	TCAAGAAC	TG	CCTACATAC	TCGCTCTGCT
721	AATCC	CCAG	CTGC	CGATAAG	tGTCTAC	
	AAGA	TTAC			ACGGGGG	
841	GCCCAG	gagcgat	cc	ACTGAGA	Ctacag	
901	asgcca	CTTC	gGagatag	GGACAGG	CCGGTAA	
1021	CGGG					
1081	CCTA	aAcgccag	ACGCGGCC	TT	CTGGCCT	gctgectit
1141						
1201	TGAGTG	gataccec	gccacagc	AACG	CGCAGC	
126	GGAAGCG			AGG		
1381	AGC	CCCTGGGCG	TTCTGATA	gagtaatc	TAATCCG	
	A			GAGTT	AAA	
1501		有		TGAG		
析						
162	AACT	CTAT		TATA	ATTC	
1681	AA	ataAatct		AGG		
1741						
1801	TCAT	taAA	GTCGCCCT	ATTGTGAG	gata	
1861				CT		
921						
198						

Figure 2.6. Nucleotide sequence for p53(1-93) Pro- plasmid. The green region (3659-
413) represents lacl. The red region (1980-2346) is the gene for p53(1-93) Pro- plus Nterminal $6 x$ histidine-tag and thrombin cut site. The blue region (417-1220) is the highcopy origin of replication. The gold region (2716-3573) represents ampr.

				A		
2161	GTAGCCAGGC	GATGGATGAC	CTGATGCTGA	GCGGTGACGA	TATCGAGCAG	TGGITCACCG
2221	AAGATGGCGG	CGGCGACGAA	GCTGGCCGTA	TGGGCGAGGC	AGCGGGTGGT	GTGGCGGGTG
2281	CGGGTGCGGC	AGGCACCGGT	GCAGCTGGTG	CCGGTGCCGG	TAGCTGGGGT	CTGTAACTCG
2341	AGCCCCAAGG	GCGACACCCC	ATAATTAGCC	CGGGCGAAAG	GCCCAGTCTT	tcgactgagc
2401	CTTTCGTITT	ATTTGATGCC	TGGCAGTTCC	CTACTCTCGC	ATGGGGAGTC	CCCACACTAC
2461	CATCGGCGCT	ACGGCGITTC	ACTTCTGAGT	TCGGCATGGG	GTCAGGTGGG	ACCACCGCGC
2521	TACTGCCGCC	AGGCAAACAA	GGGGTGTTAT	GAGCCATATT	CAGGTATAAA	TGGGCTCGCG
2581	ATAATGTTCA	GAATTGGTTA	ATTGGTTGTA	ACACTGACCC	CTATTTGITT	ATTITTCTAA
2641	atacattcaa	ATATGTATCC	GCTCATGAGA	CAATAACCCT	gataAatGct	tcaataltat
2701	TGAAAAAGGA	AGAATATGAG	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC	CTITITTGCG
2761	GCATTTTGCC	TTCCTGTIT	TGCTCACCCA	GAAACGCTGG	TGAAAGTAAA	AGATGCTGAA
2821	GATCAGTTGG	GTGCACGAGT	GGGTTACATC	GAACTGGATC	TCAACAGCGG	TAA
2881	gagagititc	GCCCCGAAGA	ACGITTTCCA	ATGATGAGCA	CTITTAAAGT	TCTGCTATGT
2941	GGCGCGGTAT	TATCCCGTAT	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	CATACACTAT
3001	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	GGATGGCATG
3061	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC	GGCCAACTTA
3121	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TITTGCACAA	CATGGGGGAT
3181	CATGTAACTC	GCCTTGATCG	TTGGGAACCG	GAGCTGAATG	AAGCCATACC	AAACGACGAG
3241	CGTGACACCA	CGATGCCTGT	AGCGATGGCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA
3301	CTACTTACTC	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA
3361	GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	TTGCTGATAA	ATCCGGAGCC
3421	GGTGAGCGTG	GTTCTCGCGG	TATCATCGCA	GCGCTGGGGC	CAGATGGTAA	GCCCTCCCGT
34	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG	A	TAGACAGATC
3541	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAAGCGG	CGCGCCATCG	AATGGCGCAA
3601	AACCTTTCGC	GGTATGGCAT	GATAGCGCCC	GGAAGAGAGT	CAATTCAGGG	TGGTGAATAT
3661	GAAACCAGTA	ACGTTATACG	ATGTCGCAGA	GTATGCCGGT	GTCTCTTATC	AGACCGITTC
3721	CCGCGTGGTG	AACCAGGCCA	GCCACGITTC	TGCGAAAACG	CGGGAAAAAG	TGGAAGCGGC
3781	GATGGCGGAG	CTGAATTACA	TTCCCAACCG	CGTGGCACAA	CAACTGGCGG	GCAAACAGTC
3841	GTTGCTGATT	GGCGITGCCA	CCTCCAGTCT	GGCCCTGCAC	GCGCCGTCGC	AAATTGTCGC
3901	gGcgattala	tCTCGCGCCG	ATCAACTGGG	TGCCAGCGTG	GTGGTGTCGA	TGGTAGAACG
3961	AAGCGGCGTC	GAAGCCTGTA	AAGCGGCGGT	GCACAATCTT	CTCGCGCAAC	GCGTCAGTGG
4021	GCTGATCATT	AACTATCCGC	TGGATGACCA	GGATGCCATT	GCTGTGGAAG	CTGCCTGCAC
4081	TAATGTTCCG	GCGITATTTC	ttgatgtctc	TGACCAGACA	CCCATCAACA	GTATTATTTT
4141	CTCCCATGAG	GACGGTACGC	GACTGGGCGT	GGAGCATCTG	GTCGCATTGG	GTCACCAGCA
4201	AATCGCGCTG	TTAGCGGGCC	CATTAAGTTC	TGTCTCGGCG	CGTCTGCGTC	TGGCTGGCTG
4261	gCATAAATAT	CTCACTCGCA	atcanattca	GCCGATAGCG	GAACGGGAAG	GCGACTGGAG
4321	TGC					

Figure 2.6, continued. Nucleotide sequence for p53(1-93) Pro plasmid. The green region (3659-413) represents lacl. The red region (1980-2346) is the gene for p53(1-93) Pro plus N -terminal 6 x histidine-tag and thrombin cut site. The blue region (417-1220)
is the high-copy origin of replication. The gold region (2716-3573) represents ampr.

Figure 2.7. Chromatograph for nickel affinity purification of p53(1-93) WT. The blue line represents absorbance at 280 nm . The red line represents conductivity. The green diamonds are event markers. In chronological order: sample load (3.75 min), addition of W ash Buffer 1 (25.28 min), addition of W ash Buffer 2 (51.61 min), addition of W ash Buffer 3 (71.28 min), and addition of Elution Buffer (85.39 min). The peak at 86.63 min is the target protein.

Figure 2.8. Chromatograph for nickel affinity purification of p53(1-93) Ala. The blue line represents absorbance at 280 nm . The red line represents conductivity. The green diamonds are event markers. In chronological order: sample load (16.75 min), addition of W ash Buffer 1 (43.61 min), addition of W ash Buffer $2(96.89 \mathrm{~min})$, addition of W ash Buffer $3(130.60 \mathrm{~min})$, and addition of Elution Buffer (154.80 min). The peak at 159.84 \min is the target protein.

Figure 2.9. Chromatograph for nickel affinity purification of p53(1-93) Pro: The blue line represents absorbance at 280 nm . The red line represents conductivity. The green diamonds are event markers. In chronological order: sample load (18.59 min), addition of W ash Buffer 1 (32.83 min), addition of W ash Buffer 2 (54.81 min), addition of W ash Buffer 3 (69.38 min), and addition of Elution Buffer (80.73 min). The peak at 83.64 min is the target protein.

Figure 2.10. Chromatograph for anion exchange purification of p53(1-93) WT. The blue line represents absorbance at 280 nm . The red line represents conductivity. The green diamonds are event markers. In chronological order: sample load (4.29 min), addition of W ash Buffer 50 (30.14 min), addition of W ash Buffer 150 (47.22 min), and addition of Elution Buffer (59.54 min). The peak at 93.29 min is the target protein.

Figure 2.11. Chromatograph for anion exchange purification of p53(1-93) Ala: The blue line represents absorbance at 280 nm . The red line represents conductivity. The green diamonds are event markers. In chronological order: sample load (2.96 min), addition of W ash Buffer 50 (25.25 min), addition of W ash Buffer 150 (43.29 min), addition of W ash Buffer 250 (20 mM sodium acetate, $250 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 4.8 ; 60.00 \mathrm{~min}$), and addition of Elution Buffer (59.54 min). The peak at 88.63 min is the target protein. An additional wash step was used as this was the first purification of p53(1-93) A la using DEAE media and I was unsure where the protein would elute.

Figure 2.12. Chromatograph for anion exchange purification of p53(1-93) Pro: The blue line represents absorbance at 280 nm . The red line represents conductivity. The green diamonds are event markers. In chronological order: sample load (1.14 min), addition of W ash Buffer 50 (9.37 min), addition of W ash Buffer 150 (25.77 min), addition of W ash Buffer 250 (20 mM sodium acetate, $250 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 4.8 ; 40.48 \mathrm{~min}$), and addition of Elution Buffer (57.50 min). The peak at 61.99 min is the target protein. An additional wash step was used as this was the first purification of p53(1-93) Pro- using DEAE media and I was unsure where the protein would elute.

Figure 2.13. Example SEC chromatograph. Biologic LP Data View v1.03 display showing peaks for void volume (blue dextran; V_{o}), elution volume $\left(\mathrm{WT} ; \mathrm{V}_{\mathrm{E}}\right)$, and total volume (DNP-aspartate; V_{T}). K_{D} is then calculated according to the equation in the figure. Shaded areas and text added using A dobe Illustrator CS5 for visualization purposes.

Figure 2.14. Silver stained polyacrylamide gels for each p53(1-93) variant. Each p53(1-93) variant after Ni-NTA and anion exchange purification. The first lane in each gel is Precision Plus protein standards by Bio-Rad. The second lane in each gel is following the p53(1-93) variant: WT (A), Alä (B), Pro- (C). Band distortion and outlining is due to high protein concentrations.

Figure 2.15 Acid/base titration of Staphylococcal nuclease by normalized fluorescence.
Acid/base titration in 100 mM KCl monitored by fluorescence shows Staphylococcal nuclease is stable and folded at pH 4.5. This experiment was performed as previously published ${ }^{46}$.

III. RESULTSAND DISCUSSION

3.1 Introduction

Current literature suggests that IDP structures are primarily governed by charge effects ${ }^{51,52}$. Vitalis and Pappu created a continuum solvation model for use in M onte Carlo simulations specifically aimed at studying IDPs ${ }^{53}$. This model, known as A BSINTH for self-A ssembly of Biomolecules Studied by an Implicit, N ovel, and Tunable Hamiltonian, was used in conjunction with fluorescence to study the charge effects on short disordered peptides (27-49 residues) ${ }^{51}$. The researchers calculated the radius of gyration $\left(R_{g}\right)$ for a set of 21 arginine-rich IDPs with variable net charge per residue(0.21$1.00)^{51}$. They normalized the data by dividing each calculated R_{g} by the expected R_{g} of a random coil, then plotted that ratio vs. net charge per residue ${ }^{51}$. The data showed a positive logarithmic relationship between $\Delta \mathrm{R}_{\mathrm{g}}$ and net charge per residue.

Schuler et al. took a different approach to showing the prevalence of charge effects on IDP structure by using single-molecule Förster resonance energy transfer (FRET) to measure $R_{g}{ }^{52}$. Schuler's group chose three model proteins with vastly different charge states: the stably folded CspTm (net charge - 2), the intrinsically disordered N -terminal region of HIV-1 integrase (net charge-4), and the entirely disordered prothymosin α (net charge-27) ${ }^{52}$. They measured R_{g} via FRET at increasing concentrations of urea and guanidinium for each protein and found that the denaturant-induced expansion of both

IDPs correlated with net charge ${ }^{52}$. Prothymosin α, which already has an expanded structure due to high net charge, experienced less denaturant-induced expansion than the more neutral HIV-1 integrase.

W hile both of these studies show a correlation between net charge and hydrodynamic properties, neither of them factored in $\mathrm{PP}_{\|}$propensity. As mentioned in Chapter I, we designed this project to examine if and how charge effects are modulated by $\mathrm{PP}_{\|}$structure. To test this, we used pH as a mechanism to control net charge and proline-to-glycine mutations as a way to control PP ॥ structure.

3.2 Size Exclusion Chromatography Results

3.2.1 SEC Results at pH 7.0

Going in to this study, we expected all three peptides to undergo significant decreases in size as pH was decreased. At a pH of 7.0, most glutamate and aspartate residues are in the deprotonated state. As the pH is lowered, free protons bind to the carboxylic acid side chains neutralizing their negative charges. As more acid residues are protonated, the polypeptide should experience significantly less charge repulsion and the average ensemble R_{h} should decrease.

SEC results at pH 7.0 showed p53(1-93) WT had an R_{h} of $31.8 \AA$ with Ala at 30.0 \AA and Pro at $27.4 \AA$. These results are summarized in Table 3.1 and Figure 3.1 below.

These results were as expected and matched those previously reported by Perez et al. ${ }^{35}$ (Table 3.2). Since all three peptides have the same 17 charged side chains, N -terminal residue, and C-terminal residue, they have the same theoretical pK_{a}. Thus all three peptides have a theoretical charge of -14.99 at pH 7.0 based on the H endersonHasselbalch equation ${ }^{54,55}$ (Figure 3.2) and the amino acid $\mathrm{pK}_{\mathrm{a}} 5$ as reported by the Handbook of Chemistry and Physicis ${ }^{56}$.

Table 3.1. SEC results at pH 7.0.

Protein	$\mathbf{K}_{\mathbf{D}, \text { mean }}$	$\mathbf{K}_{\mathbf{D}, \text { sd }}$	$\mathbf{M . W . (D a)}$	$\mathbf{R}_{\mathbf{h}}(\boldsymbol{\AA})$
Chicken egg albumin	0.112	0.002	$42,861.3$	-
p53(1-93) WT	0.182	0.007	$10,123.2$	31.8
p53(1-93) Ala	0.218	0.002	$9,954.9$	30.0
Bovine carbonic anhydrase	0.265	0.002	$28,982.5$	-
p53(1-93) Pro	0.267	0.009	$9,241.8$	27.4
Staphylococcal nuclease	0.359	0.002	$16,811.2$	-
Horse heart myoglobin	0.398	0.003	$16,951.4$	-

Table 3.2. Comparison of SEC results to previously published work.

Protein	$\mathbf{R}_{\mathrm{h}, \text { actual }}(\AA)$	$\mathbf{R}_{\mathrm{h}, \text { published }}(\AA)$	Pct. Diff.
p53(1-93) WT	31.8	31.95	0.47%
p53(1-93) Ala	30.0	29.65	1.17%
p53(1-93) Pro	27.4	27.36	0.15%

Figure 3.1. SEC results at pH 7.0. Blue squares are folded protein standards. Red circles are p53(1-93) variants. (A) Log M.W. based on primary sequence vs. K_{D} shows separate linear correlations for both folded and disordered proteins. (B) $\mathrm{R}_{\mathrm{h}} \mathrm{S}$ for disordered proteins were extrapolated from folded protein crystal structures and the folded protein regression line.

Figure 3.2. Theoretical charge for p53(1-93) variants at each pH. Theblue line represents the theoretical pH of each p53(1-93) variant based on the H endersonH asselbalch equation and the pK_{a} s from the H andbook of Chemistry and Physics. The red circles are the pH s used in this study.

3.2.2 SEC Results at pH 6.0

SEC results at pH 6.0 showed $\mathrm{p} 53(1-93) \mathrm{WT}$ had an R_{h} of $31.2 \AA$ with Ala at 30.3
\AA and Pro at $27.1 \AA$. These results are summarized in Table 3.3 and Figure 3.3 below.

At pH 6.0, the theoretical charge increases to -14.83. This minor charge in theoretical charge correlates well with the small change in R_{h} for each peptide. The $0.3 \AA$ increase in R_{h} for Ala is most likely a function of small sample size.

Table 3.3. SEC results at pH 6.0.

Protein	K $_{\text {D, mean }}$	$\mathbf{K}_{\mathbf{D}, \text { sd }}$	M.W.(Da)	$\mathbf{R}_{\mathbf{h}}(\AA \mathbf{\AA})$
Chicken egg albumin	0.106	0.005	$42,861.3$	-
p53(1-93) WT	0.189	0.002	$10,123.2$	31.2
p53(1-93) Ala	0.206	0.003	$9,954.9$	30.3
Bovine carbonic anhydrase	0.262	0.004	$28,982.5$	-
p53(1-93) Pro	0.269	0.003	$9,241.8$	27.1
Staphylococcal nuclease	0.354	0.002	$16,811.2$	-
Horse heart myoglobin	0.396	0.007	$16,951.4$	-

Figure 3.3. SEC results at pH 6.0. Blue squares are folded protein standards. Red circles are p53(1-93) variants. (A) Log M.W. based on primary sequence vs. K_{D} shows separate linear correlations for both folded and disordered proteins. (B) $\mathrm{R}_{\mathrm{h}} \mathrm{f}$ for disordered proteins were extrapolated from folded protein crystal structures and the folded protein regression line.

3.2.3 SEC Results at pH 5.0

SEC results at pH 5.0 showed $\mathrm{p} 53(1-93) \mathrm{WT}$ had an R_{h} of $30.0 \AA$ with Ala at 28.2
\AA and Pro at $24.5 \AA$. These results are summarized in Table 3.4 and Figure 3.4 below.

Table 3.4. SEC results at pH 5.0.

Protein	$\mathbf{K}_{\mathbf{D}, \text { mean }}$	$\mathbf{K}_{\mathbf{D}, \text { sd }}$	$\mathbf{M . W . (D a)}$	$\mathbf{R}_{\mathbf{h}}(\mathbf{\AA})$
Chicken egg albumin	0.123	0.009	$42,861.3$	-
p53(1-93) WT	0.217	0.003	$10,123.2$	30.0
p53(1-93) Ala	0.249	0.001	$9,954.9$	28.2
Bovine carbonic anhydrase	0.272	0.001	$28,982.5$	-
p53(1-93) Pro	0.319	0.001	$9,241.8$	24.5
Staphylococcal nuclease	0.324	0.001	$16,811.2$	-
Horse heart myoglobin	0.406	0.001	$16,951.4$	-

Figure 3.4. SEC results at pH 5.0. Blue squares are folded protein standards. Red circles are p53(1-93) variants. (A) Log M.W. based on primary sequence vs. K_{D} shows separate linear correlations for both folded and disordered proteins. (B) Rhsfor disordered proteins were extrapolated from folded protein crystal structures and the folded protein regression line.

3.2.4 SEC Results at pH 4.5

SEC results at pH 4.5 showed p53(1-93) WT had an Rh of $27.1 \AA$ with Ala at 25.7
\AA and Pro at $20.0 \AA$. These results are summarized in Table 3.5 and Figure 3.5 below. As mentioned previously, horse heart myoglobin was excluded as a folded protein standard at this pH due to instability.

Table 3.5. SEC results at pH 4.5.

Protein	K $_{\mathbf{D}, \text { mean }}$	$\mathbf{K}_{\mathbf{D}, \text { sd }}$	M.W. (D a)	$\mathbf{R}_{\mathbf{h}}(\AA)$
Chicken egg albumin	0.137	0.005	$42,861.3$	-
p53(1-93) WT	0.28	0.004	$10,123.2$	27.1
Bovine carbonic anhydrase	0.300	0.002	$28,982.5$	-
p53(1-93) Ala	0.303	0.003	$9,954.9$	25.7
Staphylococcal nuclease	0.357	0.003	$16,811.2$	-
p53(1-93) Pro	0.393	0.004	$9,241.8$	20.0

Figure 3.5. SEC results at pH 4.5. Blue squares are folded protein standards. Red circles are p53(1-93) variants. (A) Log M.W. based on primary sequence vs. K_{D} shows separate linear correlations for both folded and disordered proteins. (B) Rhsfor disordered proteins were extrapolated from folded protein crystal structures and the folded protein regression line.

3.3 Circular Dichroism Spectroscopy Results

3.3.1 CD Results for p53(1-93) WT

CD results at pH 7.0 matched those previously published ${ }^{3,35}$. The WT peptide had a local maxima at 221 nm as is characteristic of $\mathrm{PP}_{\| \prime}$ secondary structure ${ }^{41-43}$. The CD spectra showed this peak was temperature dependent as reported by Schaub et al ${ }^{3}$. A clear isochromatic point is seen at 209.5 nm which is generally indicative of a non-twostate transition ${ }^{57}$. The linear temperature dependence of the 221 nm peak suggests that the thermal unfolding is noncooperative ${ }^{3}$.

CD results at pH 6.0 were nearly identical to those at pH 7.0 due to the negligible change in theoretical charge. The isochromatic point shifted slightly to 210 nm .

At pH 5.0, a noticeable change in the spectra is seen due to a decrease in PP॥ content. The peak at 221 nm is significantly reduced. The isochromatic point shifted slightly to 210.5 nm . A similar effect is seen at pH 4.5 although much more prominent. The 221 nm peak is even flatter and the isochromatic point once again is slightly redshifted to 211.5 nm .

The overall pH dependence can be seen by plotting the 221 nm peak height verses temperature. The height of the 221 nm peak relative to the CD value at $85^{\circ} \mathrm{C}$ decreases as a function of pH . This summary is shown in Figure 3.6 below. CompleteCD spectra for p53(1-93) WT at all four pH s are shown in Figures 3.7 - 3.10 at the end of this section.

Figure 3.6. Summary of CD results for p53(1-93) WT . The molar residual ellipticity (M RE) difference was generated by averaging the 220-222 nm readings for each temperature, then subtracting the $85^{\circ} \mathrm{C}$ value from each reading. This was repeated for each pH: 7.0 (black), 6.0 (blue), 5.0 (green), 4.5 (red). The slope of the regression line flattens as a function of pH .

Figure 3.7. $\mathbf{C D}$ results for $\mathbf{p 5 3 (1 - 9 3)} \mathbf{W T}$ at $\mathbf{p H}$ 7.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from $220-222 \mathrm{~nm}$ vs. each temperature.

Figure 3.8. $\mathbf{C D}$ results for $\mathbf{p 5 3 (1 - 9 3)} \mathbf{W T}$ at $\mathbf{p H}$ 6.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the MRE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from 220-222 nm vs. each temperature.

Figure 3.9. $\mathbf{C D}$ results for $\mathbf{p 5 3 (1 - 9 3)} \mathbf{W T}$ at $\mathbf{p H} 5.0$. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from $220-222 \mathrm{~nm}$ vs. each temperature.

Figure 3.10. CD results for $\mathbf{p 5 3 (1 - 9 3)}$ WT at $\mathbf{p H}$ 4.5. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from $220-222 \mathrm{~nm}$ vs. each temperature.
3.3.2 CD Results for p53(1-93) Ala

CD results at pH 7.0 matched those previously published ${ }^{3,35}$. The Ala protein had the same temperature dependent local maxima at 221 nm as seen in the WT but with decreased magnitude. The isochromatic point was 209.5 nm .

CD results at pH 6.0 were similar in shape to those at pH 7.0, although the magnitude of the 221 nm peak decreased more than expected. Due to theoretical charge, I expected the 221 nm peak to be virtually indistinguishable from that at pH 7.0 . The isochromatic point was 210.5 nm .

The results at pH 5.0 were similar to pH 6.0 , which was surprising. At pH 5.0 , a much larger percentage of side chains should be protonated compared to pH 6.0 , thus causing a larger decrease in $\mathrm{PP}_{\text {|I }}$ content than observed. The isochromatic point was 210.5.

The trend continues at pH 4.5 with even moreflattening of the 221 nm peak. The isochromatic point is one again slightly redshifted to 211 nm .

The overall pH dependence is seen by plotting the 221 nm peak height verses temperature. Just like the $W T$, the height of the 221 nm peak relative to the $C D$ value at $85^{\circ} \mathrm{C}$ decreases as a function of pH . This summary is shown in Figure 3.11 below. CompleteCD spectra for p53(1-93) Ala at all four pH s are shown in Figures 3.12 - 3.15 at the end of this section.

Figure 3.11. Summary of CD results for p53(1-93) Ala' . The molar residual ellipticity (M RE) difference was generated by averaging the 220-222 nm readings for each temperature, then subtracting the $85^{\circ} \mathrm{C}$ value from each reading. This was repeated for each pH : 7.0 (black), 6.0 (blue), 5.0 (green), 4.5 (red). The slope of the regression line flattens as a function of pH .

Figure 3.12. CD results for p53(1-93) Ala at pH 7.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from $220-222 \mathrm{~nm}$ vs. each temperature.

Figure 3.13. CD results for p53(1-93) Ala at pH 6.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from $220-222 \mathrm{~nm}$ vs. each temperature.

Figure 3.14. CD results for p53(1-93) Ala at pH 5.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the MRE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from $220-222 \mathrm{~nm}$ vs. each temperature.

Figure 3.15. CD results for p53(1-93) Ala at pH 4.5. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from $220-222 \mathrm{~nm}$ vs. each temperature.
3.3.3 CD Results for p53(1-93) Pro

CD results at pH 7.0 matched those previously published ${ }^{3,35}$. The Pro- protein had the same temperature dependent local maxima at 221 nm as seen in the WT and Ala , but with much decreased magnitude. The isochromatic point was 211.0 nm .

CD results at pH 6.0 were nearly indistinguishable from those at pH 7.0 due to the negligible change in theoretical charge as we move from pH 7.0 to 6.0. The isochromatic point was 206.5 nm .

The results at pH 5.0 were as expected with a similar shape to those at pH 7.0 and 6.0, but with much smaller magnitude of the temperature-dependent 221 nm peak. The isochromatic point was 207.5 nm .

The CD results at pH 4.5 were the most surprising of any in this entirestudy. The overall shape was similar to those at high pH s , the spectra was completely devoid of temperature dependence. There was no clear isochromatic point.

The overall pH dependence is seen by plotting the 221 nm peak height verses temperature. Just like the WT Ala; the height of the 221 nm peak relative to the CD value at $85^{\circ} \mathrm{C}$ decreases as a function of pH . H owever, unlike the other two polypeptides, this temperature dependent peak is completely missing at pH 4.5 . This summary is shown in Figure 3.16 below. CompleteCD spectra for p53(1-93) Ala at all four pH s are shown in Figures $3.17-3.21$ at the end of this section.

Figure 3.16. Summary of CD results for p53(1-93) Pro. The molar residual ellipticity (M RE) difference was generated by averaging the 220-222 nm readings for each temperature, then subtracting the $85^{\circ} \mathrm{C}$ value from each reading. This was repeated for each pH: 7.0 (black), 6.0 (blue), 5.0 (green), 4.5 (red). The slope of the regression line flattens as a function of pH .

Figure 3.17. CD results for $\mathbf{p 5 3 (1 - 9 3)}$ Pro at pH 7.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from 220-222 nm vs. each temperature.

Figure 3.18. CD results for $\mathbf{p 5 3 (1 - 9 3)}$ Pro at pH 6.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from 220-222 nm vs. each temperature.

Figure 3.19. CD results for $\mathbf{p 5 3 (1 - 9 3)}$ Pro- at pH 5.0. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from 220-222 nm vs. each temperature.

Figure 3.20. CD results for $\mathbf{p 5 3 (1 - 9 3)}$ Pro at pH 4.5. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. Part (C) shows the temperature dependence of this local maximum by plotting the average M RE value from 220-222 nm vs. each temperature.

Figure 3.21. Zoomed in view of CD results for p53(1-93) Pro at pH 4.5. This figure shows the same information as Figure 3.20 but with a different scale. The spectra for (A) is shown at nine different temperatures $5^{\circ} \mathrm{C}$ (black), $15^{\circ} \mathrm{C}$ (gray), $25^{\circ} \mathrm{C}$ (purple), $35^{\circ} \mathrm{C}$ (blue), $45^{\circ} \mathrm{C}$ (cyan), $55^{\circ} \mathrm{C}$ (green), $65^{\circ} \mathrm{C}$ (orange), $75^{\circ} \mathrm{C}$ (pink), $85^{\circ} \mathrm{C}$ (red). Part (B) shows the M RE between the spectra at each temperature relative to the $85^{\circ} \mathrm{C}$ spectra. In both images, the characteristic temperature-dependence at and around 221 nm is completely gone. The protein appears to be near a random coil at this point.

3.4 Discussion

Phosphorylation is a key step in a number of biological processes from apoptosis ${ }^{58,59}$, cell-cycle progression ${ }^{60,61}$, cytoskeleton rearrangement ${ }^{62,63}$, and cell-to-cell communication ${ }^{64,65}$. Phosphorylation was discovered in 1955 by Eddie Fischer and Ed Krebs ${ }^{63,66}$ and by the late 1960s it was widely understood to be a ubiquitous biological event ${ }^{63,67}$. From a structural biology standpoint, phosphorylation is a critical factor determining the size, shape, and functionality of many proteins. The addition of a -2 charged phosphate group can lead to an expanded structure due to an increase in $\mathrm{PP}_{{ }^{40}}{ }^{40}$ or compaction due to structure stabilization through interactions with basic side chains ${ }^{63}$. These kind of structural changes can activate enzyme activity ${ }^{68}$, inhibit enzyme activity ${ }^{69}$, or create recognition sites for other proteins ${ }^{70}$.

IDPs and disordered protein regions have a high density of phosphorylation sites and are, in fact, where most phosphorylation events happen ${ }^{71}$. Due to the fact that both charge repulsion and intrinsic backbone propensities contribute to the expanded structure of IDPs, and that phosphorylation has a direct impact on net charge, it is important to develop systems to thoroughly understand and characterizeIDPs. Our system, based upon R_{h} as a reporter metric, does just that.

3.4.1 Folded Protein Standards W ere Stable at Lower pH s U nlikeIDPs

In Section 2.5.5, I showed that chicken egg albumin, Staphylococcal nuclease, and bovine carbonic anhydrase are stable at $\mathrm{pH}>4.5$. This is also evident by looking at the change in K_{D} values for each protein. While KD s are not repeatable from one prep to the next, they do fall within a certain range. Thus, KDs can be used qualitatively to show a greater variance among IDPs in comparison to the folded protein standards. By looking at the K_{D} standard deviation for each protein across the pH spectrum, we see much greater fluctuation in the IDPs. A similar trend is seen by looking at the K_{D} range of each protein across the pH spectrum (Figure 3.22, end of section).

Another way to show the concordance correlation (ρ_{c}) for the folded protein standards verses that of the IDPs. Lin's concordance correlation was created in 1989 by Lawrence Lin as a way to measure the agreement between two variables ${ }^{72}$. Unlike the Pearson correlation which simply measures a linear relationship, the Lin concordance correlation measures deviation from the identity line ${ }^{72}$. As seen in Figure 3.23 at the end of this section, the folded protein standards have a ρ_{c} Score of 0.9682 whereas the IDPs only have a ρ_{c} score of 0.2298 . This is just another metric to show the folded proteins retain their size throughout the pH range in this study but the IDPs do not.
3.4.2 Net Charge is M odulated by PP ॥

Net charge is an important factor in determining the hydrodynamic radius of a disordered protein. This is apparent by looking at the SEC results for Pro- which rapidly decreased in size as the pH was lowered. Based on the pK_{a} values for each titratable residue, virtually every ($>99 \%$) Asp, Glu, Lys, and Arg, as well as the C- and N-termini should be charged. This gives the polypeptide a theoretical net charge of -14.99. This information is summarized in Table 3.6 below. N^{+}and C^{-}are the percentage N - and C termini charged at each pH , respectively. $\mathrm{Lys}^{+}, \mathrm{Arg}^{+}, \mathrm{Asp}$, and Glu are the number each titratable residue charged at each pH .

Table 3.6. Percentage of charged residues for p53(1-93) at each pH.

pH	\mathbf{N}^{+}	Lys $^{+}$	Arg $^{+}$	Asp	Glu	C-	Charge
7.0	0.997	1.000	1.000	0.999	0.999	1.000	-14.99
6.0	1.000	1.000	1.000	0.995	0.986	1.000	-14.83
5.0	1.000	1.000	1.000	0.951	0.876	0.998	-13.49
4.5	1.000	1.000	1.000	0.860	0.691	0.993	-11.10

As the pH is lowered to 4.5, only 86.0% of Asp residues and 69.1% of Glu residues should be deprotonated giving a theoretical net charge of -11.10. A change of 3.89 spread over only 93 residues should cause significant compaction through the neutralization of
charge groups. Our observations confirmed this hypothesis as we saw a linearly chargedependent 27% compaction of Pro.

If charge repulsion was the driving factor in IDP expansion, then we would expect a similar rate of compaction in Ala and WT. H owever, we saw much smaller compaction in both. The WT saw a 15% reduction in R_{h} as we moved from pH 7.0 to 4.5 , while Ala saw a 14\% decrease in R_{h} over the same range. This leads us to conclude that a high concentration of prolines, which cause an increase in rigidity due to the side-chain bonding to the backbone nitrogen, modulates charge repulsion.

3.4.2 Alanine is not as Disorder-Promoting as Expected

Two of the three published $\mathrm{PP}_{\text {॥ }}$ propensity scales have alanine as one of the most disorder-promoting residues. The Creamer scale gives alanine a $\mathrm{PP}_{\| /}$propensity of 0.61 , the fourth largest value ${ }^{39}$. The K allenbach scale ranks alanine with the highest PP ॥ propensity at 0.818^{38}. The Hilser scale ranks alanine $8^{\text {th }}$ with a $\mathrm{PP}_{\text {॥ }}$ propensity of 0.37 .

CD spectra of Ala; at all four pH s , more closely resembles that of the WT than Pro. As we reduced pH from 7.0 to 4.5 , the WT decreased by 15% whereas A la only decreased by 14%. If alanine had a similar $\mathrm{PP}_{\| /}$propensity to that of proline, we would expect Ala to have significantly less spacing between charged groups, leading to a substantially smaller R_{h} at lower pH s . Our observations did not support this hypothesis,
thus substituting alanines for glycines might have less of an effect on $\mathrm{PP}_{\| /}$structure than expected.
3.4.2 The A cid-based U nfolding of $\mathrm{p} 53(1-93)$ is N oncooperative

As mentioned earlier, the size compaction of Pro as we moved from pH 7.0 to 4.5 was linear and charge-dependent. Figure 3.24 (end of section) shows this observation holds true for the WT and Ala as well. These results are similar to the thermal unfolding of p53(1-93) published by Schaub et al. in which the polypeptide prefers a denatured macrostate at low pH^{3}.

3.4.3 Pro is Close to a Random Coil at pH 4.5

CD spectra was used qualitatively to detect $\mathrm{PP}_{\| /}$content in each p53(1-93) variant at each pH . H owever, some trends did emerge. The height of the 221 nm peak was directly correlated with net charge, for each variant, at each pH . W hile the magnitude of this peak decreased, noncooperative thermal unfolding was observed for 11 of the 12 peptides. The sole exception was Pro at pH 4.5 (Figures 3.20 - 3.21). Without prolines and with the overall charge decreased to -11.10, there is no noticeable peak at 221 nm or temperature dependence. The lack of detectable structure via CD spectroscopy indicates that Pro is, or is near, a random coil at pH 4.5 .

Figure 3.22. K_{D} range for folded protein standards in comparison to IDPs. Part (A) shows the K_{D} standard deviation for each folded protein standard is much lower than their IDP counterparts. Part (B) shows the K_{D} range ($\mathrm{K}_{D} 7.0-K_{D} 4.5$) for each folded protein standard is also much smaller than each IDP.

Figure 3.23. Lin's concordance correlation for the set of folded protein standards verses the set of IDPs. The concordance correlation shows a high agreeability (0.9682) for the folded protein standards at pH 7.0 compared to pH 4.5 . The same metric shows a much lower agreeability (0.2298) for the set of IDPs at pH 7.0 compared to pH 4.5 . These statistics were calculated using the R programming language and the $E p i R^{50}$ package.

Figure 3.24. Charge-dependent unfolding of p53(1-93). The acid-unfolding of p53(1-
93) WT (black diamond), Ala- (blue square), and Pro- (red circle) as pH decreases from 7.0 to 4.5 .

3.5 Conclusions

The data in this project are consistent with our hypothesis that $\mathrm{PP}_{\|}$content causes an expansion in the R_{h} of IDPs. CD data suggests that proline has a higher PP $_{\|}$ propensity than alanine or glycine, which accounts for the larger temperature dependence in the WT and Ala compared to Pro. The CD spectra, namely the magnitude of the peak at 221 nm , is also sensitive to net charge. H owever, lowering the pH had a much greater effect on Pro than the WT and Ala demonstrating there is more at play here than charge repulsion; $\mathrm{PP}_{\text {॥ }}$ content is modulating electrostatic effects.

REFERENCES

(1) A nfinsen, C. B. Science 1973, 181 (4096), 223-230.
(2) Dunker, A. K.; Lawson, J. D.; Brown, C. J.; Williams, R. M .; Romero, P.; Oh, J. S.; Oldfield, C. J.; Campen, A. M .; Ratliff, C. M .; Hipps, K. W .; A usio, J.; Nissen, M . S.; Reeves, R.; Kang, C.; K issinger, C. R.; Bailey, R. W .; Griswold, M . D.; Chiu, W .; Garner, E. C.; Obradovic, Z. J. M ol. Graph. M odel. 2001, 19 (1), 26-59.
(3) Schaub, L. J.; Campbell, J. C.; W hitten, S. T. Protein Sci. Publ. Protein Soc. 2012, 21 (11), 1682-1688.
(4) Wright, P. E.; Dyson, H. J. Nat. Rev. M ol. Cell Biol. 2015, 16 (1), 18-29.
(5) Cuchillo, R.; M ichel, J. Biochem. Soc. Trans. 2012, 40 (5), 1004-1008.
(6) Berlow, R. B.; Dyson, H. J.; W right, P. E. FEBS Lett. 2015, 589 (19A), 2433-2440.
(7) Sharma, R.; Raduly, Z.; M iskei, M .; Fuxreiter, M . FEBS Lett. 2015, 589 (19A), 25332542.
(8) Tompa, P. Trends Biochem. Sci. 2012, 37 (12), 509-516.
(9) Kornreich, M .; A vinery, R.; M alka-Gibor, E.; Laser-Azogui, A .; Beck, R. FEBS Lett. 2015, 589 (19A), 2464-2476.
(10) Xue, B.; Blocquel, D.; Habchi, J.; U versky, A. V.; Kurgan, L.; U versky, V. N.; Longhi, S. Chem. Rev. 2014, 114 (13), 6880-6911.
(11) M ohan, A.; Sullivan, W . J.; Radivojac, P.; Dunker, A . K.; U versky, V . N . M ol. Biosyst. 2008, 4 (4), 328-340.
(12) Gazi, A. D.; Bastaki, M .; Charova, S. N.; Gkougkoulia, E. A.; Kapellios, E. A.; Panopoulos, N. J.; Kokkinidis, M . J. Biol. Chem. 2008, 283 (49), 34062-34068.
(13) Tompa, P. Trends Biochem. Sci. 2002, 27 (10), 527-533.
(14) Sahu, D.; Bastidas, M .; Showalter, S. A nal. Biochem. 2014, 449, 17-25.
(15) Langridge, T. D.; Tarver, M . J.; W hitten, S. T. Proteins 2014, 82 (4), 668-678.
(16) Knauf, M. J.; Bell, D. P.; Hirtzer, P.; Luo, Z. P.; Young, J. D.; Katre, N . V. J. Biol. Chem. 1988, 263 (29), 15064-15070.
(17) Obradovic, Z.; Peng, K.; V ucetic, S.; Radivojac, P.; Brown, C. J.; Dunker, A. K. Proteins 2003, 53 Suppl 6, 566-572.
(18) Greenfield, N. J. N at. Protoc. 2006, 1 (6), 2876-2890.
(19) Dunker, A. K.; Obradovic, Z.; Romero, P.; Garner, E. C.; Brown, C. J. Genome Inform. W orkshop Genome Inform. 2000, 11, 161-171.
(20) Fletcher, C. M .; M cGuire, A . M .; Gingras, A. C.; Li, H .; M atsuo, H .; Sonenberg, N .; W agner, G. Biochemistry (M osc.) 1998, 37 (1), 9-15.
(21) Williams, R. M.; Obradovi, Z.; M athura, V.; Braun, W .; Garner, E. C.; Y oung, J.; Takayama, S.; Brown, C. J.; Dunker, A. K. Pac. Symp. Biocomput. Pac. Symp. Biocomput. 2001, 89-100.
(22) Dunker, A. K.; Brown, C. J.; Obradovic, Z. Adv. Protein Chem. 2002, 62, 25-49.
(23) Dunker, A. K.; Brown, C. J.; Lawson, J. D.; Iakoucheva, L. M.; Obradović, Z. Biochemistry (M osc.) 2002, 41 (21), 6573-6582.
(24) Wang, S.; Trumble, W. R.; Liao, H.; W esson, C. R.; Dunker, A. K.; Kang, C. H. Nat. Struct. Biol. 1998, 5 (6), 476-483.
(25) M achkalyan, G.; Trieu, P.; Pétrin, D.; H ébert, T. E.; M iller, G. J. Cell. Signal. 2016, 28 (5), 401-411.
(26) Dyson, H. J.; W right, P. E. Curr. Opin. Struct. Biol. 2002, 12 (1), 54-60.
(27) H olmbeck, S. M.; Dyson, H. J.; W right, P. E. J. M ol. Biol. 1998, 284 (3), 533-539.
(28) A galarov, S. C.; Sridhar Prasad, G.; Funke, P. M.; Stout, C. D.; W illiamson, J. R. Science 2000, 288 (5463), 107-113.
(29) Herrmann, H.; Strelkov, S. V.; Burkhard, P.; A ebi, U. J. Clin. Invest. 2009, 119 (7), 1772-1783.
(30) Dunker, A. K.; Ensign, L. D.; A rnold, G. E.; Roberts, L. M. FEBS Lett. 1991, 292 (12), 275-278.
(31) Ivan, M.; Kondo, K.; Yang, H.; Kim, W .; Valiando, J.; Ohh, M.; Salic, A.; A sara, J. M .; Lane, W. S.; K aelin, W . G. Science 2001, 292 (5516), 464-468.
(32) Joerger, A. C.; Fersht, A. R. Cold Spring H arb. Perspect. Biol. 2010, 2 (6), 1-20.
(33) Teufel, D. P.; Bycroft, M.; Fersht, A. R. Oncogene 2009, 28 (20), 2112-2118.
(34) U versky, V. N.; Gillespie, J. R.; Fink, A. L. Proteins 2000, 41 (3), 415-427.
(35) Perez, R. B.; Tischer, A.; A uton, M .; W hitten, S. T. Proteins 2014.
(36) Tomasso, M. E.; Tarver, M. J.; Devarajan, D.; W hitten, S. T. PLoS Comput. Biol. 2016, 12 (1), 1-22.
(37) Adzhubei, A. A.; Sternberg, M. J. E. J. M ol. Biol. 1993, 229 (2), 472-493.
(38) Shi, Z.; Chen, K.; Liu, Z.; N g, A.; Bracken, W . C.; Kallenbach, N. R. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (50), 17964-17968.
(39) Rucker, A. L.; Pager, C. T.; Campbell, M . N.; Qualls, J. E.; Creamer, T. P. Proteins 2003, 53 (1), 68-75.
(40) Elam, W. A.; Schrank, T. P.; Campagnolo, A. J.; Hilser, V. J. Protein Sci. Publ. Protein Soc. 2013, 22 (4), 405-417.
(41) W oody, R. W. Adv Biophys Chem 1992, 2, 37-79.
(42) Rucker, A. L.; Creamer, T. P. Protein Sci. Publ. Protein Soc. 2002, 11 (4), 980-985.
(43) W hittington, S. J.; Chellgren, B. W.; H ermann, V. M .; Creamer, T. P. Biochemistry (M OSc.) 2005, 44 (16), 6269-6275.
(44) Artimo, P.;Jonnalagedda, M .; A rnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; Grosdidier, A.; H ernandez, C.; Ioannidis, V.; K uznetsov, D.; Liechti, R.; M oretti, S.; M ostaguir, K.; Redaschi, N .; Rossier, G.; Xenarios, I.; Stockinger, H . Nucleic Acids Res. 2012, 40 (W eb Server issue), W 597-603.
(45) Harlow, E.; W illiamson, N. M.; Ralston, R.; H elfman, D. M.; Adams, T. E. M ol. Cell. Biol. 1985, 5 (7), 1601-1610.
(46) W hitten, S. T.; García-M oreno E, B. Biochemistry (M osc.) 2000, 39 (46), 1429214304.
(47) W ong, K. P.; H amlin, L. M. Biochemistry (M osc.) 1974, 13 (13), 2678-2683.
(48) A hmad, F.; Salahuddin, A. Biochim. Biophys. Acta 1979, 576 (2), 333-338.
(49) Gryczynski, Z.; Lubkowski, J.; Bucci, E. J. Biol. Chem. 1995, 270 (33), 19232-19237.
(50) M ark Stevenson. epiR:Tools for the Analysis of Epidemiological Data; 2016.
(51) M ao, A. H.; Crick, S. L.; Vitalis, A .; Chicoine, C. L.; Pappu, R. V. Proc. Natl. A cad. Sci. U. S. A. 2010, 107 (18), 8183-8188.
(52) M üller-Späth, S.; Soranno, A.; Hirschfeld, V.; H ofmann, H.; Rüegger, S.; Reymond, L.; N ettels, D.; Schuler, B. Proc. NatI. A cad. Sci. U. S. A. 2010, 107 (33), 1460914614.
(53) Vitalis, A.; Pappu, R. V. J. Comput. Chem. 2009, 30 (5), 673-699.
(54) Henderson, L. J. Am. J. Physiol. -- Leg. Content 1908, 21 (4), 427-448.
(55) H asselbalch, K. A. Die Berechnung der W asserstoffzahl des Blutes aus der freien und gebundenen K ohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der W asserstoffzahl; Julius Springer, 1916.
(56) CRC H andbook of Chemistry and Physics, 96th Edition, 96 edition.; H aynes, W. M ., Ed.; CRC Press, 2015.
(57) Gursky, O.; Atkinson, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93 (7), 2991-2995.
(58) Jackson, N. M .; Ceresa, B. P. Exp. Cell Res. 2016.
(59) Yadav, N.; Kumar, S.; M arlowe, T.; Chaudhary, A. K.; Kumar, R.; W ang, J.;

O’Malley, J.; Boland, P. M.; Jayanthi, S.; Kumar, T. K. S.; Yadava, N.; Chandra, D. Cell Death Dis. 2015, 6, 1-13.
(60) Gheghiani, L.; Gavet, O. M ethods M ol. Biol. Clifton NJ 2016, 1342, 157-171.
(61) Truman, A. W .; Kristjansdottir, K.; W olfgeher, D.; H asin, N .; Polier, S.; Zhang, H.; Perrett, S.; Prodromou, C.; Jones, G. W .; Kron, S. J. Cell 2012, 151 (6), 1308-1318.
(62) Parisiadou, L.; Xie, C.; Cho, H.J.; Lin, X.; Gu, X.-L.; Long, C.-X.; Lobbestael, E.; Baekelandt, V.; Taymans, J.-M .; Sun, L.; Cai, H . J. Neurosci. Off. J. Soc. Neurosci. 2009, 29 (44), 13971-13980.
(63) Johnson, L. N. Biochem. Soc. Trans. 2009, 37 (4), 627-641.
(64) Sirnes, S.; Kjenseth, A.; Leithe, E.; Rivedal, E. Biochem. Biophys. Res. Commun. 2009, 382 (1), 41-45.
(65) Lee, B. K.; Chung, M.-Y.; Lee, K. W . M ol. Carcinog. 2015, 54 (5), 351-358.
(66) Fischer, E. H.; Krebs, E. G. J. Biol. Chem. 1955, 216 (1), 121-132.
(67) W alsh, D. A.; Perkins, J. P.; Krebs, E. G. J. Biol. Chem. 1968, 243 (13), 3763-3765.
(68) Johnson, L. N.; Barford, D. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 199-232.
(69) H urley, J.H.; Dean, A . M.; Thorsness, P. E.; K oshland, D. E.; Stroud, R. M . J. Biol. Chem. 1990, 265 (7), 3599-3602.
(70) Filippakopoulos, P.; K ofler, M .; H antschel, O.; Gish, G. D.; Grebien, F.; Salah, E.; Neudecker, P.; K ay, L. E.; Turk, B. E.; Superti-Furga, G.; Pawson, T.; Knapp, S. Cell 2008, 134 (5), 793-803.
(71) Xiao, Q.; M iao, B.; Bi, J.; W ang, Z.; Li, Y. Sci. Rep. 2016, 6, 28413.
(72) Lin, L. I. Biometrics 1989, 45 (1), 255-268.

