
DISTRIBUTED SYMBOLIC EXECUTION FOR PROPERTY CHECKING

by

Junye Wen

A thesis submitted to the Graduate College of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
May 2017

Committee Members:

Guowei Yang, Chair

Xiao Chen

Rodion Podorozhny

COPYRIGHT

by

Junye Wen

2017

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgement.
Use of this material for financial gain without the author’s express written
permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Junye Wen, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

Dedicated to my family, who have always loved and supported me

unconditionally and whose good examples have taught me and given me

confidence to achieve the best I can.

ACKNOWLEDGEMENTS

I deeply appreciate my supervisor Dr. Guowei Yang, who guides me during my

graduate program. The past two and half years has been a great pleasure to me,

with his valuable guidance,financial support, encouragement, and patience. This

thesis would not have been possible without his guidance and persistent help. I

am also grateful to my committee members, Dr. Rodion Podorozhny and Dr.

Xiao Chen, for constant support and insightful comments in this thesis.

This work was funded in part by the National Science Foundation under Grant

No. CCF-1464123.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

ABSTRACT . xi

CHAPTER

I. INTRODUCTION . 1

Motivation . 1

Goals of Research . 2

Research Methodology . 2

Outline . 3

II. BACKGROUND . 4

Symbolic Execution . 4

Symbolic Pathfinder . 7

III.APPROACH . 9

Foundation . 9

Distributed Assertion Checking . 10

Algorithms . 12

Implementation . 15

IV.EVALUATION . 19

Tool Support . 19

vi

Assumptions . 20

Artifacts . 21

Metrics and Research Questions . 22

Results and Analysis . 23

Discussions . 28

V. RELATED WORK . 33

VI.FUTURE WORK . 35

VII.CONCLUSION . 37

APPENDIX SECTION . 38

REFERENCES . 41

vii

LIST OF TABLES

Table Page

IV.1 Results of AssertionTest . 25

IV.2 Results of WBS . 26

IV.3 Results of trityp . 26

IV.4 Results of Apollo . 27

IV.5 Time cost when workers running on same/different cores 30

viii

LIST OF FIGURES

Figure Page

II.1 Symbolic Execution Sample: (a) Code that swaps two integers, (b)

the corresponding symbolic execution tree, and (c) test data and path

constraints corresponding to different program paths. 5

II.2 Illustration of JPF Core . 7

II.3 JPF Listeners . 8

III.1 Example Trie of Distributed Exploration: (a) example trie explored

by the first stage; (b) paths distributed to multiple workers for parallel

assertion checking. 11

III.2 The work flow of technique . 12

III.3 Algorithm for the First Stage . 13

III.4 Algorithm for the Second Stage . 14

III.5 A Sample Bytecode Corresponding to Assertion 16

IV.1 Source Code of AssertionTest . 21

IV.2 Example trie leading to worse performance 28

ix

LIST OF ABBREVIATIONS

Abbreviation Description

CG Choice Generator

JPF Java Pathfinder

JVM Java Virtual Machine

Memoise Memoized Symbolic Execution

PC Path Condition

SPF Symbolic Pathfinder

TACC Texas Advanced Computing Center

VM Virtual Machine

WBS Wheel Brake System

x

ABSTRACT

Symbolic execution is a powerful technique for checking properties in the form of

assertions. It can systematically explore the program’s state space to find paths

to assertion violations, and provide users with a counterexample for each

violation by solving the corresponding path condition using the underlying

constraint solver. However, conventional symbolic execution is configured either

to explore all the state space to find all possible assertion violations, or to stop

when it finds the first assertion violation. In the former case, one symbolic

execution run could take a long time before giving any result, and users have to

wait for the whole execution time before they could take any action to deal with

the potential problems in their code. In the latter case, users need to run

symbolic execution for multiple times to check all assertion violations.

In this thesis, we develop a novel technique to check assertions in parallel using

symbolic execution. Our technique improves the efficiency of assertion checking

using symbolic execution and gives users earlier results. This technique is in two

stages: in the first stage, a worker is launched to find feasible paths to the checked

assertions, then in the second stage, multiple workers are launched to check

assertions on these paths in parallel simultaneously, each worker focusing on one

of these feasible paths. We evaluate our technique using experiments with four

Java subjects, and the experimental results show its effectiveness and efficiency.

xi

I. INTRODUCTION

Motivation

Annotating functional correctness properties of code, e.g., using assertions

(Clarke and Rosenblum, 2006) or executable contracts (Leavens et al., 2005;

Meyer et al., 1987), enables automated conformance checking of program

behaviors to expected properties, and is widely used for finding bugs (Corbett

et al., 2000; Godefroid, 1997). However, effectively utilizing such properties in

practice is complicated, largely due to the complexity of specifying and

maintaining them as well as the high computational cost of checking them. In

our research, we are focusing on checking properties which are assertions in

source code.

Symbolic execution (King, 1976a) uses symbolic values, instead of concrete

values, as program inputs, and represents the values of program variables as

symbolic expressions of those inputs. By solving the corresponding path

condition using the underlying constraint solver, it can check all feasible paths of

given subjects within depth boundary set by users. It is suitable as a powerful

technique for checking assertions. Symbolic execution can systematically explore

the program’s state space to find paths to assertion violations, and provide users

with a counterexample for each violation by solving the corresponding path

condition using the underlying constraint solver.

However, suffering from problems of path explosion, path divergence, and

expensive constraint solving, checking assertions using conventional symbolic

execution can be expensive. Usually, symbolic execution is configured either to

explore all the state space to find all possible assertion violations, or to stop

when it finds the first assertion violation. In the former case, one symbolic

execution run could take a long time before giving any result, and users have to

wait for the whole execution time before they could take any action to deal with

1

the potential problems in their code. In the latter case, users need to run

symbolic execution for multiple times to check all assertion violations.

Goals of Research

Our research is aiming at finding assertion violations more efficiently in two

aspects: first, one single symbolic execution run could find as many violations as

possible, so users do not need to run a potentially long-time symbolic execution

run sequentially for multiple times; second, if a potential violation is detected,

users can get a report about it at the earliest time possible so they can start

working on their code at once, even while the exploration is still on going.

One possible way to archive this goal is to distribute checking to several workers

in parallel, while each worker is solving a much simpler problem. As a rule,

assertions are usually required to be side effect free, which means the checking

result of one assertion is not dependent on the checking result of another

assertion. Thus, it guarantees that distribution of assertion checking would not

change the final result.

In our research, we would like to find a way to analyze and divide the given

subject into smaller working packages, and then distribute them to multiple

working units. We would like to design and implement a assertion checking

approach that is more efficient than using conventional symbolic execution

technique.

Research Methodology

Although several assertion checking techniques using symbolic execution have

been developed (Khurshid et al., 2003; Deng et al., 2006; Zhang et al., 2015),

most of them are using serial algorithms. In our research, we use parallel

algorithms to solve the problem to improve the efficiency. Our approach first

launches a worker to find all feasible paths to assertions as target paths. For each

target path, a worker is launched to check the assertion along that path.

2

Memoized Symbolic Execution (Memoise) is used to quickly traverse the target

path, check the corresponding assertion, and provide users a report about the

result.

We use an open source framework for symbolic execution, Symbolic

Pathfinder (SPF) (Păsăreanu and Rungta, 2010), as our platform to implement

the approach. Also, to examine the efficiency of our technique, we run several

expriments for evaluation. We used a handmade subject as well as real world

subjects to evaluate our technique. The results show that our technique can find

all assertion violations reported by conventional symbolic execution, while using

less time and providing users earlier reports of assertion checking.

Outline

This thesis is structured as follows. In Chapter 2, we introduce the background

techniques, including symbolic execution and JPF framework. In Chapter 3, we

describe the algorithms and implementation of our approach. Chapter 4

evaluates our technique using a set of experiments. In Chapter 5 discusses

related work. Chapter 6 discusses future work to further improve our technique,

and Chapter 7 concludes this thesis.

3

II. BACKGROUND

In this chapter, we introduce the concept of symbolic execution, which is the

background technique of our approach. Also, we briefly introduce SPF, a widely

used symbolic execution framework for Java.

Symbolic Execution

Symbolic execution (King, 1976a) uses symbolic values, instead of concrete

values, as program inputs, and represents the values of program variables as

symbolic expressions of those inputs. At any point during symbolic execution,

the state of a symbolically executed program includes the symbolic values of

program variables at that point, a path condition on the symbolic values to

reach that point, and a program counter. The Path Condition (PC) is a Boolean

formula over the symbolic inputs, which is an accumulation of the constraints

that the inputs must satisfy for an execution to follow that path. At each branch

point during symbolic execution, the PC is updated with constraints on the

inputs such that (1) if the PC becomes unsatisfiable, the corresponding program

path is infeasible, and symbolic execution does not continue further along that

path and (2) if the PC is satisfiable, any solution of the PC is a program input

that executes the corresponding path. The program counter identifies the next

statement to be executed.

To illustrate, consider the code fragment in Figure 1(a) that swaps the values of

integer variables x and y, when the initial value of x is greater than the initial

value of y; we reference statements in the figure by their line numbers. Figure

1(b) shows the symbolic execution tree for the code fragment. A symbolic

execution tree is a compact representation of the execution paths followed during

the symbolic execution of a program. In the tree, nodes represent program

states, and edges represent transitions between states. The numbers shown at

4

Figure II.1: Symbolic Execution Sample: (a) Code that swaps two integers, (b) the cor-
responding symbolic execution tree, and (c) test data and path constraints
corresponding to different program paths.

the upper right corners of nodes represent values of program counters. Before

execution of statement 1, the PC is initialized to true because statement 1 is

executed for any program input, and x and y are given symbolic values X and Y,

respectively. The PC is updated appropriately after execution of if statements 1

and 5. The table in Figure 1(c) shows the PC’s and their solutions (if they exist)

that correspond to three program paths through the code fragment. For

example, the PC of path (1,2,3,4,5,8) is X > Y&Y –X <= 0. Thus, a program

input that causes the program to take that path is obtained by solving the PC.

One such program input is X = 2, Y = 1. For another example, the PC of path

(1,2,3,4,5,6) is an unsatisfiable constraint X > Y&Y –X > 0, which means that

there is no program input for which the program will take that (infeasible) path.

Symbolic execution offers the advantage that one symbolic execution may

represent a large, usually infinite, class of normal executions. This can be used to

great advantage in program analyzing, testing and debugging. However, to build

a symbolic execution system that is both efficient and automatic, three

fundamental problems of the technique must be addressed: path explosion, path

5

divergence and complex constraint solving (Anand et al., 2013).

Symbolic execution is a powerful technique for checking assertions, especially for

checking assertions in the form of assertions. It can systematically explore the

program’s state space to find paths to assertion violations, and provide users

with a counterexample for each violation by solving the corresponding path

condition using the underlying constraint solver. However, conventional symbolic

execution is also suffering from some problems(Anand et al., 2013).

• Path explosion. It is difficult to symbolically execute a significantly large

subset of all program paths because (1) most real world software have an

extremely large number of paths, and (2) symbolic execution of each

program path can incur high computational overhead. Thus, in reasonable

time, only a small subset of all paths can be symbolically executed. The

goal of discovering a large number of feasible program paths is further

jeopardized because the typical ratio of the number of infeasible paths to

the number of feasible paths is high (Ngo and Tan, 2007). This problem

needs to be addressed for efficiency of a symbolic execution system.

• Complex constraints. It may not always be possible to solve path

constraints because solving the general class of constraints is undecidable.

Thus, it is possible that the computed path constraints become too

complex (e.g., constraints involving nonlinear operations such as

multiplication and division and mathematical functions such as sin and

log), and thus, cannot be solved using available constraint solvers. The

inability to solve path constraints reduces the number of distinct feasible

paths a symbolic execution system can discover.

As for checking assertions, symbolic execution is usually configured either to

explore all the state space to find all possible assertion violations, or to stop

when it finds the first assertion violation. In the former case, due to the three

basic problems mentioned above, one symbolic execution run could take a long

6

Figure II.2: Illustration of JPF Core

time before giving any result, and users have to wait for the whole execution

time before they could take any action to deal with the potential problems in

their code. In the latter case, users need to run symbolic execution for multiple

times to check all assertion violations.

Symbolic Pathfinder

SPF is such a Java framework specially designed for symbolic execution. SPF

combines symbolic execution with model checking and constraint solving for test

case generation. In this tool, programs are executed on symbolic inputs instead

of concrete values. Values of variables are represented as constraints over the

symbolic variables, generated from analysis of the code structure. These

constraints are then solved to generate test inputs. Essentially SPF performs

symbolic execution for Java programs at the bytecode level.

SPF uses the analysis engine of Java Pathfinder (JPF). The core of

JPF (Havelund and Pressburger, 2000) is a Virtual Machine (VM) for Java

bytecode which is generally used as model checker. A brief illustration of its

work-flow is shown in Figure II.2. It is used to find defects in given Java

programs, with the assertions to check for given as input. JPF gets back to user

with a report that says if the assertions hold and/or which verification artifacts

have been created by JPF for further analysis (like test cases).

The Java Virtual Machine (JVM) of JPF is the Java specific state generator. By

executing Java bytecode instructions, the JVM generates state representations

7

Figure II.3: JPF Listeners

that can be checked, queried, stored and restored. JPF provided interfaces for

developer to control these behaviors. As shown in Figure II.3, certain events (e.g.

instruction executed, choice generator registered, state backtracked, etc.) will

trigger a series of Java interfaces (listeners), and developer could control the flow

of execution by implement their own listener. For more information about

listeners in JPF, please refer Appendix B.

8

III. APPROACH

In this chapter, we first introduce the foundation of our technique, and then

describe the algorithms and implementation.

Foundation

This section provides a brief introduction of Memoise, which serves as the

foundation of the development of our technique.

The key insight in Memoise is that applying symbolic execution often requires

several successive runs of the technique on largely similar underlying problem

instances. Memoise leverages the similarities to reduce the total cost of applying

the technique by maintaining and updating the computations involved in a

symbolic execution run. It reduces both the number of paths to explore by

pruning the path exploration as well as the cost of constraint solving by re-using

previously computed constraint solving results.

Specifically, Memoise uses a trie (Fredkin, 1960; Willard, 1984)—an efficient

tree-based data structure—for a compact representation of the paths visited

during a symbolic execution run. Essentially, the trie records the choices taken

when exploring different paths, together with bookkeeping information that

maps each trie node to the corresponding condition in the code. Maintenance of

the trie during successive runs allows re-use of previous computation results of

symbolic execution without the need for re-computing as is traditionally done.

Constraint solving is turned off for previously explored paths and the search is

guided by the choices recorded in the trie. An initial run of Memoise performs

standard symbolic execution as well as builds the trie on-the-fly and saves it on

the disk for future re-use. To facilitate future runs of symbolic execution, a

subset of the leaf nodes in a trie is partitioned into a set of boundary nodes,

which are leaf nodes because of the chosen depth bound, and a set of

9

unsatisfiable nodes, which are leaf nodes due to unsatisfiable path conditions.

Based on the results cached in the trie, Memoise enables efficient re-execution,

which is guided by the trie using algorithms that are specialized for the

particular analysis that is performed.

In our approach, Memoise is used to improve the efficiency of our technique.

Distributed Assertion Checking

Our technique aims at finding assertion violations more efficiently in two aspects:

first, one single symbolic execution run could find as many violations as possible,

so users do not need to run a potentially long-time symbolic execution run for

multiple times; second, if a potential violation is detected, users can get a report

about it at the earliest time possible so they can start working on their code at

once, even while the exploration is still on going.

One possible way to archive this goal is to distribute checking to several workers

in parallel, while each worker is solving a much simpler problem. As a rule,

assertions are usually required to be side effect free, which means the checking

result of one assertion is not dependent on the checking result of another

assertion. Thus, it guarantees that distribution of assertion checking would not

change the final result. Moreover, as a typical embarrassingly parallel problem,

the partial result of each worker does not need to be reduced into one overall

result. In other words, once the exploration is started, there is very limited

amount of data transferring among workers, and complex synchronization

mechanism between workers is not necessary. Thus, the partial results could be

provided to users as soon as they come out, so users could use them to

immediately check the possible problems in the assertion or in the code.

A key challenge in distributing an analysis run is to minimize the communication

cost among different workers that may be on different machines. A distribution

technique that creates independent workloads is highly desirable. We introduce a

novel parallel assertion checking technique based on staged symbolic execution,

10

(a) (b)

Figure III.1: Example Trie of Distributed Exploration: (a) example trie explored by the
first stage; (b) paths distributed to multiple workers for parallel assertion
checking.

so that the trie created in the first stage is used to define static workloads for

parallel workers:

• In the first stage, we perform symbolic execution to explore all program

behaviors and find all feasible paths that lead to the checked assertions. In

this stage, we filter out all paths which are irrelevant to assertion checking,

and save target paths which are used in the second stage with a focus on

checking assertions.

• In the second stage, multiple workers are launched in parallel to explore

the state space for checking assertions guided by the target paths provided

by the first stage. Each worker is guided by one target path using Memoise,

and explores the sub-state space corresponding to the reached assertion.

All the workers are run in parallel, and individually output the result to

users once any of them finishes its job.

Figure III.1 shows the two stages symbolic execution on a small subject with two

assertions. In the first stage, a symbolic execution run is launched, where a state

space trie is built as the exploration is proceeded and four target paths, which

are feasible and lead to the checked assertions, are found. After gathering all

needed information, in the second stage, four workers are launched, each focusing

checking a assertion along one target path, while avoiding the exploration of

11

Figure III.2: The work flow of technique

irrelevant states and efficiently exploring the four target paths by turning off

constraint solving.

In practice, we do not wait for the symbolic execution to finish the first stage to

start the second one. To be more specifically to our implementation, as soon as

first worker reached a frontier state, it launches another worker immediately

before start looking for other feasible paths to assertion checking. In other words,

if we generally looking the whole exploration, both stages are run simultaneously

by multiple workers.

Algorithms

Description of algorithms for both stages are shown in pseudo-code in Figure

III.3 and Figure III.4. To further help understanding, work flow of our approach

12

Figure III.3: Algorithm for the First Stage

is given in Figure III.2.

Figure III.3 shows the algorithm for the first stage. Worker launched in this

stage applies a normal symbolic execution, aiming to find assertions on feasible

paths. During the exploration, this worker collects the choices processed as it

reaches every new state, and maintains a list of the choices. The list is updated

as the state advances or backtracks. Meanwhile, this worker monitors the

instructions executed and checks if they are in the list of assertion instructions

given as input. If the instruction is in the list, which eventually triggered a new

13

Figure III.4: Algorithm for the Second Stage

choice generator corresponded to it registered, we know that the current state is

a frontier state that stands for assertion checking. After reaching a frontier state,

this worker launches a new worker, and assign it with currnt path by sending the

path choices that leading to this state from the root of trie. Then, the current

state stops searching the current path, and backtracks to explore other part of

the state space.

The algorithm for the second stage are shown in Figure III.4. Workers in this

stage follow the given path choices to quickly traverse through the state space

towards the assigned frontier state. PC solver is turned off, for the path

constraints on this path has already been solved and we are sure all states are

feasible. Upon reaching the frontier state, exploration first turns on the PC solver

to check feasibility of the corresponding assertion, and gives a counter-example

14

that may cause violation is possible. Then, it logically uses the frontier state as

the root state of deeper part of the trie. It continues traversing the state space

beneath the frontier state, using normal symbolic execution strategy. Search is

stopped when it backtracks from the frontier state, for the state space rooted at

the frontier state is fully explored. Then, a report is generated regarding the

validity of all the checked assertions this worker has encountered. Since all

workers are run in parallel, earlier feedback could be expected in comparison to

the conventional symbolic execution, which only gives an overall report after

exploring all feasible states in configuration where all errors need to be explored.

Currently, our technique does not check the reach-ability of assertions statically.

In other words, if there are no assertions at all in the program, the first worker

will explore the whole state space in the same way as the default symbolic

execution, while monitoring the execution of instructions. Even in this case, since

the list of assertion instruction is empty, the cost should be similar as

conventional symbolic execution, which is acceptable. However, if we could

leverage some static analysis technique to avoid paths that are deemed to reach

no assertions, which is left for future work, more reduction in analysis cost could

be expected.

Implementation

Since JPF/SPF is running on Java bytecode rather than source code, our first

step of implementation is to mark out all the instructions representing an

assertion in bytecode. After compiled, an assertion is transformed in a series of

bytecodes that equals to if-branch throwing a certain type of exception. A

sample code fragment in Figure III.5.

A typical assertion is in a format of three parts:

• Head part.In head part, system variable #2 is loaded. This is the variable

indicates whether assertion is turned on in visual machine. If it is not, the

following instruction "ifne xx" guides the execution to skip all assertion

15

Figure III.5: A Sample Bytecode Corresponding to Assertion

instructions. Line 16 and 19 in Figure III.5 is corresponding to head part.

• Body part. If assertion function is on, instructions represent the actual

condition of the assertion will be executed. This part could be a serial of

if-branch bytecodes or method calls, and guild to the assertion error part if

condition is not satisfied. Noted that body part could be very simple, as

Line 22 and 23 in Figure III.5, or could be very long and complicate

according to the assertion condition.

• Foot part. This part represents that when an assertion is violated. As

shown in Line 26 to 33 in Figure III.5, a typical assertion exception is

thrown. Every assertion code ends with these bytecode instructions.

Ideally, instruction "getstatic #2" can be used as the indicator of the start of an

assertion. However, we find out this instruction is difficult to catch in SPF when

there are several assertions in the code. In most cases, this part of the code is

only loaded and executed at the very beginning of execution and the first

assertion actually reached. In other words, once JVM had confirmed that

assertion function was turned on, it will not check this configuration again in

middle of an execution run. In case of JPF, later head parts of assertion

bytecodes are totally ignore and cannot be captured by any listeners. In order to

make sure we can catch every assertions, we used an alternate solution that

16

catch the if-instructions in body part instead. When SPF reaches such

instructions, it treats them as normal if-branches and register a Choice

Generator (CG) for it, which could be captured by listeners in JPF.

Currently, we use Javap -c command to generate and manually input the

instruction ID into the program.We noticed that some tools, i.e. Apache

Commons BCEL (https://commons.apache.org/proper/commons-bcel/) could

be useful to help us automatically conduct bytecode analysis. But currently, we

are checking code manually to make sure it is accurate.

After gathering all information of the checked assertions, we start the symbolic

execution run using it to control the flow of exploration. We implemented our

technique using several listeners provided by SPF. The main listeners we used

are as follows:

• Choice Generator listeners. Choice Generators is a mechanism JPF

used as a set of possible transitions from a current state to a new state. For

example, an if-instruction is explained with a choice generator registered

with two choices, each of which leading to a different state as the condition

Boolean is true or false. Each of these choices is stored with an index, and

symbolic execution uses Depth First Search strategy by default to check

every choice one by one, thus explore all corresponding states. JPF has

provided several listeners answering to different behaviors of Choice

Generator. In our implementation, we mainly used two of these listeners:

(1) choiceGeneratorRegistered, which is triggered as a choice generator is

initialized with choices. Since assertions are in form of if-branches, each of

these assertions eventually have a choice generator standing for it. Thus,

when a choice generator is registered, we can check if we need to skip some

choices that represents states not on a critical path. For the first worker, if

our current state is a frontier state, this event also indicates the end of the

state, and giving us a control point to start a new worker and backtrack to

parent states. (2)choiceGeneratorAdvanced, which is called every time JPF

17

is going to get a worker a choice of the Choice Generator. To perform

Memoise, our approach need to transfer the guide to later workers about

the path leading to a frontier state. Since the path can be indicated as

which choice we processed at each choice generator, we dynamically

maintained a string which is indexes of all choices leading to the current

state we are exploring. If it is a frontier state, we send this string, or "Path

Choices", to the new launched worker. choiceGeneratorAdvanced is a

listener in which provided us the index of next choice JPF is going to

process. Before we actually proceed to that state, we need to collect this

information and update the path choice string.

• State Listeners. The most important listener related to state is

stateBacktracked. This listener indicates after fully exploring a state, JVM

has rolled back to the previous state and ready to check next choice of

Choice Generator. For our approach, when such a listener is trigger, we

update the path choice string by popping out the last choice of it. More

importantly, for later processes, we need to stop the exploration once it is

backtracked from the assigned frontier state to avoid exploring irrelevant

paths. Besides this listener, we also used stateAdvanced to collect the

depth of current state, in order to help controlling the flow of exploration.

18

IV. EVALUATION

In this chapter, we first discuss the tool support, our assumptions and artifacts

for experiments, metrics, and research questions. Then we analyze our

experimental results and have some further discussions of the evaluation.

Tool Support

We have implemented our technique in SPF. We have customized Memoise so

that the trie nodes corresponding to assertions are treated as frontier nodes, and

each worker leverages Memoise analysis to check the assertion along the target

path(s) which are feasible and lead to the checked assertions. Symbolic execution

is guided by the target path and constraint solving is turned on only as the

frontier node is reached.

For environment, we have used LoneStar 5 on Texas Advanced Computing

Center (TACC) cluster. The configuration of our computing node is:

• Dual Socket

• Xeon E5-2690 v3 (Haswell) : 12 cores per socket (24 cores/node), 2.6 GHz

• 64 GB DDR4-2133 (8 x 8GB dual rank x8 DIMMS)

• No local disk

• Hyperthreading Enabled - 48 threads (logical CPUs) per node

• JDK-1.8

We have chosen the latest version of JPF/SPF to support the JDK-1.8

environment. Also, we modified our implementation so that we can correctly

distribute the jobs on different computing nodes. The communicating and

allocating of jobs are controlled by TACC operation system and we have

confirmed its effectiveness.

19

Assumptions

We made some assumptions when evaluating our approach. The following data

to evaluate are collected based on these assumptions. We are aware of the risk

that some potential threats to validity existed, and we discuss them in detail in

later sections.

• A basic problem of symbolic execution is path explosion, which means if

there are too many states and paths, traversing the whole state space trie

could be very expensive. To solve this problem, SPF has implemented an

optimization not to register a choice generator if there is only one or none

choice is feasible. By doing this, infeasible states are ignored. Further more,

if a state only had one child-state (when there is only one feasible choice

for a choice generator), these two nodes are merged into one in state space

trie. To fairly compare our technique with conventional symbolic execution

and to avoid the possible confusion caused by this optimization, we have

edited the code in SPF and disabled this optimization. Our artifacts are

relatively small, and thus the introduced cost of traversing states is small.

In addition, this change impacts on both conventional symbolic execution

and our technique. Therefore, we consider this change acceptable. However,

we also point out that this change is only to facilitate a good comparison

between conventional symbolic execution and our technique, and does not

impact the core algorithm of our approach.

• Another assumption we made is that we have enough resources to allocate

for all workers to run at the earliest time possible. In this thesis, we do not

discuss work-stealing between workers. In practice, we have noticed that

such a strategy may have a negative impact on the performance of our

approach. Such impact will be discussed later in this chapter.

20

Figure IV.1: Source Code of AssertionTest

Artifacts

In our evaluation, we use one artifact with one manually created assertions and

three other artifacts with assertions transformed from dynamically inferred

invariants. These artifacts we chose are used in multiple research projects related

to symbolic execution techniques.

The first artifact is a simple Java method named AssertionTest, which is shown

in Figure IV.1. This method takes as input two integer values, and returns the

sum of their absolute values. We manually created three assertions in different

locations.

The second artifact is Wheel Brake System (WBS), which comes with official

jpf-symbc package, and has been used in the literature for evaluating symbolic

execution techniques. It is a synchronous reactive component from the

automotive domain. This method determines how much braking pressure to

apply based on the environment. It consists of one class and 231 lines of code.

Since the original WBS code does not have assertions, we use Daikon (Ernst

et al., 2007) to dynamically infer invariants for the program, and transform them

into Java assert statements. As the eight invariants generated by Daikon,

representing post-conditions, are all for the exit points of a method, we move the

assertions synthesized from these invariants to different locations of the code

21

which are randomly selected. For this artifact, we do not care if the assertions

are valid or not as long as the subject can be successfully compiled.

The third artifact is an open-source Java subject named trityp. This method

takes three integer inputs which stand for the length of three edges of a triangle,

and return an integer indicating the type of the triangle (scalene, isosceles,

equilateral, or not a triangle). For this subject, ten assertions are manually

inserted by the creator and put at the end of the source code. Unlike what we

did to artifact WBS, we paid attention and made sure these assertions are not

violated when me were moving the assertions to different branches of the method.

The last artifact is Apollo (RJC), which is also a Java subject used for evaluation

in multiple former papers (Person et al., 2011). The Apollo Lunar Autopilot is a

Simulink model that was automatically translated to Java. The translated Java

code has 2.6 thousand lines of code in 54 classes. The Simulink model was

created by an engineer working on the Apollo Lunar Module digital autopilot

design team. The goal was to study how the model could have been designed in

Simulink, if it had been available in 1961. The model is available from

MathWorks6. It contains both Simulink blocks and Stateflow diagrams and

makes use of complex Math functions (e.g. Math.sqrt). For this artifact, solving

constraints is more expensive as they involve nonlinear calculation. We randomly

pick up 7 assertions generated by Daikon, which are valid, invalid or irrelevant to

the subject, and move them to different locations of the code.

Metrics and Research Questions

Our evaluation focuses on answering following research questions:

• RQ1: Correctness - Can our technique capture all violations detected by

conventional symbolic execution?

• RQ2: Efficiency - Can our technique reduce the time cost comparing to

normal symbolic execution?

22

In order to answer these research questions, we run conventional symbolic

execution on our subjects and collect data for comparison. We measure our

technique and conventional symbolic execution in following metrics:

1. Time cost: Total time used from start of exploration to exploration

finished. We have insert instructions in listeners to output the system time

when they are triggered, and calculate the result in milliseconds.

2. Memory cost: Total memory used by symbolic execution. We collected this

metric from report of JPF engine. Calculated in Mega Bytes. Noted that

since there is no efficient way to monitor the actual number of memory

used by multiple workers, we just collect the cost of each worker.

3. Number of states explored: The number of states explored by each worker.

We would like to assure each worker prunes irrelevant states before it

reaches the assigned frontier state.

4. Number of solver calls: We implemented a counter to collect the number of

times constraint solver is called by SPF.

5. Number of assertion violations detected: To ensure the correctness of our

technique, we need to monitor the actual number of assertion violations

detected. We must make sure that every violation reported by default

symbolic execution is also detected by our approach.

Results and Analysis

The results shown in Table IV.1, Table IV.2, Table IV.3 and Table IV.4 are to

evaluate the performance of each worker and the overall performance of our

approach. For comparison, we have run conventional symbolic execution on the

same artifacts, which explores the whole state space within given boundary.

For the results, we first show the results of running conventional symbolic

execution (SPF). Then, we show the data we gathered from each worker, starting

23

from the first worker we marked as Worker 0. This is the worker we launched in

the first stage. Then, the results of each of worker in the second stage are shown

in different lines. Finally, we calculate the overall performance of our approach at

the end of the table. We gather and calculate the overall performance as

following:

1. Time cost: The overall time cost of our approach is calculated by

computing the time used from starting the first worker to all launched

workers finished exploration.

2. Memory cost: Currently, we do not care about the overall memory cost of

our approach, nor are we aiming to reduce or limit this cost. Besides the

fact that parallel processing algorithms are commonly expensive in memory

cost in order to speed up the computation, the memory usage reported by

SPF may vary due to the underlying garbage collection.

3. Number of states explored: We checked the report of each worker, and

added up the number of different states explored among them.

4. Number of solver calls: For this metric, we simply added up the numbers of

constraint solver calls by each worker.

5. Number of assertion violations detected: We added up the numbers of

violations detected by each worker.

The results of experiment on our first object, AssertionTest, are shown in Table

IV.1. For this artifact, our technique detects 4 states corresponding to assertions

by the first worker we dispatched. Thus, 4 more workers are launched one by one

when such states are found.

As we can see from the table, each of our worker has explored only part of the

state space trie as we designed. Also, with Memoise technique, newly launched

workers did not call the constraint solver before reaching the frontier state it is

assigned to. As a result, the time cost of each worker has decreased, and finally

24

Table IV.1: Results of AssertionTest

TC MC States Solver Violations
(ms) (MB) Explored Calls Detected

SPF 420 123 47 46 4

Worker 0 119 123 7 6 0
Worker 1 242 123 13 10 1
Worker 2 289 123 13 10 1
Worker 3 229 123 13 10 1
Worker 4 223 123 13 10 1
Overall 340 N/A 47 46 4

contributed to a reduction in time cost for the overall performance comparing to

normal symbolic execution.

Each of these workers only explored part of the state space trie and called the

PC solver only once (when the state standing for violation is reached). By

reducing the number of state explored and solver called, the time cost has also

been significantly reduced. Meantime, the memory cost of each worker remains

the same, which is the minimum number we can get in our environment. Also, all

4 violations reported by conventional SPF listener are captured among workers.

For subject WBS, as shown in Table IV.2, 8 new workers are dispatched. For this

subject, the differencing in time reduction is large between workers. The amount

of reduction is affected by number of states explored, the complexity of each state

and the complexity of constraint solving in each worker, but the total time cost

of our approach is still less than conventional symbolic execution. Different with

artifact AssertionTest, some of the workers detected more than one assertion

violation, but the total number of violation detected is still 12, which is the same

number reported by conventional symbolic execution. For this subject, we also

noticed that some of the workers have used more memory than conventional

symbolic execution regardless the fact they just explored part of the whole state

space trie. We should mention that memory cost reported by JPF highly depends

25

Table IV.2: Results of WBS

TC MC States Solver Violations
(ms) (MB) Explored Calls Detected

SPF 612 966 127 126 12

Worker 0 303 966 53 52 0
Worker 1 86 966 4 2 1
Worker 2 198 966 16 8 1
Worker 3 217 1218 21 14 3
Worker 4 143 966 23 10 0
Worker 5 231 1218 33 22 1
Worker 6 261 966 46 4 1
Worker 7 172 966 27 12 4
Worker 8 243 966 15 2 1
Overall 477 N/A 127 126 12

Table IV.3: Results of trityp

TC MC States Solver Violations
(ms) (MB) Explored Calls Detected

SPF 158033 334 1085 1084 0

3182 332 13 2
Workers to to to to 0

128214 334 786 188
Overall 134852 N/A 1085 1084 0

on the timing of garbage collection of Java, and may vary among different runs.

Table IV.3 shows the result of running our technique on subject trityp. Since the

number of assertion states is very large, which results in 97 frontier is found by

the first worker, we cannot show the detailed performance of each worker.

Instead, we show the range of each metrics among all workers. We have found

that although we still achieved a reduction in time cost, the reduction rate is

much smaller than former artifacts.

The result of testing is shown in IV.4. For this experiment, totally 88 new

26

Table IV.4: Results of Apollo

TC MC States Solver Violations
(ms) (MB) Explored Calls Detected

SPF 82825 123 867 866 21

86 54 16 0
Workers to 123 to to to

27412 332 94 8
Overall 27859 N/A 867 866 21

workers has been launched and detected 21 violations. Considering the number

of workers, we are still just showing the range of each evaluation metrics, as the

same of artifact trityp. The reduction rate of time cost on this artifact is

significantly larger than all other three artifacts. Among all the possible reason

leading to this result, we found that constraint solving in this artifact is much

more expensive than exploring the state space trie, for it needs conducting

several nonlinear calculation.

From the result of these evaluations, we have proved that our technique achieved

a full coverage of state space trie, while the number of violations detected being

the same with when using conventional symbolic execution. Each of the worker

only explored a part of state space trie, and Memoise helped to avoid redundant

work of solving constraints of explored part of the trie. So, up to this point, we

can answer the first research questions:

• RQ1: Correctness - Can our technique capture all violations detected by

conventional symbolic execution? Yes. Our approach ensured the full

coverage of state space trie and detected all violations found using

conventional SPF listener.

• RQ2: Efficiency - Can our technique reduce the cost of symbolic execution

in terms of time? Yes. Each worker in our technique used less time and

reduced the number of states explored and PC solver called, and the

27

Figure IV.2: Example trie leading to worse performance

overall time cost has reduced.

Discussions

In addition to our evaluation, we would like to have a deeper discussion of some

problems we noticed while implementing and evaluating our technique.

• Visibility of Byte Code. Since JPF is running on byte code, it is

essential to conduct the analysis of SUT’s byte code and mark out the

instructions corresponding to assertions. In our experiments, we simply

used javap -c to generate the byte code of subject. However, this method is

not always feasible, for encapsulation mechanism of Java may hide the byte

code of private methods, even if when users have full access to the source

code. To get byte code with private methods, users need to change it to

public and change it back later, which is very inconvenient.

• Possible worse performance. In our evaluation, we have seen that the

performance may vary when using our approach on different artifacts.

Upon researching the possible characteristics that may impact on

efficiency, we found that in some cases our technique to get a worse

performance than conventional symbolic execution.

Figure IV.2 shows an example trie. State 5, the gray node, is a state

28

standing for assertion checking. When using conventional symbolic

execution, it conducts depth first search of the trie, exploring state one by

one in order of 1-2-3-4-5-6-7, and then respond to user with the result.

With our approach, the first worker also conduct depth first search through

1-2-3-4-5. Then since state 5 is a frontier state, it starts a new worker and

go through 1-3-5, and then state 6-7 to get the same report. In other

words, if we run both conventional symbolic execution and our approach at

the same time, we will find that while conventional symbolic execution is

busy solving the path constraints leading to state 6, our technique started

again from the root state and re-explored state 1-3-5 again. As a result, it

is very possible that our new worker just start solving the path constraint

while conventional symbolic execution has already reported to users. There

are several possible characteristics that may impact the efficiency, i.e.

complexity of state, cost of constraint solving, the structure of trie, and the

location of assertion state. However, we still need to conduct more

evaluation to see what is a suitable artifact to use our technique, and what

is the decisive characteristic of it that may lead to a better or worse

performance comparing to conventional symbolic execution.

• Resources allocation. We run our experiments in evaluation based on

an assumption that we have enough resources to run all workers

simultaneously. Which means, we assigned each of the worker a particular

processor to explore the state space trie. It is feasible for our experiments,

because the artifacts are relatively small for TACC to assign enough

computing units as we requested. However, as the artifacts become bigger,

it will be impossible to assign a different core to each worker. If multiple

workers are forced to share a same set of computing resources, the

efficiency of our technique will significantly reduce.

Table IV.5 is an example experiment we run on subject WBS. Left column

in the table is the time cost when all of them shared one processor, and

29

Table IV.5: Time cost when workers running on same/different cores.

Sharing Not Sharing
Time Cost (ms) Time Cost (ms)

Worker 0 270 198
Worker 1 2209 181
Worker 2 1919 186
Worker 3 1974 178
Worker 4 1505 183
Worker 5 1602 217
Worker 6 2023 186
Worker 7 1769 206
Worker 8 781 179
Worker 9 1780 207
Worker 10 1913 193
Worker 11 1329 250
Worker 12 1400 188

right column is the time cost as they occupied their own processor. As we

can see, when sharing the same processor, the same worker could use as

more than 10 times of time as when it is using its own computing

resources. The reason is that by not allocating new resources to each

worker manually, all the scheduling of memory, processor and other

resources are totally handled by operation system, and switching between

workers are expensive and unpredictable. The more workers we launched at

the same time, the higher the risk of a poor performance would happen.

On the other hand, scheduling workers will increase the amount of

communication between computing units, which could also be expensive.

We have planned to implement a better algorithm to solve this problem

and find the point of balance to reach the best performance possible.

• Path Explosion. As we mentioned in earlier part of this paper, we have

disabled the optimization introduced by JPF in order to get a more plain

result of conventional symbolic execution to compare with the performance

30

of our approach. However, we cannot deny that we also introduced a

possible path explosion problem by doing this. The direct result is that the

time cost in our evaluation could be more than using default symbolic

execution implemented in SPF repository.

• Limitation of symbolic execution. Since our approach is based on

symbolic execution technique, we cannot avoid the weakness and

shortcomings of it. Our technique is aiming to improve the performance,

trying to reduce impact of path explosion and expensive constraint solving

by distributing exploration to different workers. Meanwhile, there are some

problems we cannot solve by this technique. One of the shortcoming is

symbolic execution cannot be used upon methods when the parameter

cannot be "symbolized" i.e. strings, files, network communications, or data

structures. Although research on this problem has been conducted and

reached some progress (Fromherz et al., 2017), it is still far from reaching

usability to be widely applied. This shortcoming limited the number of

subjects which we can conduct symbolic execution on, and thus reduced

the number of suitable target artifacts of our approach.

• Alternative solutions. In our current implementation, the newly

launched processes are assigned with exploring all states beneath the

frontier state. There is actually another solution, that after a process

reached a frontier state, it also backtracks at the next frontier state it

detected and dispatch another process. In other words, instead of

conduction conventional symbolic execution from the frontier state, this

process behaviors in the same way of the first process in our current

approach. Due to the time limit, we did not implemented an executable

version of this solution, nor did we conduct any evaluation comparing the

performance. But in theory, this new solution could further reduce time

cost when the state space beneath frontier state is deep, complicated, and

more balanced in term of position of assertion checking states in the trie.

31

On the other hand, if the part of trie assigned with new process is shallow,

or if the frontier states are too close to each other (i.e. when several

assertions are put together in source code), our current solution might have

a better performance than the alternate solution for the sacrifice of

re-exploring unavoidable states would become too big as the work load

between processes would become poorly using new solution. Another

possible solution is the first worker does not stop exploring current path

when a frontier state is detected. Instead, it sends the path choices towards

the exact assertion violation state, which should be one of the children of

frontier state, and choose to explore all other choices which may lead to

other frontier states. The new launched workers just checks the feasibility

towards the violation state and stop any further exploration of the state

space. Comparing to our current solution, the workload of the first worker

is bigger for now it is supposed to explore much more states. However, once

an assertion checking is detected, each new worker needs less time before

coming back to users, as the result of assertion checking can be reported to

user as soon as it was checked. One possible problem of this alternate

solution is that the first worker must figure out which choice of the choice

generator is leading to assertion violation without exploring the state.

Although in most cases it is the first choice (true branch of the

if-instruction), we have already found some exceptions, especially when the

assertion condition is complex.

32

V. RELATED WORK

Symbolic execution (King, 1976b; Clarke, 1976) performs systematic exploration

of program behaviors for bug finding, and can be used to check the conformance

of properties to program behaviors. Some recent projects (Yang et al., 2014;

Zhang et al., 2014) have explored more efficient checking of assertions. Our work

is complementary since it checks assertions in parallel and can potentially

combine with these existing approaches to further improve the checking

efficiency.

One of the task being wildly studied in this area is parallel symbolic execution.

Several tools such as Cloud 9 (Bucur et al., 2011; Ciortea et al., 2010),

Swarm (Holzmann et al., 2008; Groce et al., 2012) based on SPIN

mode (Holzmann and Bosnacki, 2007), Simple Static Partitioning (SSP) (Staats

and Pǎsǎreanu, 2010) or ParSym (Siddiqui and Khurshid, 2010) are developed

based on dynamic, static or hybrid algorithms. Although some of these

techniques could archive a very considerable reduction compared with default

non-parallel symbolic execution, they are not typically designed for checking

properties. Different from these techniques, our technique is typically focusing on

property checking, or assertion checking, using symbolic execution. While other

frameworks balancing workload by simply using general boundaries, our

technique use the location of assertion as "cut point" to distribute the trie in

order to get earlier report about assertion violations.

On the other hand, assertions are very useful and are used to design several tools

and used in checking system from different angles such as data structure (Berdine

et al., 2006). Several tools aiming to generate likely assertions automatically have

been developed such as Daikon (Ernst et al., 2007) as is used in our evaluation.

Assertion checking is a suitable problem to be solved using parallel algorithms,

since assertions are written to be side effect free which guarantees the checking

result would remain the same. Thus, we are aiming to develop a distributed

33

symbolic execution technique to check assertions. While in our previous work, we

introduced an approach to distributing the checking of assertions using static

methods (Yang et al., 2015), this work is complementary and uses dynamic

analysis to precisely locate the target paths reaching the checked assertions.

34

VI. FUTURE WORK

We plan to explore the following lines of work in the near future.

• Static analysis. Currently, overall our approach explores all states

regardless of whether they are corresponding to property checking or not.

Since our technique is aiming on checking properties only, exploring

irrelevant states is unnecessary. Static analysis can be used to avoid the

exploration of any paths or states that is not relevant to checking

properties to further cut down the cost.

• Reusing explored states. By using symbolic execution, each worker

could avoid exploring some of the states and go directly to its assigned

frontier state. However, despite having been explored before, we could not

avoid exploring all states on the path. This is decided by SPF, that we

cannot start searching from the middle of the trie - every symbolic

execution run in SPF has to start from the root state. In fact, since we did

not change the code of SUT, re-exploring such states are redundant and

not necessary. If we could find a way to avoid it i.e. implementing our

technique on other frameworks, we can further reduce the cost and archive

a even better efficiency.

• Distributing with less resources. Currently we assume the

availability of enough computing resources that can run all processes at

earliest time simultaneously. However, as the complexity of subject under

analysis increases, a large number of target paths may need to be explored,

which leaves us with the problem of finding an efficient way to distribute

and schedule property checking when we do not have enough resources to

run all the workers at the same time. Key algorithms from related

researches (i.e. Cloud9) could be adapted to our technique and help solving

this problem.

35

• Analyzing bytecode automatically.In our current implementation, the

analysis of bytecode is done manually. As described in former parts of this

paper, assertions are turned into a form of normal if-branch with exception

after compiled. Althogh manually checking bytecodes can assure that we

find all assertions without mistake, the efficiency is very low and not

capable to be used in reality. To improve the usability of our approach,

especially when the SUT is a complex project with multiple Java files,

improvement on bytecode analysis is necessary. One way is to use

third-party tools i.e. Apache-BCEL to help analyzing the source code and

bytecode automatically at the same time, so that it will greatly reduce the

manually effort needed before we start symbolic execution run.

• Further evaluation. Although we have used artifacts with different

characteristics and proved the correctness and efficiency of our approach,

we also noticed that the reduction of time cost differs dramatically between

each of them. We would like to use more real world open-source Java

programs to observe the performance of our technique, and try to find if

there is a key characteristic of the artifact that could impact the

effectiveness of our technique. Also, we can compare our current

implementation with potential alternate solutions above, to further

improve our technique to deal with different subjects.

36

VII. CONCLUSION

Symbolic execution is a powerful technique for checking properties. However, it

could be very expensive due to problems like path explosion and time-consuming

constraint solving. We focus on checking properties in the form of assertions in

this work. To check all assertions in a program, users are usually forced to run

symbolic execution sequentially for multiple times, or to wait for a long time

before results of assertion checking are reported.

In this thesis, we used parallel analysis to reduce the time cost of checking

assertions using symbolic execution. We implemented an approach on top of

Symbolic Pathfinder to distribute the property checking workload among

multiple workers and run them simultaneously. We conducted an evaluation with

checking assertions in four different Java programs, and demonstrated the

effectiveness and efficiency of our approach. In particular, our technique can

achieve a better performance compared to conventional symbolic execution on

assertion checking.

37

APPENDIX SECTION

APPENDIX A

Static Analysis of Properties

In our previous work (Yang et al., 2015), we have also developed an approach

which uses static analysis to distribute properties to be checked using symbolic

execution. Our key insight is that assertions should be side effect free as a rule,

thereby deleting an assertion should not change the result of other assertions.

Thus, we could go through the source code of SUT which has multiple assertions,

and divide it into multiple sub-versions. Each of the sub-version keeps only one

assertion activated.

After generating all sub-versions, we launch symbolic execution runs in parallel

on each of them. The symbolic execution search is prioritized to explore shortest

paths towards assertions so that earlier feedback on the checked assertions can

be provided to users. A case study using two subject programs with manually

annotated assertions shows that our approach for distributed assertion checking

reduces the overall analysis time compared with regular non-distributed assertion

checking using symbolic execution as implemented in SPF; and in sub-problem

analysis which focuses on checking one single assertion, the guided and

prioritized search can reduce explored states and constraint solving as well as

can provide earlier assertion checking feedback.

One bottleneck of this technique is that going through all files of SUT could be

very expensive. For example, we have to check every file in the repository

regardless there are assertions in them or not. Another risk is that we have keep

a large number of sub-versions, and the efficiency of copying a large file could be

unavoidably bad.

Regardless the potential problems, this static analysis is still promising and

could be further improved.

38

APPENDIX B

Listeners in JPF

Listeners are perhaps the most important extension mechanism of JPF. They

provide a way to observe, interact with and extend JPF execution with our own

classes. Since listeners are dynamically configured at run-time, they do not

require any modification to the JPF core. Listeners are executed at the same

level like JPF.

There are two basic listener interfaces, depending on corresponding event

sources: SearchListeners and VMListeners. Since these interfaces are quite large,

and listeners often need to implement both, JPF also provide "adapter" classes,

i.e. implementors that contain all required method definitions with empty

method bodies. Concrete listeners that extend these adapters therefore only have

to override the notification methods they are interested in.

The adapter classes are used for the majority of listener implementations,

especially since they also support two other interfaces/extension mechanisms

that are often used in conjunction with Search/VMListeners: Property (to define

program properties) and PublisherExtension (to produce output within the

[[user:output JPF reporting system]]).

In our technique, we basically used VMListeners to control the order of

exploration to skip, prune or backtrack from certain states. Meanwhile, we have

noticed that the PublisherExtension cannot be triggered in our implementation.

PublisherExtension is used to given a more detailed report about the method

under test when the search is terminated. However, since our approach can also

give the report of critical information (we can still get the counter-example when

violation is triggered, even though not as easy to read as in PublisherExtension),

we did not take effort to research on this small problem.

39

APPENDIX C

Daikon Invariant Detector

After searching real-world open source Java projects on several code-sharing

repositories, we noticed except in shape of JUnit test suits, few open-source Java

projects are using assertion features for some many reasons (e.g. extra effort it

would be used to coding and difficulties in making assertions sound and

side-effect free). Thus, we turned to use third-party software to generate

assertions directly and move them around. We have chosen Daikon (Languages

and Group) as the tool, which is used in several other papers on similar topics.

Daikon is an implementation of dynamic detection of likely invariants; that is,

the Daikon invariant detector reports likely program invariants. An invariant is a

property that holds at a certain point or points in a program; these are often

seen in assert statements, documentation, and formal specifications.

Daikon is freely available for download from the website. The distribution

includes both source code and documentation, and its license permits

unrestricted use. Many researchers and practitioners have used Daikon; those

uses, and Daikon itself, are described in various publications.

After Daikon inserted the invariables into source code, they are usually put in a

form of post-condition or pro-condition of certain methods. Thus, we need to

move these assertions to the positions we want. In this paper, except some

certain experiments, all assertions are put randomly in source code, and as long

as the code can be correctly compiled, we do not pay attention to the correctness

of them.

40

REFERENCES

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W.,
Harman, M., Harrold, M. J., and Mcminn, P. (2013). An orchestrated survey
of methodologies for automated software test case generation. J. Syst. Softw.,
86(8):1978–2001.

Berdine, J., Calcagno, C., and O’Hearn, P. W. (2006). Smallfoot: Modular
Automatic Assertion Checking with Separation Logic, pages 115–137. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Bucur, S., Ureche, V., Zamfir, C., and Candea, G. (2011). Parallel symbolic
execution for automated real-world software testing. In Proceedings of the
Sixth Conference on Computer Systems, EuroSys ’11, pages 183–198, New
York, NY, USA. ACM.

Ciortea, L., Zamfir, C., Bucur, S., Chipounov, V., and Candea, G. (2010).
Cloud9: A software testing service. SIGOPS Oper. Syst. Rev., 43(4):5–10.

Clarke, L. A. (1976). A program testing system. In Proceedings of the 1976
annual conference, ACM ’76, pages 488–491. ACM.

Clarke, L. A. and Rosenblum, D. S. (2006). A historical perspective on runtime
assertion checking in software development. SIGSOFT Software Engineering
Notes, 31(3).

Corbett, J. C., Dwyer, M. B., Hatcliff, J., and Robby (2000). Bandera: a
source-level interface for model checking java programs. In Proceedings of the
22th International Conference on Software Engineering, pages 762–765.

Deng, X., Lee, J., and Robby (2006). Bogor/kiasan: A k-bounded symbolic
execution for checking strong heap properties of open systems. In 21st
IEEE/ACM International Conference on Automated Software Engineering
(ASE’06), pages 157–166.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz,
M. S., and Xiao, C. (2007). The Daikon system for dynamic detection of likely
invariants. Sci. Comput. Program., 69(1-3):35–45.

Fredkin, E. (1960). Trie memory. Communications of the ACM, 3:490–499.

Fromherz, A., Luckow, K. S., and Păsăreanu, C. S. (2017). Symbolic arrays in
symbolic pathfinder. SIGSOFT Softw. Eng. Notes, 41(6):1–5.

Godefroid, P. (1997). Model checking for programming languages using VeriSoft.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 174–186.

Groce, A., Zhang, C., Eide, E., Chen, Y., and Regehr, J. (2012). Swarm testing.
In Proceedings of the 2012 International Symposium on Software Testing and
Analysis, ISSTA 2012, pages 78–88, New York, NY, USA. ACM.

41

Havelund, K. and Pressburger, T. (2000). Model checking java programs using
java pathfinder. International Journal on Software Tools for Technology
Transfer, 2(4):366–381.

Holzmann, G. J. and Bosnacki, D. (2007). Multi-core model checking with spin.
In 2007 IEEE International Parallel and Distributed Processing Symposium,
pages 1–8.

Holzmann, G. J., Joshi, R., and Groce, A. (2008). Tackling Large Verification
Problems with the Swarm Tool, pages 134–143. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Khurshid, S., PĂsĂreanu, C. S., and Visser, W. (2003). Generalized Symbolic
Execution for Model Checking and Testing, pages 553–568. Springer Berlin
Heidelberg, Berlin, Heidelberg.

King, J. C. (1976a). Symbolic execution and program testing. Commun. ACM,
19(7):385–394.

King, J. C. (1976b). Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394.

Languages, U. P. and Group, S. E. The daikon invariant detector.
https://plse.cs.washington.edu/daikon/.

Leavens, G. T., Cheon, Y., Clifton, C., Ruby, C., and Cok, D. R. (2005). How
the design of jml accommodates both runtime assertion checking and formal
verification. Sci. Comput. Program., 55(1-3):185–208.

Meyer, B., Nerson, J.-M., and Matsuo, M. (1987). Eiffel: object-oriented design
for software engineering. In European Software Engineering Conference, pages
221–229. Springer.

Ngo, M. N. and Tan, H. B. K. (2007). Detecting large number of infeasible paths
through recognizing their patterns. In Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE ’07,
pages 215–224, New York, NY, USA. ACM.

Person, S., Yang, G., Rungta, N., and Khurshid, S. (2011). Directed incremental
symbolic execution. SIGPLAN Not., 46(6):504–515.

Păsăreanu, C. S. and Rungta, N. (2010). Symbolic pathfinder: Symbolic
execution of java bytecode. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 179–180, New
York, NY, USA. ACM.

Siddiqui, J. H. and Khurshid, S. (2010). ParSym: Parallel symbolic execution. In
Proceedings of the 2nd International Conference on Software Technology and
Engineering, pages V1–405 – V1–409.

42

Staats, M. and Pǎsǎreanu, C. (2010). Parallel symbolic execution for structural
test generation. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 183–194, New York, NY,
USA. ACM.

Willard, D. E. (1984). New trie data structures which support very fast search
operations. Journal of Computer and System Sciences, 28:379–394.

Yang, G., Do, Q. C. D., and Wen, J. (2015). Distributed assertion checking using
symbolic execution. SIGSOFT Softw. Eng. Notes, 40(6):1–5.

Yang, G., Khurshid, S., Person, S., and Rungta, N. (2014). Property differencing
for incremental checking. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 1059–1070, New York, NY, USA.
ACM.

Zhang, L., Yang, G., Rungta, N., Person, S., and Khurshid, S. (2014).
Feedback-driven dynamic invariant discovery. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 362–372, New York, NY, USA. ACM.

Zhang, Y., Chen, Z., Wang, J., Dong, W., and Liu, Z. (2015). Regular property
guided dynamic symbolic execution. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 643–653.

43

