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GLOBAL WELL-POSEDNESS FOR THE 2D
QUASI-GEOSTROPHIC EQUATION IN A

CRITICAL BESOV SPACE

ATANAS STEFANOV

Abstract. We show that the 2D quasi-geostrophic equation has global and

unique strong solution when the (large) data belongs in the critical scale in-

variant space Ḃ2−2α
2,∞ ∩ L2/(2α−1).

1. Introduction

In this paper we are concerned with the mathematical properties of the Cauchy
problem for the quasi-geostrophic equation in two spatial dimensions

θt + κ(−∆)αθ + (J(θ) · ∇)θ = 0 (t, x) ∈ R+ × R2

θ(0, x) = θ0(x),
(1.1)

where θ : R2 → R is a scalar, real-valued function, and J(θ) = (−R2θ,R1θ),
α ∈ [0, 1] and R1, R2 are the Riesz transforms defined via the Fourier transform by
R̂jf(ξ) = ξj |ξ|−1f̂(ξ), see also Section 2.3 for additional details.

The physical meaning and derivation of (1.1) has been discussed extensively in
the literature. We refer the interested reader to the classical book of Pedlosky, [14].

Depending on the value of the parameter α, one distinguishes between the sub-
critical case α > 1/2, the critical case α = 1/2, and the supercritical case α < 1/2.
It is known that the critical case α = 1/2 is especially relevant from a physical
point of view, as it is a direct analogue of the 3 D Navier-Stokes equations. On the
other hand, considering the family of equations (1.1) with α ∈ [0, 1] allows us to
understand better the influence of the diffusion on the evolution.

An important scale invariance associated with problem (1.1) is that θλ(t, x) =
λ2α−1θ(λ2αt, λx) is a solution if θ is. It follows that the space Ḣ2−2α(R2) is critical
for the problem at hand. A heuristic argument can be made to show that a well-
posedness theory for initial data in Hs, s < 2 − 2α should not hold. Thus, we
concentrate our attention to the case s ≥ 2− 2α.

The theory for existence of solutions and their uniqueness vary greatly, according
to the criticality of the index α. For the critical and supercritical case, the question

2000 Mathematics Subject Classification. 35Q35, 36D03, 35K55, 76B65.

Key words and phrases. 2D quasi-geostrophic equations.
c©2007 Texas State University - San Marcos.
Submitted November 10, 2006. Published November 9, 2007.
Supported grant 0701802 from the NSF-DMS.

1



2 A. STEFANOV EJDE-2007/150

has been studied in [2, 6, 7, 8, 17, 18] among others. The results are that when
the data is large and belongs to Hs, s > 2 − 2α, then one has at least a local
solution, which may blow up after finite time. For small data in the critical space
(or some Besov variant), Chae-Lee, [2] and then J. Wu, [17, 18] have been able to
show existence of global solutions.

We would like to mention that the majority of these results have been sub-
sequently refined to include Besov spaces of initial data with the same level of
regularity and scaling as the corresponding Sobolev spaces. Also, various unique-
ness and blow-up criteria have been developed, see for example Section 2 below.
However, the fundamental question for existence of global, smooth solutions in the
supercritical case remains open. We note that very recently, in the critical case
α = 1/2, Kiselev, Nazarov and Volberg, [12] have shown the existence of global
and smooth solutions for any smooth (large) initial data. The smoothness assump-
tion in [12] is essentially at the level of H2(R2), while the critical case, the critical
Sobolev space is H1(R2).

In the subcritical case, α > 1/2, which is of main concern for us, the quasi-
geostrophic equation is better understood. Local and global well-posedness results,
as well as Lp decay estimates for the solution has been shown.

To summarize the latest results, Constantin and Wu, [4] have shown global
well-posedness for the inhomogeneous version1 of (1.1) whenever the data is in
Hs : s > 2 − 2α. For small data, there are plethora of results, which we will not
review here, since we are primarily interested in the large data regime. On the
other hand, time-decay estimates for ‖θ(t)‖Lp have been shown in [4] and [7], see
Section 2 below for further details. Finally, we mention a local well-posedness result
for large data in H2−2α ∩ L2, due to Ning Ju, [10]. Note that the space H2−2α is
not scale invariant (due to the L2 part of it) and thus, such solutions cannot be
rescaled to global ones.

In this work, we show that the quasi-geostrophic equation is globally well-posed
in the critical space Ḃ2−2α

2,∞ ∩L2/(2α−1), that is whenever the data θ0 belongs to the
space, there is a global and unique2 solution in the same space.

Theorem 1.1. Let α ∈ (1/2, 1). Then for any initial data θ0 ∈ Ḃ2−2α
2,∞ (R2) ∩

L2/(2α−1)(R2), the quasi-geostrophic equation (1.1) has a global solution

θ ∈ L∞([0,∞); Ḃ2−2α
2,∞ (R2) ∩ L2/(2α−1)(R2))

Moreover, the solution satisfies the a priori estimate

‖θ(t)‖Ḃ2−2α
2,∞ ∩L2/(2α−1) ≤ Cκ,α(‖θ0‖Ḃ2−2α

2,∞ ∩L2/(2α−1) + ‖θ0‖M(α)

L2/(2α−1)), (1.2)

for all t > 0 and M(α) = max(2, 1/(2α − 1)). In particular, the norms remain
bounded for 0 < t <∞.

In addition, if θ0 ∈ L2(R2), then θ ∈ L2((0,∞),Hα(R2)), in fact

‖θ‖L2,Hα(R2)) ≤ ‖θ0‖L2(R2). (1.3)

For a fixed T > 0, the solution is unique class of weak solutions on [0, T ] satisfying
θ ∈ L∞([0, T ], L2(R2)) ∩ L∞([0, T ], L2/(2α−1)) ∩ L2((0, T ),Hα(R2)).

1That is, the authors also consider the equation with right-hand side not necessarily equal to

zero.
2For the uniqueness one has to assume in addition θ0 ∈ L2(R2)
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Several remarks are in order.
(1) Note that global solutions exist and are unique in the space Ḃ2−2α

2,∞ (R2) ∩
L2/(2α−1)(R2), when the data is in the same scale invariant space. Note that
such space properly contains Ḣ2−2α(R2). In other words, taking data in
Ḣ2−2α(R2) guarantees the existence of global solution, but by (1.2) we only
know that the slightly smaller norm ‖θ(t)‖Ḃ2−2α

2,∞ ∩L2/(2α−1) stays bounded.
(2) It is an interesting question, whether Theorem 1.1 and more precisely (1.2)

hold in in the case of the Sobolev space Ḣ2−2α or even for some Besov space
in the form B2−2α

2,r for some r < ∞. We note that the main difficulty is
proving estimate (1.2) for smooth solutions. Once (1.2) is established, one
easily deduce the global existence and uniqueness by standard arguments.

(3) The results in Theorem 1.1 apply may be readily extended to T2. We omit
the details, as they amount to a minor modification of the proof presented
below.

2. Preliminaries

2.1. The 2D quasigeostrophic equation - existence and maximum princi-
ples. We start this section by recalling the Resnick’s theorem, [15] for existence of
weak solutions. That is whenever θ0 ∈ L2(R2) and for any T > 0, there exists a
function θ ∈ L∞([0, T ], L2(R2)) ∩ L2[[0, T ],Hα(R2)), so that for any test function
ϕ, ∫

R2
θ(T )ϕ(T )−

∫ T

0

∫
R2
θ(J(θ)∇ϕ) + κ

∫ T

0

∫
R2

((−∆)α/2θ)((−∆)α/2ϕ)

=
∫
θ0ϕ(0, x).

In his dissertation, [15], Resnick also established the maximum principle for Lp

norms, that is for smooth solutions of (1.1) and 1 ≤ p <∞, one has

‖θ(t)‖Lp(R2) ≤ ‖θ0‖Lp(R2). (2.1)

This was later generalized by Constanin-Wu, [4], [5] for the case p = 2 and by
Córdoba-Córdoba, [6] in the case p = 2n and N. Ju, [8] for all p ≥ 2 to actually
imply a power rate of decay for ‖θ(t)‖Lp(R2) and an exponential rate of decay, when
one considers the equation (1.1) on the torus T2. In the sequel, we use primarily
(2.1), but is nevertheless interesting question to determine the optimal rates of
decay for these norms. Note that Constantin and Wu have shown in [4], that
the optimal rate for ‖θ(t)‖L2(R2) is < t >−1/2α. Ning Ju has proved in [8], that3

‖θ(t)‖Lp(R2) ≤ C(‖θ0‖Lp)(1 + t)−(p−2)/2pα.

2.2. The uniqueness theorem of Constantin-Wu. Recall the uniqueness the-
orem by Constantin-Wu (Theorem 2.2, in [4]).

Theorem 2.1. (Constantin-Wu) Assume that α ∈ (1/2, 1] and p, q satisfy p ≥
1, q > 1 and 1/p+α/q = α− 1/2. Then for every T > 0, there is at most one weak

3For example, (p − 2)/2pα → 0 as p → 2, whereas the optimal rate is (2α)−1, as shown by
Constantin and Wu. On the other hand, we must note that the rate of Lp decay obtained by Ning

Ju holds under the assumption that θ0 ∈ L2(R2), while Constantin-Wu assume that θ0 ∈ L1(R2).
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solution of (1.1) in [0, T ], satisfying

θ ∈ L∞([0, T ], L2(R2)) ∩ L2[[0, T ],Hα(R2)) ∩ Lq([0, T ], Lp(R2)).

In particular, one can take q = ∞, 1/p = α− 1/2 to obtain uniqueness for weak
solutions satisfying θ ∈ L∞([0, T ], Lp(R2)).

2.3. Some Fourier Analysis. Define the Fourier transform by

f̂(ξ) =
∫

Rn

f(x)e−ix·ξdx

and its inverse by

f(x) = (2π)−n

∫
Rn

f̂(ξ)eix·ξdξ.

For a positive, smooth and even function χ : R2 → R, supported in {ξ : |ξ| ≤ 2}
and so that χ(ξ) = 1 for all |ξ| ≤ 1. Define ϕ(ξ) = χ(ξ)−χ(2ξ), which is supported
in the annulus 1/2 ≤ |ξ| ≤ 2. Clearly

∑
k∈Z ϕ(2−kξ) = 1 for all ξ 6= 0.

The kth Littlewood-Paley projection is P̂kf(ξ) = ϕ(2−kξ)f̂(ξ). Similarly P<k =∑
l≤k Pl given by the multiplier χ(2−kξ). Note that the kernels of Pk, P<k are

uniformly integrable and thus Pk, P<k : Lp → Lp for 1 ≤ p ≤ ∞ and ‖Pk‖Lp→Lp ≤
C‖χ̂‖L1 . In particular, the bounds are independent of k.

The kernels of Pk are smooth and real-valued4 and Pk commutes with differential
operators with constant coefficients. We will frequently use the notation ψk(x)
instead of Pkψ, when this will not create confusion.

It is convenient to define the (homogeneous and inhomogeneous) Sobolev norms
in terms of the Littlewood-Paley operators. Namely for any s ≥ 0, define for every
Schwartz function ψ th norms

‖ψ‖Ḣs :=
( ∞∑

k=−∞

22ks‖ψk‖2L2

)1/2

‖ψ‖Hs :=
(
‖ψ‖2L2 +

∞∑
k=0

22ks‖ψk‖2L2

)1/2

and the corresponding spaces are then obtained as the closure of the set of all
Schwartz functions in these norms. Clearly Hs = L2 ∩ Ḣs.

Introduce the operator Λ acting via Λ̂ψ(ξ) := |ξ|ψ̂(ξ). Clearly, by the uniform
boundedness of Pk in the scale of Lp spaces, ‖Λsψk‖Lp ∼ 2ks‖ψk‖Lp .

Next, we introduce some basic facts from the theory of the paraproducts, which
will be useful for us, when estimating the contribution of the nonlinearity.
Write for any two Schwartz functions f, g and any integer k,

Pk(fg) = Pk(
∑
l1,l2

fl1gl2) = Pk(
∑

l1,l2:|l1−l2|≤3

fl1gl2) + Pk(
∑

l1,l2:|l1−l2|>3

fl1gl2)

But
Pk(

∑
l1,l2:|l1−l2|≤3

fl1gl2) = Pk(
∑

l1,l2:|l1−l2|≤3,min(l1,l2)>k−3

fl1gl2)

4Thus for a real valued function ψ, Pkψ is a real-valued function as well.
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since by the properties of the convolution 2l1+1 + 2l2+1 must be at least 2k−1 and

Pk(
∑

l1,l2:|l1−l2|>3

fl1gl2) = Pk(
∑

l1,l2:|l1−l2|>3,|max(l1,l2)−k|≤3

fl1gl2)

since otherwise suppf̂l1gl2 ⊂ {ξ : |ξ| ∼ 2max(l1,l2)}, which would be away from the
set {ξ : |ξ| ∼ 2k} and thus Pk(fl1gl2) = 0.

All in all,

Pk(fg) = Pk(
∞∑

l=k−3

PlfPl−3≤·≤l+3g)+

Pk(
3∑

j=−3

Pk+jfP<k+j−3g) + Pk(
3∑

j=−3

Pk+jgP<k+j−3f).

(2.2)

We will refer to the first term as “high-high interaction” term, while the second and
the third terms represent the “high-low interaction” term. We have the following
lemma, which is an application of the representation formula (2.2).

Lemma 2.2. For every 0 < s ≤ 1, 2 < p, q < ∞ : 1/p + 1/q = 1/2, there is the
estimate

|
∫
Pkψk[J(ψ) · ∇ψ]dx| ≤ C2k(1−s)‖ψk‖Lp(

∑
l≥k−3

2−s(l−k)‖Λsψl‖L2)‖ψ‖Lq .

for some absolute constant C.

Proof. Integration by parts and div(J(θ)) = 0 yield∫
Pkψk[J(ψ) · ∇ψ]dx = −

∫
∇ψk · Pk[J(ψ)ψ]dx

At this point, by the boundedness of the Riesz transform on Lp, we treat J(ψ) as
Tψ, where T : Lr → Lr for all 1 < r < ∞ and ignore the vector structure. By
Hölder’s inequality,∣∣ ∫

∇ψkPk[T (ψ) · ψ]dx
∣∣ . 2k‖ψk‖Lp‖Pk[T (ψ)ψ]‖Lp′ .

By (2.2),

‖Pk[T (ψ)ψ]‖Lp′

≤ ‖
∞∑

l=k−3

PlTψPl−3≤·≤l+3ψ‖Lp′ +
∥∥ 3∑

j=−3

Pk+j(Tψ)P<k+j−3ψ
∥∥

Lp′

+
∥∥ 3∑

j=−3

Pk+j(ψ)P<k+j−3Tψ
∥∥

Lp′

≤
∞∑

l=k−3

‖Plψ‖L2‖Pl−3≤·≤l+3ψ‖Lq +
3∑

j=−3

‖Pk+jψ‖L2‖P<k+j−3ψ‖Lq

≤ C(
∑

l≥k−3

‖ψl‖L2)‖ψ‖Lq .

The Lemma follows by the observation ‖ψl‖L2 ∼ 2−ls‖Λsψl‖L2 and by reshufling
the 2ks. �
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3. Proof of Theorem 1.1

The main step of the proof of Theorem 1.1 is the energy estimate (1.2).
We start with the assumption that we are given a smooth solution θ(t, x), cor-

responding to an initial data θ0 up to time T and we will prove (1.2) based on
it. Assume (1.2) for a moment for such smooth solutions. We will show that the
global existence and uniqueness follows in a standard way from an approximation
argument and the Constantin-Wu uniqueness result, Theorem 2.1.

Indeed, for a given initial data θ0, take an approximating sequence in Ḃ2−2α
2,∞ ∩

L2/(2α−1), {θ0l } of smooth functions (say in the Schwartz class S). By the Constan-
tin-Wu existence result for data in Hs : s > (2 − 2α), we have global and smooth
solutions θl(t). In addition, they will satisfy the energy estimate (1.2). Moreover,
by the Lp maximum principle, ‖θl(t)‖Lq ≤ ‖θl(0)‖Lq for all 1 < q <∞, in particular
for q = 2, q = 2/(2α− 1).

Taking weak limits will produce a weak solution θ(t) of (1.1), corresponding to
initial data θ0, so that it satisfies the energy estimate (1.2) and ‖θ‖L∞t L2/(2α−1) ≤
‖θ0‖L2/(2α−1) . This shows the existence of a weak solution with the required smooth-
ness of the initial data.

For the uniqueness part, we should require in addition that θ0 ∈ L2(R2). Then,
we will show ‖θ‖L2

t Hα
x
< ‖θ0‖L2 , which allows us to apply the Constantin-Wu

uniqueness result (Theorem 2.1). That is, θ is the unique solution in the class
L∞([0, T ], L2(R2)) ∩ L2[[0, T ],Hα(R2)) ∩ L∞([0, T ], L2/(2α−1)(R2)). Thus, it re-
mains to prove (1.2) for smooth solutions and (1.3). Since, (1.3) is relatively easy,
we start with (1.2).

3.1. Proof of the energy estimate (1.2). Let s0 = 2 − 2α. Take a Littlewood-
Paley operator on both sides of (1.1)

∂tθk + κ(−∆)αθk + Pk(J(θ)∇θ) = 0.

Taking a dot product with θk (which is real-valued!) yields

∂t‖θk‖2L2 + 2κ‖(−∆)α/2θk‖2L2 + 2
∫
PkθkJ(θ)∇θ = 0.

By the properties of the Littlewood-Paley operators, ‖(−∆)α/2θk‖2L2 ∼ 22αk‖θk‖2L2 .
For the integral term, use Lemma 2.2 with 1/p = 1/2− s0/2, 1/q = s0/2. We have∣∣ ∫

PkθkJ(θ)∇θdx
∣∣ ≤ C2k(1−s0)‖θk(t)‖Lq

( ∑
l≥k−3

2−s0(l−k)‖Λsθl‖L2

)
‖θ(t)‖Lp

≤ C2k(1−s0)‖θk(t)‖Lq sup
l
‖Λsθl‖L2‖θ(t)‖Lp .

By the Lp maximum principle, (2.1), we have ‖θ(t)‖Lp ≤ ‖θ0‖Lp . Substituting
everything in the equation allows us to conclude

∂t‖θk‖2L2 + cκ22kα‖θk‖2L2 ≤ C2k(1−s0)‖θ0‖Lp‖θk(t)‖Lq sup
l
‖Λs0θl‖L2 (3.1)

At this point, the argument splits in two cases with a threshold value of α = 3/4.
As expected, the case 3/4 ≤ α < 1 proves out to be slightly simpler, so we start
with it.
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The case 3/4 ≤ α < 1. The significance of the restriction α ≥ 3/4 is in the fact
that s0 = 2 − 2α ∈ (0, 1/2]. Therefore 1/q = s0/2 ≤ 1/2 − s0/2 = 1/p, implying
p ≤ q. Thus, by the Sobolev embedding5, the boundedness of Pk on Lp and the Lp

maximum principle imply

‖θk(t)‖Lq . 22k(1/p−1/q)‖θk(t)‖Lp . 2k(1−2s0)‖θk(t)‖Lp . 2k(1−2s0)‖θ0‖Lp

By (3.1), we infer

∂t‖θk‖2L2 + cκ22kα‖θk‖2L2 ≤ C2k(2−3s0)‖θ0‖2Lp sup
l
‖Λs0θl(t)‖L2 (3.2)

It is a standard step now to make use of the Gronwal’s inequality, namely rewrite
(3.2) as

∂t(‖θk‖2L2ecκ22kαt) ≤ C2k(2−3s0)ecκ22kαt‖θ0‖2Lp sup
l
‖Λs0θl(t)‖L2

and estimate after integration

‖θk(t)‖2L2 ≤ Cκ2k(2−3s0−2α)‖θ0‖2Lp sup
0≤z≤t

sup
l
‖Λs0θl(z)‖L2 +‖θ0k‖2L2e−cκ22kαt. (3.3)

Note that in the formula above Ck ∼ 1/κ and 2− 3s0 − 2α = −2s0.
Introduce the functional

E(t) = sup
0≤z≤t

sup
k

2ks0‖θk(z)‖L2 .

Clearly, one may deduce from (3.3) that

E2(t) ≤ E2(0) + CκE(t)‖θ0‖2Lp ,

hence
E(t) ≤ 2J(0) + Cκ‖θ0‖2Lp ,

which is

sup
k

2k(2−2α)‖θk(t)‖L2 ≤ 2 sup
k

2k(2−2α)‖θ0k‖L2 + Cκ‖θ0‖2Lp . (3.4)

This is the a priori estimate of the solution θ, (1.2) for the case α ∈ [3/4, 1). As
we have observed in the beginning of the section, it follows that the 2 D quasi-
geostrophic equation (1.1) has global solution with (potentially large) data in the
scale invariant space Ḃ2−2α

2,∞ (R2) ∩ L2/(2α−1)(R2).

The case 1/2 < α < 3/4. In this case, it is clear that s0 = 2 − 2α ∈ (1/2, 1),
whence 2 < q = (1 − α)−1 < p = (α − 1/2)−1. At this point, we make use of the
Gagliardo-Nirenberg’s inequality (see for example [13] or the classical [1]), which
states that whenever X = (X0, X1)θ, say by the complex interpolation method,
then ‖ · ‖X ≤ ‖ · ‖1−θ

X0
‖ · ‖θ

X1
. In particular, applying this to the Sobolev spaces

Ẇ p,k, we obtain
‖θk‖Lq ≤ C‖Λ2−2αθk‖γ

L2‖Λ−aθk‖1−γ
Lp ,

with γ = 3−4α
2−2α ∈ (0, 1) and a = (2−2α)(3−4α)

2α−1 . Thus, by ‖Λ−aθk‖Lp ∼ 2−ak‖θk‖Lp ,
whence it follows that

‖θk‖Lq ≤ C2−k(3−4α) sup
l
‖Λs0θl‖γ

L2‖θk(t)‖1−γ
Lp .

5or more appropriately the Bernstein inequality
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Substituting this in (3.1) yields

∂t‖θk(t)‖2L2 + cκ22kα‖θk(t)‖2L2 ≤ 2k(1−s0−3+4α) sup
l
‖Λs0θl‖1+γ

L2 ‖θk(t)‖Lp‖θ0‖1−γ
Lp .

(3.5)
Using the maximum principle ‖θk(t)‖Lp . ‖θ0‖Lp , this reduces to

∂t‖θk(t)‖2L2 + cκ22kα‖θk(t)‖2L2 ≤ 2k(1−s0−3+4α) sup
l
‖Λs0θl‖1+γ

L2 ‖θ0‖2−γ
Lp .

By the Gronwall’s inequality, we deduce

‖θk(t)‖2L2 ≤ ‖θ0k‖2L2e−cκ22kαt + Cκ2−2ks0 sup
0≤z≤t

sup
l
‖Λs0θl(z)‖1+γ

L2 ‖θ0‖2−γ
Lp . (3.6)

By using the same energy functional E(t) defined above, we conclude that

E2(t) ≤ E2(0) + Ck[E(t)]1+γ‖θ0‖2−γ
Lp .

Since 1 + γ < 2, by Young’s inequality

E2(t) ≤ E2(0) +
E2(t)

2
+ Cκ,γ‖θ0‖(4−2γ)/(1−γ)

Lp .

whence

E(t) ≤ 2E(0) + Cκ,γ‖θ0‖(2−γ)/(1−γ)
Lp .

which is

sup
k

2k(2−2α)‖θk(t)‖L2 ≤ sup
k

2k(2−2α)‖θ0k‖L2 + Cκ,γ‖θ0‖(2−γ)/(1−γ)
Lp . (3.7)

Again, this implies (1.2) with M(α) = 1/(2α− 1) and the problem (1.1) has global
solution in Ḃ2−2α

2,∞ (R2) ∩ L2/(2α−1)(R2), when the initial data is taken in the same
space.

3.2. θ ∈ L∞([0,∞), L2(R2)) ∩ L2((0,∞),Hα(R2)). Both of these estimates are
classical for smooth solutions, but we sketch their proofs for completeness.

In fact, θ ∈ L∞([0,∞), L2(R2)) follows from the maximum principle (2.1). For
the second estimate, we multiply the equation by θ and integrate in x. We get

∂t‖θ(t)‖2L2 + ‖Λαθ(t)‖2L2 = −
∫
θ[J(θ)∇θ]dx = 0

Time integration now yields∫ T

0

‖Λαθ(t)‖2L2dt ≤ ‖θ0‖2L2 − ‖θ(T )‖2L2 < ‖θ0‖2L2 ,

whence θ ∈ L2((0,∞),Hα(R2)).

Acknowledgement. It is a pleasure to thank Ning Ju for several stimulating
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