FEATURE SELECTION FOR SLICE-BASED WORKLOAD CHARACTERIZATION

AND POWER ESTIMATION

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos
in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Matthew V. Brock, B.S.

San Marcos, Texas
May 2010

FEATURE SELECTION FOR SLICE-BASED WORKLOAD CHARACTERIZATION

AND POWER ESTIMATION

Committee Members Approved:

Dan Tamir, Chair

Anne Ngu

Khosrow Kaikhah

James Holt

Approved:

J. Michael Willoughby
Dean of the Graduate College

COPYRIGHT
by
Matthew V. Brock

2010

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dan Tamir, for his time and energy
spent working with me for the past three years. I would like to give the biggest thanks to
my wife, Brianna, for being both supportive and patient despite my frustrations and
anxieties. I would finally like to thank both of my parents for always supporting me in all
of my endeavors and always encouraging me to excel just a little bit beyond where I think

I'm capable of.

This manuscript submitted on April 30™, 2010.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. ..ottt ettt sttt e et e e s eaaeeen iv

TABLE OF CONTENTS ... oottt ettt v

LIST OF TABLES......ceeee ettt ettt ettt ettt et e st e et e e viii

LIST OF FIGURES ...ttt ettt et s e e ix

ABSTRACT ...ttt ettt ettt e st e et e st e ebeesateeeaas xii
CHAPTER

1. INTRODUCTION. ..ottt ettt ettt ettt sat e e bt e seeebeeeeas 1

2. BACKGROUND.......ciiiitiie ettt ettt ettt sttt e st e et e e nbeeeennseeaeenes 7

2.1 Workload CharaCteriZation............cocueerieeieerierieenieeeieesite e ettt ettt sieessaeeee e 7

2.2 Microprocessor Modeling and SImulation...........c.coecveriiniiiniiiiieniiniceecceee e 9

2.3 Architecture and System Level Model Simulations............ccocceevniiiiiieiiinniiieeneenn. 11

2.4 Partitional CIUStEr ANALYSISeeevuiieriieiiiiienieeerite ettt ettt et e e e eeeeas 16

24T K-MEANS. ...ttt ettt ettt ettt ettt et sttt e b e st e b e e e 18

242 TSODATAL ...ttt et e e e e e e 18

2.4.3 Cluster DiSpersion MELIICS.......ieuiuieerriieeriieeniieenieeenieeesieeenreeesveeeennerneeeeeens 20

2.5 Feature SEIECTION.ciiiiiiiiiieeitee ettt ettt sttt e e e e e ibtre e e e e e e 21

2.5.1 Hill CHMDBING....ceiitieiiieieeiieeie ettt ettt ettt st site et e e s enbaeeens 24

2.5.2 Genetic AIZOTItRIM ...cocviiiiiiiiiiie e e 24

2.6 Known Power-Affecting Features..........cc.oeviiiriiieeniiieeiieeieeceee e 27

3. RELEVANT WORKcoiiiiiie ettt ettt 29

4. METHODOLOGYcooitiiitiiteeiteeee ettt ettt sttt et 35

4.1 Benchmark APPICAtIONS......ccveerruiieiriiieriiieeiteesieeesieeesteeesteeeireessibaeeeeeeesanbeaeeas 36

4.2 Architecture STMUIALOT......c..oiiiiiiiiiiiiee et e e 37
4.3 Feature EXIraCtiON....c..ueiiiiiiiiiiieiiieeeite ettt ettt e e e 38
4.4 Feature SEIECTION.eiitiiiiirieeiieeieett ettt ettt ettt e sbee et eesaneeees 38
4.5 CIUSEET ANALYSIS..eeeuutiiiiiieiiiieeiieeeite ettt ettt e et e et ee sttt e e e e e ssaabbeeeeesennnnes 39
4.6 POWET EStIMATION.eiiitiiiiiiiiiiiieiieeit ettt ettt 39
S.EXPERIMENTS ...ttt sttt sttt e st e e e eabte e e enneee s 41
5.1 Algorithm Calibration and Evaluation............cccccceeveiiiiniiiiniiiiniieeiiieee e, 42
5.1.1 ISODATA Calibration.c.ceeueeieeriiiieeniieeieeiee sttt sttt 43
5.1.2 Feature Selection Calibration.............coooueeriiiriieiniieenieeeeeeseeeee e 47
5.1.3 Feature Selection Algorithm Evaluation.........cc.ccccooveiniiiiniiiiniiniciieeeeen, 48
5.1.3.1 The Exhaustive Search...........cooeeriiiiiiniiiiiiiicnccecceee e 48
5.1.3.2 Genetic AlZOTItRM.......c..oiiiiiiiiiiiiiiiee e 50
5.1.3.3 Hill CIMDBING...cccutiiiiiiiiiiieeieete ettt 51
5.1.3.4 Small Feature Subset SiZes.........coouiiiuiiiiiiiiinieiieeieeeeseeeee e 52
5.1.3.5 Exhaustive Search Versus Genetic Algorithm Search.............ccccceeniee. 55

5.2 Affecting Factors of Power Estimation ACCUTaCy........cccccecueeveeriieeniuieeenniieeenneenn. 59
5.2.1 ASTD SHCE SIZE...ccueieiiiiiiiiieeiteetest ettt ettt s eaieeee s 59
5.2.2 ISODATA SICe SEleCtON...c...eeriiiiiiiiiiniiieieeite ettt 61
5.2.3 ClusSter QUALIEY....c.eerieeiiiiiieieete ettt s 65
5.3 Verification of Hypotheses..........cocuiiiiiiiiiiiniiiieeeeceeceee e 68
5.3.1 ASTD COMPIESSION..c.uutiiiririririiieeriieeiieeenteeenteeeriteessiteesssteesssteesseeessnssaeeeeeens 69
5.3.2 Genetic Algorithm Feature Selection.............ccccueeviiieriiieeniiieeieiiiieeee e 74
5.3.3 Known Power-Affecting Features..............cooceiiiiiiiiiienieiienieeceec e 78

6. ANALYSIS OF RESULTS ...ttt 84
6.1 Algorithm Calibration and Evaluation............ccccceeevuieiniiiiiniiieeniieciiiiee e 84
6.1.1 Feature Selection Algorithm Evaluation...........cccccceevvieeiiiiniieiniieieiiieee e 84
6.1.2 Exhaustive Search Versus Genetic Algorithm Search.........c..cccccoeciiniiiin. 85
6.2 Affecting Factors of Power Estimation ACCUTaCy........c.cccocueeveeriveeniuieeennieeennneeen. 86
6.2.1 ASTD SHCE SIZE...ccueieuiiiiiiiieeeiieeteet ettt ettt s s 86
6.2.2 ISODATA SICe SEleCtON.......eoruiiiiiiiiiiiieniieeieesie ettt 86
6.2.3 CluSter QUAlItY........eeeriiiiiiiiiie ettt 86
6.3 Verification of Hypotheses...........coouiiiiiiiiiiiiiiceee e 87
6.3.1 ASTD COMPIESSION......tiiiririiiriiieeriteenieeeniteeesteeesiteessateesasteessseeessreessnsseeeeeens 87
6.3.2 Genetic Algorithm Feature Selection............ccocceevviieiniieiiiieniiiiee e 87
6.3.3 Known Power-Affecting Features.............cccoceeiiiiiiiniiniiiniciiceicceeen 87

7. CONCLUSIONS. ...ttt ettt sttt et sb et sbe et e et e sbee s 89
7.1 FULUIE WOTK. ...ttt e s 91

vi

BIBLIOGRAPHY

vil

LIST OF TABLES

Table Page
1: ANOVA Table of Combined ISODATA EXPEriments..........coccceeveeueeneerireeneenueeennenne 45
2: ANOVA Table of Averaged ISODATA EXPEriments.........ccceeecveeerveeerveeeniveeenveesrneennns 46
3: ANOVA Table of Averaged Genetic Algorithm Feature Selection Experiments........... 47

viii

LIST OF FIGURES

Figure Page
1: Instruction Stream, Trace Data, and System Level Output..........ccoceeveeriieeniieeennnneennn. 12
2: The Foundation of the MethodOlOZY...........covriiiiiiiiiiiiiiiiieeiie e 15
3: A Clustered Set Of EISMENLS.c..eiiiiiiiiiiiiiiieiieeteceteeteeeeeee e 17
4: The Filter Approach to Feature SelecCtion............cceeeriiiiriiiiniiieinieeeiee e e 22
5: The Wrapper Approach to Feature Selection.............ceccuvverieeeiieeeniieeniieesieeeveee e 23
6: A Generalized Example of a Genetic Algorithm [teration............cccoeeveevniiiieeeeennnnnee. 26
7: The Components of the MethodolOgy.........c.coovviiiiiiiiiiieiiieeeeee e 35
8: Exhaustive Search of Feature SubSets..........cccovviiiiiiiiiiiiiniieieceeeeeeeeeeee e 49
9: Genetic Algorithm Identifying Optimal Feature Subsets..........ccccceevvieeeriniiiiieeeeinnns 50
10: Hill Climbing Search of Feature SubSets........c.ccueiriiiriieiiiiiiiiieiieeeeieeeee e 51
11: Subset Size and Cluster Quality, Slice Size 1000..........cccceeriiieriieiniiieniieeeeeeee e, 53
12: Subset Size and Cluster Quality, Slice Size 2000...........cooeeririieeniieeeiiieeeiieeee e 53
13: Subset Size and Cluster Quality, Slice Size 5000...........coceeviiriiiiniiniiiieeeeeeee 53
14: Subset Size and Cluster Quality, Slice Size 10000..........cccceeveiririiiieeeeeniiiieeee e 53
15: Subset Size and Power Estimation Accuracy, Slice Size 1000.........c.ccccovvieeniieenneenns 54
16: Subset Size and Power Estimation Accuracy, Slice Size 2000..........cccceevcuvvieeeerrnnnee. 54

iX

17

18:

19:

20:

21:

22:

23:

24

25:

26:

27

28:

29:

30:

31:

32:

33:

34

35:

36:

37:

38:

39:

Subset Size and Power Estimation Accuracy, Slice Size 5000..........ccccceveveieerieeeennnns
Subset Size and Power Estimation Accuracy, Slice Size 10000............ccocceeevieeenneeenn.
Exhaustive vs. GA Search, Basic Math Benchmark, k-Max: 10.........cceeeevvviiinneeinnnnin
Exhaustive vs. GA Search, Fast Fourier Transform Benchmark, k-Max: 10...............
Effect of Slice Size: Basic Math Benchmark............cc.ccccoooiiiiiii,
Effect of Slice Size: Q-Sort Benchmark............cooovvvvviiiiiiiiiiiiieeeeeeeeeee e
Effectiveness of ISODATA, Basic Math Benchmark.........ccooouueeieimoeieeieieeeeeee.
Effectiveness of ISODATA, Fast Fourier Transform Benchmark...............cccccvvvveeene.
Effect of Cluster Quality, Basic Math Benchmark............c.ccoccevviiiiiieiinniiiiiee e
Effect of Cluster Quality, Dijkstra Benchmark..............ccooceoiiiiiiiiiiniiinieeees
Compression Ratio, Basic Math Benchmark.............ccccooviiiiiiiiiniiiieees
Compression Ratio, Basic Math Benchmark, Slice Size 1000............ccccooeiiiieeernnnnn.
Compression Ratio, Basic Math Benchmark, Slice Size 2000.............cccoeveiirieeernnnnnn.
Compression Ratio, Basic Math Benchmark, Slice Size 5000.............ccccoeeuiiiiiennnn.
Compression Ratio, Basic Math Benchmark, Slice Size 10000.............ccccceeeviieennnne.
Compression Ratio, Q-Sort Benchmark.............cccocuvveviiiiiiiiniiiiiiiiieeeeeeeee e
Compression Ratio, Q-Sort Benchmark, Slice Size 1000..........cccceeviiiiniinniiiieeennn.
Compression Ratio, Q-Sort Benchmark, Slice Size 2000...........cccoevveeviviencieenceennnnn.
Compression Ratio, Q-Sort Benchmark, Slice Size 5000............cccooviiiniiniiinnenenn.
Compression Ratio, Q-Sort Benchmark, Slice Size 10000.............ccooceerviiiiniiineennnnn.
Effect of GA Feature Selection on Basic Math Benchmark................cccccoociii.
Effect of GA Feature Selection on Fast Fourier Transform Benchmark......................

Effect of GA Feature Selection on Q-Sort Benchmark...........ccoooovvvvvveiiiiiiiiiiiieeieeninns

40: Effect of Power Affecting Features, Slice Size 1000...........coooieeviieiniieriiniiiieeee e 80

41: Effect of Power Affecting Features, Slice Size 2000...........cccooveriiinieniieeiienieeeeeen 81
42: Effect of Power Affecting Features, Slice Size 5000..........ccccceviiiiniiiiniieiniiiieeeeeens 82
43: Effect of Power Affecting Features, Slice Size 10000............ccceevevieeriieeenniniiieeeeenens 83

xi

ABSTRACT

FEATURE SELECTION FOR SLICE-BASED WORKLOAD CHARACTERIZATION

AND POWER ESTIMATION

Matthew V. Brock, B.S.

Texas State University-San Marcos

May 2010

SUPERVISING PROFESSOR: DAN TAMIR
Modeling a microprocessor results in defining its architecture (instruction set,
registers, memory hierarchy, etc.), its micro-architecture (pipelines, branch prediction,
etc.), and its hardware (gate level logic, cycle-accurate timing, circuitry, etc.). Several
software-based modeling tools exist for describing and facilitating simulation of the
microprocessor model. Simulation at the hardware or system level in order to estimate

power consumption is time consuming due to the complexity and size of the system level

xii

model. Simulation at the architecture level is significantly faster, but less detailed. If the
simulation trace data generated by the architecture simulation are highly correlated with
the operations of system level simulation, only part of the benchmark test may be required
for simulation at the system level. In other words, if a number of trace sections, or slices,
are identified as similar, then the corresponding instruction stream slices will yield
similar power estimation results when simulated at the system level. Thus, identifying
similar slices of the architectural simulation trace data may reduce the amount of
benchmark testing required at the system level. Cluster analysis is used to identify similar
slices of the architectural simulation trace data, resulting in clusters of slices. Feature
selection is used to eliminate less relevant features within the trace data, allowing for
better clustering. Finally, domain-specific knowledge is applied by prioritizing feature
selection towards known power-affecting features. Experimentation demonstrates the
effectiveness of the cluster analysis, feature selection, and use of power-affecting features
in order to achieve accurate power estimation while reducing the amount of benchmark

testing required at the system level of simulation.

xiii

1. INTRODUCTION

Microprocessor design involves several steps that occur before fabrication, one of which
is workload characterization. Workload characterization is the process of determining a
microprocessor's capabilities by executing a set of benchmark applications on the
microprocessor and measuring certain aspects of the microprocessor during execution,
such as cache and memory access, power consumption, cycles per instruction, and other
important characteristics. To perform benchmark testing on a microprocessor which has
not been fabricated, a virtual model of the microprocessor is implemented and the

benchmark testing is simulated using a set of software tools.

Microprocessor models are generally abstracted into three levels: the architecture, micro-
architecture, and the system levels. Software tools are capable of modeling and
simulating the microprocessor model at these levels of abstraction (Armstrong &
Woodruff, 1977). The system level is the lowest level of microprocessor model
abstraction, and is thus the most accurate in terms of determining certain characteristics
of the microprocessor, such as power consumption. However, estimation of power
consumption at the system level of simulation is not always feasible. Due to the

complexity and size of the system level microprocessor model, system level simulation is

considerably slower than higher levels of modeling and simulation, such as the

architecture level.

Several methods exist for reducing the amount of time involved in power estimation. One
method is identifying similar architectural event sequences, or slices, found in the
architectural simulation trace data (ASTD). The assumption is that if architectural events
are significantly correlated with system level events, then the architectural events can be
used as classifying data for the system level of simulation (Hsieh, Chen, & Pedram,
2001). By identifying similar slices of ASTD, the corresponding instruction stream slices
will return approximately the same power estimations to one another when simulated at
the system level of abstraction. In order to identify these similar slices of ASTD, the
slices are represented as elements in a multi-dimensional feature space, where each
architectural event type (cache hit, instruction execution, etc.) represents a dimension, or

feature, within the space.

Partitional cluster analysis enables the identification of clusters from the slices in the
feature space (Jain, Murty, & Flynn, 1999). The Iterative Self-Organizing Data Analysis
Technique (ISODATA) algorithm, a generalization of the k-means algorithm, enables
flexible and adaptive partitional clustering of large data sets, in this case ASTD slices. A
cluster of ASTD slices represents a set of similar architectural event sequences. The slice
that most accurately represents the entire cluster, i.e. is closest to the cluster center, is

used to determine the corresponding slice of the instruction stream to run via system level

simulation.

N =Number of representative slices

R=Set of cluster sizes for each representative slice, {R o R Ry
P=Set of power measurements for each representative slice,(P, P, .., Py]
P_=Power measurement of complete benchmark test
Relationship of power estimation:
N
P.~2 RxP, (EQ-1)
i=0

The number of slices in the cluster, or cluster size, is used as a weight to multiply the
power estimation value returned from the system level simulation of that representative
slice. Thus an approximation of the total power estimation is provided for all of the
instruction stream slices corresponding to the clustered ASTD slices. The first hypothesis
of this paper is that the use of the ISODATA algorithm to cluster ASTD slices may result

in accurate power estimation while reducing data throughput in system level simulation.

Depending on the ISODATA parameters, varying levels of power estimation accuracy
may be achievable. However, some of the features, or architectural event types, may be
less relevant. Feature selection enables the elimination of less relevant features by
searching through the feature subset space, i.e. evaluating feature subsets and choosing
the one resulting in highest cluster quality (Guyon & Elisseeff, 2003). Eliminating less
relevant features results in greater clustering optimization, which in turn provides a
stronger correlation between the architectural and system levels of simulation. The strong
correlation may increase power estimation accuracy, as certain features, such as cache

activity, are known to have a significant effect on power consumption. The second

hypothesis of this paper is that feature selection may increase power estimation accuracy
by providing an optimal subset of features for ISODATA to use when clustering the

ASTD.

As certain features are known to have a significant effect on power consumption, such as
cache activity, use of these features in cluster analysis should result in increased power
estimation accuracy. These features establish a minimal subset from which additional
features can be selected. These additional features should contribute further to the
discovery of a clustering configuration which results in higher power estimation accuracy.
The third hypothesis of this paper is that adding the known power-affecting features to the

selected subset of features may result in increased power estimation accuracy.

Our methodology is thus based on and evaluated according to three hypotheses:

1. The ISODATA algorithm may be effective in clustering ASTD slices, resulting in
accurate power estimation while reducing data throughput in system level

simulation.

2. Feature selection may result in increased power estimation accuracy by selecting
an optimal subset of features for the ISODATA algorithm to use in clustering the

ASTD slices.

3. Adding known power-affecting features to the optimal subset after feature

selection may result in increased power estimation accuracy.

The first category of experiments in this paper are designed to provide auxiliary support
to the hypotheses. The first experiment in this category calibrates the ISODATA and
feature selection algorithms. These algorithms are tested with synthetic data to determine
how to apply them to the experiment data. The next experiment evaluates exhaustive,
genetic, and hill climbing feature selection algorithms using synthetic data in order to
determine the best algorithm to apply to the experiment data. An additional experiment
is performed with experiment data to demonstrate a lack of correlation between cluster

quality and power estimation accuracy for very small feature subset sizes.

The second category of experiments explores various conditions which affect power
estimation accuracy. The first experiment in this category demonstrates the effect of the
ASTD slice size on power estimation. The second experiment compares the ISODATA
algorithm to randomly selecting representative ASTD slices. The final experiment in this

category observes the effect of cluster quality on power estimation accuracy.

The third category of experiments in this paper are designed to verify the hypotheses.
The first experiment in this category demonstrates the trade-offs between ASTD
compression and power estimation accuracy. The second experiment demonstrates the
effect of feature selection on power estimation accuracy. The third experiment
demonstrates the effect that known-power affecting features have on power estimation

accuracy.

The results achieved by experimentation align with expectations, particularly those
experiments which are designed to verify the hypotheses. Using ISODATA to cluster
similar ASTD slices resulted in effective trade-offs between power estimation accuracy
and instruction stream slice compression. The genetic algorithm feature selection yielded
further gains in power estimation accuracy for most of the benchmarks. Selecting those
features which are known to affect power yielded even further gains in power estimation
accuracy for large window sizes. These three experiments, alongside the preceding
foundational experiments, demonstrate that the methodology proposed in this thesis paper

can be efficiently and effectively be utilized for slice-based characterization.

2. BACKGROUND

The following sections describe the background material required for understanding the

basis of this thesis paper.

2.1 Workload Characterization

The topic of workload characterization is spawned from the complexity of predicting
performance in computer systems (Downey & Feitelson, 1999). A microprocessor's
workload represents the capabilities of the microprocessor to achieve various tasks. The
complete characterization of a microprocessor's workload implies that every aspect of its
performance is known. In other words, no program would produce unexpected results
during execution. Workload characterization is an important aspect of microprocessor
design, especially if it is accomplished before resources are invested into fabrication. For
this paper specifically, power analysis will be the primary performance metric of interest

with respect to workload characterization.

Currently, power consumption is estimated by several different methods such as

instruction-level modeling, characterization-based macro-modeling, architectural event

sequence slicing, and phase-accurate system level simulation (Li & John, 2003).
Instruction-level modeling is performed by associating a power consumption value with
each instruction, factoring in energy dissipation from the circuit switching that occurs
between instructions, and also taking into consideration other power-consuming activities
that occur due to inter-instruction effects such as cache misses and write buffer stalls (Li
& John, 2003). In characterization-based macro-modeling, a function or subroutine is
modeled with a set of characteristics which correlate to various power consumption
metrics. Regression analysis is applied to adjust macro-modeling coefficients based on a
set of known function inputs and power consumption outputs, allowing the entire
execution stream to be characterized for power consumption (Li & John, 2003).
Architectural event sequence slicing extracts segments, or slices, of the data stream
returned from an architecture level simulation of a benchmark test on a microprocessor
model. These slices can be used for the purposes of sampling-based reduction or for
identifying slices which approximate the entire benchmark test. Power analysis can then
be focused on the samples or representative slices, reducing the data throughput required

for system level simulation.

Finally, end to end system level simulation is the most accurate means for power
consumption estimation, as it is the most detailed representation of the microprocessor's
functionality. A system level simulator takes a model of a microprocessor and a
benchmark test, and, using the specifications defined by the model, executes the entire

benchmark test and returns some output to indicate properties of the microprocessor

model during execution.

2.2 Microprocessor Modeling and Simulation

Microprocessor design involves many layers of abstraction (Sherwood, 1977). The
instruction set, memory cache hierarchy, pipelines, and other fundamental aspects of a
microprocessor's design exist within one or more of these layers of abstraction.
Generally, computer architecture is divided into three subcategories, or layers of

abstraction (Hennessy & Patterson, 2003):

1. Architecture or Instruction Set Architecture (ISA)

2. Micro-architecture

3. System Design

The ISA is comprised of the instruction set, CPU registers, and memory addressing. The
micro-architecture is comprised of the memory hierarchy, pipelining, branch prediction,
instruction-level parallelism, out-of-order execution, multi-processing/threading and
several other features that are considered below the ISA layer. System level design is the
actual description of the hardware components such as buses, switches, gates, and

memory controllers.

Microprocessor design makes use of various software simulation and modeling tools for

the three subcategories of computer architecture described above. The advantages of

10

software simulation and modeling include (Sherwood, 1977):

1. Enabling design verification to take place before hardware prototypes are

manufactured.

2. Correcting design flaws without physical modification.

3. Optimizing trade-offs between speed and cost.

4. Collecting more data on the given state of a microprocessor.

5. Studying physical anomalies and environmental conditions without the need to

investigate individual signals.

Typically, these software tools involve some formal language definition for describing the
microprocessor, such as the hardware description language Verilog. Specific uses for
microprocessor simulation include formal hardware verification (Beatty & Bryant, 1944),

power analysis (Hsieh et al., 2001) , and fault diagnosis (Armstrong & Woodruff, 1977).

One drawback to simulation, however, is the speed at which simulation takes place.

Some aspects of microprocessor design, such as power analysis, can only take place at the
system level of abstraction in order to be very accurate. Due to the complexity of modern
microprocessors, however, simulation, specifically at such a low level of abstraction, is
costly in terms of time. For this reason, system level simulation is often impractical when
estimating a performance metric such as power consumption (Brandolese, Fomacian, &

Salice, 2000).

11

2.3 Architecture and System Level Model Simulations

As the size and complexity of the system level model increases, the amount of time
required to simulate the model also increases. As mentioned previously, this increase in
size and complexity often occurs to the extent that simulating a benchmark on a system
level model becomes impractical. At the architecture level, however, the simulation is

faster and more practical.

Figure 1 describes the relationship between the benchmark's instruction stream, the
ASTD from the architecture model simulation, and the output from the system level

model simulation.

Benchmark Instruction Stream
Architectural ::
Trace Data

System Level I
Simulation Output

_—Y

- v

Starting Program Ending Program
Counter Counter

Figure 1: Instruction Stream, Trace Data, and System Level Output

The figure shows how the benchmark's instruction stream is executed via the architecture

12
and system level simulators to generate architectural trace data and system level
simulation output, respectively. The benchmark's instruction stream, the architectural
trace data, and the system level simulation output are synchronized via program counters.
A slice of the architectural simulation data thus corresponds to the instruction stream and
the system level simulation output via a starting and ending program counter. This
enables the architectural trace data slices, which represent the entire benchmark test, to
correspond to instruction stream slices. The instruction stream slices can then be
simulated at the system level, given the corresponding architecture and system level

models.

Simulating a benchmark with an architecture model results in architectural simulation
trace data (ASTD). The ASTD describes a trace through the model, where various
architectural features such as task level parallelism, cache access, register modification,
and hardware instructions are represented (Kahne, 2006). Although ASTD does not
contain enough information to be as accurate as the output of a system level model
simulation, it does contain information to be correlated with the output of a system level
model simulation. A section of output from the system level model simulation can thus
be approximately characterized by the corresponding section of ASTD from the
architecture model simulation. Program counters are used to track the interrelationships
between the benchmark's instruction stream, ASTD, and system level model simulation

output sections.

13
Generally, tracing the architecture model during the execution of the benchmark results in
a significant amount of similar events, due to looping, recursion, and common paths of
execution. If several slices of ASTD are identified as similar, the corresponding
instruction stream slices should return similar power estimation results when run through
the system level simulator. Identifying these slices can be accomplished by clustering the

slices and identifying representative slices.

These slices can be clustered using a number of techniques. Regardless of technique,
however, the events described in the architecture model simulation should correspond to
the desired microprocessor characteristic returned from system level simulation. For
instance, if the number of integer instructions occurring in a slice affects the amount of
power consumption determined by the system level model simulator, then integer
instructions should be taken into consideration when clustering the slices. A large
number of event types, or features, can be extracted from the architecture model
simulation. As such, selecting an optimal subset of features can improve the quality of

clustering and reduce clustering time (Zhao, Wang, Wu, & Tang, 2002).

Figure 2 describes the concept of reducing the amount of instruction stream data to run

through the system level model simulator.

14

Instruction Stream Slices

=

-
-
o)
(2}
(17
O
Q
=
[

2.1N12911Y24Yy
uonoNJIsuj

\/ v v

Power Power Power
Estimation Estimation Estimation
Pr*4 + Pg*4 + Pg*2

\

Total Power Total Power
Estimation Estimation

Figure 2: The Foundation of the Methodology

As shown in the figure, by determining similar ASTD slices, the corresponding
instruction stream slices can be run through the system level simulator. The power
estimation returned from simulating these instruction stream slices is multiplied by the

number of occurrences for each slice and summed (see equation 1).

The scope of this thesis, however, is limited to architecture level simulation, and has

substituted the system level model simulator with power estimation software that takes

15
architecture trace data and estimates power consumption. As such, the figures and results
described in this thesis do not correspond to hardware-accurate power estimation
achievable through system level simulation. The verification of our hypotheses is strictly
limited to heuristic power estimation achieved from the architecture level features of the

microprocessor model.

2.4 Partitional Cluster Analysis

Partitional cluster analysis consists of unsupervised classification grouping of data
elements. These elements are represented as points in a multi-dimensional feature space,
and the clusters are determined by a distance measure between the points (Jain et al.,
1999). Evaluation of these clusters is calculated by the distance of the points within each
of the respective clusters from the center of the cluster, as well as the distance between all
of the cluster centers. The distance of the points within each of the respective clusters
from the center of the cluster represents a measure of similarity for all the points within
that cluster. The distance of the points within each of the respective clusters from the
center of the cluster represents a measure of similarity for all the points within that
cluster. The distance between cluster centers represents a measure of uniqueness for each
of the clusters. These two factors provide a means for evaluating clusters in such a way

that cohesive and identifiable clusters are discovered.

Figure 3 describes a set of elements in two-dimensional feature space that have been

classified into clusters based on proximity.

16

Figure 3: A Clustered Set of
Elements

Partitional cluster analysis is useful with large datasets where element similarity is not
easily distinguishable (Jain et al., 1999), as is the case for the data sets generated by the
architecture model simulation. This classification process is visualized most easily when
the elements are able to be plotted as points in two-dimensional space. In two
dimensions, the clusters are often observed by humans. However, as the dataset becomes
larger and more dimensions are involved, the ability to manually classify the data
becomes exceedingly difficult. Hence, several formal methods for cluster analysis have

been devised.

There are several other categories of clustering analysis methods, such as hierarchical,
nearest-neighbor, artificial neural networks, and evolutionary (Jain et al., 1999). The
partitional methods, specifically ISODATA, are best suited for clustering architecture

simulation trace data slices due to the size and high dimensionality of the data sets.

2.4.1 K-Means

K-Means is a partitional cluster analysis algorithm which refines a set of k means until
they have been shifted, over the course of several iterations, to the centers of k identified

clusters of elements in the feature space. One problem with the k-means algorithm,

17
however, is that the selected k value is fixed. Additionally, there are no fine-grain
controls for the cluster centers and the resulting clusters that are discovered as a result of

these cluster centers.

2.4.2 ISODATA

The Iterative Self-Organizing Data Analysis Technique (ISODATA) algorithm is a
refinement of the k-means concept with added parameters for additional customization of

cluster count, size, inter-distance, and concentration.

The algorithm parameters are:

e Minimum k — The smallest number of k clusters the algorithm is allowed to

identify.

e Maximum k — The largest number of k clusters the algorithm is allowed to

identify.

e Minimum Cluster Size — The minimum size of any cluster identified by the

algorithm.

e Merge Condition — A threshold for distance between any two clusters. Exceeding

this threshold results in a merger between the two clusters.

e Split Condition — A threshold for cluster dispersion. Exceeding this threshold

results in the cluster splitting into two clusters.

The algorithm steps:

18

Represent each element as a vector in space.

These elements define a subspace. Randomly place (k, + ky,)/2 vectors in that

subspace, where k, and ky, represent the minimum and maximum number of

allowable cluster centers, respectively.

Associate each element with the nearest cluster center.

Find the average value of all the elements associated with a particular cluster
center. Shift that cluster center to the average value. Repeat for all cluster centers

and their associated elements.

If a cluster has a sufficiently large standard deviation (split condition), place two
cluster centers at the original point, plus and minus the standard deviation.

Remove the original cluster center.

If two cluster centers are sufficiently close together (merge condition), place a
single cluster center in between the two cluster centers. Remove the two original

cluster centers.

If the number of elements associated with a cluster is less than the minimum

cluster size, remove the cluster center.

If the number of clusters exceeds k, or falls short of k,, then remove or add a

cluster center at random, respectively. The addition or removal may also be based
on some criteria (e.g. removing the cluster center with the fewest associated

elements).

If the average cluster quality is sufficiently small, then stop and report the clusters.

19

Otherwise, disassociate the elements from their cluster centers and go to step 3.

Determining how to set some of the parameters in ISODATA is difficult if nothing is
known about the dataset ISODATA is being run on. In the case of our methodology, a
small number of clusters is desired, resulting in less representative slices to be simulated.
This affects the entire set of parameters of the ISODATA and is further discussed in

section 5.1.1.

2.4.3 Cluster Dispersion Metrics

The evaluation technique used to generate the data for all of the experiments is based on
the concept of measuring the dispersion between the elements in a single cluster and the
dispersion between all of the cluster centers within the feature space. Within-cluster
dispersion is the minimum mean square distance of the data elements in a cluster from
the cluster center. As formalized in the following equation, the between-cluster
dispersion metric is the minimum mean square distance of the cluster centers from the

center of all cluster centers.

n=number of elements in cluster i

m=number of clusters

p=set of elements in cluster i,{ p,, p,, ..., P,

c=set of cluster centers in cluster configuration, {c, ¢,, ...,c, }

p=center of the cluster elements
¢ = center of the cluster centers

n
within-cluster dispersion for cluster i=—% »_|| p,— Dl
n o
m ’
between-cluster dispersion=—x* Y _ ||c,—¢|
j=0

20
A cluster configuration is considered optimal when the minimum mean square distance of
the elements from the cluster center is as small as possible, and when the minimum mean
square distance between clusters is as large as possible. In other words, low dispersion
between cluster elements indicates high cluster coherency, while high dispersion between
clusters indicates high independence. The scalar value returned as the evaluation of a
particular cluster configuration is the within-cluster dispersion measure over the between-
cluster dispersion measure. To evaluate an entire cluster configuration, or the set of
clusters determined by ISODATA, the evaluations for each cluster are averaged to return

the overall configuration dispersion.

2.5 Feature Selection

Generally, not all of the features in a dataset are useful for classification. Some features
may only add noise to the dataset by not providing any additional information that a rule
or pattern may be induced from, resulting in the over-fitting of the classification process
(Guyon & Elisseef, 2003). Feature selection attempts to eliminate irrelevant features
before the data is applied to the classification system. In the context of this paper, feature
selection is useful for determining which features from the architecture simulation trace

data are most relevant.

Feature selection involves one of the two methods for evaluation of the data: filters or

wrappers. Figure 4 describes the filter approach to feature selection.

21

Figure 4: The Filter Approach to
Feature Selection

In the filter method, the feature selection is performed purely as a preprocessing step,

without any knowledge or application of the classification system.

Figure 5 describes the wrapper approach to feature selection.

22

Figure 5: The Wrapper Approach to
Feature Selection

The wrapper method uses the classification system as a “black box” mechanism from
which it evaluates and selects particular features (John, Kohavi, & Pfleger, 1994). In
effect, the feature selection method and the classification system become tightly
integrated. Due to the configurability of the ISODATA algorithm as the classification
system, the feature selection methods explored in this thesis uses the wrapper model for

selection. The following sections describe these feature selection methods.

2.5.1 Hill Climbing

Hill climbing is a greedy search strategy. The algorithm is initialized with a single empty
subset. In the first iteration, a single feature is tentatively added to the subset, and the
subset is evaluated. This occurs for every existing feature. The feature that contributes to

the best evaluation of the subset is added to the subset, which means there is now one

23
feature in the subset. In the subsequent iterations of this method, single features that have
not been selected yet are tentatively added, and those features contributing to the best
evaluation of the subset are added. The iteration ends when the subset reaches a
particular evaluation criteria, such as dispersion, or a predetermined number. The
evaluation is performed by the classification system (Guyon & Elisseeff, 2003), in this

case ISODATA.

2.5.2 Genetic Algorithm

A genetic algorithm is initialized with a randomly generated population of elements
which are evaluated using the classification system. A percentage of the population with
the lowest evaluation is eliminated, while the remaining population is used for generating
a new population using cross over and mutation operations. The crossover process occurs
by merging two elements of the old population, forming a member for the new
population. Mutation is applied to the new population to prevent premature convergence
on some local optima. After cross over and mutation, the new population is evaluated so
that the next iteration of the algorithm can continue. The algorithm ends when a

termination condition is reached.

The algorithm parameters:

e Population Size

e Mutation Coefficient

e Survival Percentage

24

e Feature Count Range

o Termination Condition

The algorithm:

1. Randomly generate the initial population.

2. Evaluate all of the members of the population according to the classification
system.

3. Choose a percentage of the highest-evaluated members to contribute to the next
generation. These members are referred to as the elite group.

4. Perform a cross over on randomly selected members of the elite group to create
the next generation.

5. Apply mutation based on the mutation coefficient to avoid premature convergence
on some local optima.

6. If the highest evaluated member of the next generation does not meet the

termination condition, repeat steps 2 through 5, otherwise the highest evaluated

member is result returned from the algorithm.

Figure 6 describes a generalized iteration of the genetic algorithm.

25

The Elite Group

ErrTTTETETEEEEr—— srvrerePr—
b] A
b S
frostaannn s R

Cross Ovr

oot

Mutation

Resulting Population

Figure 6: A Generalized Example of a Genetic
Algorithm Iteration

The figure demonstrates one iteration of the genetic algorithm. The iteration begins with
a population of elements, some of which belong to the elite group. The cross over
operation is applied to the elite group, resulting in a new set of elements. Mutation is

applied to those new elements to produce the population for the next iteration.

In the context of feature subset selection, the members of the population refer to feature

26
subsets. The population is initialized with a number of randomly selected feature subsets
from the set of features. The subsets are evaluated according to their clustering quality.
The remaining feature subsets are used to create the next generation using mutation and

cross over operations. Factorial design is applied in calibrating the genetic algorithm in

5.1.2.

2.6 Known Power-Affecting Features

The features are those that are known to affect power are cache and register-related:

- Cache Hits

« Cache Misses

- Cache Eviction

« Cache Reads

- Cache Writes

- Cache Flushes

« Cache Touches

« Cache Allocations

« Cache Sets

« Cache Ways

These features are known to affect power consumption, and should have the greatest

27
influence on power estimation accuracy. By intentionally including these features after
feature selection has applied, the power estimation accuracy should increase. In other
words, feature selection is an information-theoretic method, which can only make use of
the data provided to the algorithm. Including known power-affecting features is an

application of domain-knowledge to the clustering process.

3. RELEVANT WORK

Brandolese et al. (2003) attempt to generalize instruction execution across microprocessor
models which have only been partially characterized with respect to power consumption.
By abstracting the architecture level further into functionalities involved in instruction
execution, a model is created based on knowledge of functionalities when applied to
particular microprocessor models. While the methodology described in this paper does
make use of instruction simulation, the purpose of doing so is not directly related to
power estimation. Instead of using instructions for power estimation, our methodology

employs instructions as a pre-characterization step.

Xi, Huang, and Zhong (2005) model sets of instructions as macro-operations based on a
high-level language, like C or C++. By representing an entire benchmark in macro-
operations, power consumption is estimated for each macro-operation, and thus for the
entire benchmark, without the need for execution of the entire benchmark. Using
SystemC as the simulation environment, average error of 6.7% was maintained while

gaining an average 241.84X speedup.

An even higher level approach to energy macro-modeling is to group instructions based

28

29
on functions or subroutines within the benchmark application. Tan et al. (2001) present
two approaches to function-level macro-modeling: one which uses the function
parameters as macro-modeling parameters for estimating power consumption, and the
other which profiles the function's execution, and uses the internal statistics generated
from profiling as macro-modeling parameters. Using these two approaches, power
estimation has averaged within 95%, with a speedup of over five orders of magnitude over

instruction-level and other architectural-level power estimation techniques.

While these methodologies are similar to our methodology, they are different in that they
use a linear fitting method that is based on a set of known inputs and outputs from the
macro-operation or function to define a model for the benchmark. Our methodology
statically produces dynamic execution slices by dividing the architecture simulation trace
data into slices of fixed size, and instead of statistically characterizing each slice, slices
are clustered together and a number of representative slices are chosen to represent the

entire stream of execution.

Slice-based characterization relies on dividing the benchmark's instruction stream, or
corresponding streams such as the ASTD, from the simulator into a set of slices. One
particular approach to slice-based characterization is using the subset of slices as a
sample of the entire instruction stream. The SMARTS approach (Wunderlich et al.,
2003), achieves an average error of less than 1% in estimating clock cycles and energy per

instruction by simulating only 50M out of 2 to 5B instructions in a set of benchmarks.

30
SMARTS systematically selects samples at certain intervals and simulates the micro-
architectural aspects of the model, while only simulating the architectural aspects of the
model for non-sampled data in order to maintain an approximate continuation of the
micro-architectural state. Our methodology uses cluster analysis and feature selection to
select a sample of slices from the entire stream of ASTD, rather than selecting samples at

certain intervals.

Joshi, Luo, and John (2007) describe a system, DynaSim, that is specifically targeted at
OnLine Transaction Processing (OLTP), which results in simulation time improvements
over the SMARTS approach. DynaSim takes advantage of the continuous and
statistically phase-less nature of OLTP simulations. This enables DynaSim to simulate
continuously until some desired confidence interval is met, in some cases without having
to resort to intermediate architectural simulation. Our methodology does not use
continuous simulation in order to meet a desired confidence interval, but instead uses data
from an initial architectural simulation to determine which slices should be executed in a

follow-up micro-architectural simulation.

In addition to sampling instruction stream slices, a single slice can also be determined as
representative, or prototypical, of a number of other slices. Sherwood, Perelman,
Hamerly, and Calder (2002) approach the task of determining representative slices by
using random linear projection to reduce data dimensionality and cluster analysis to

obtain representative slices. Each slice contains counts of execution for basic blocks

31
within the benchmark code (a section of code with one exit and one entry point). The
methodology described in this thesis is very similar to the methodology described by
Sherwood et al. (2002). However, they did not make use of feature selection.
Additionally, they use block executions counts per slice. In our research, architectural

events per slice are counted.

The methodology used by Todi (2001) is also similar to the methodology of this thesis
paper in that architectural events are sampled at regular intervals throughout execution
and then clustered using k-means. To reduce data dimensionality, however, Principle
Component Analysis is used instead of feature selection as is done in our thesis. Also,
only a single slice size of 1M instructions is used whereas multiple slice sizes, ranging

from 1K to 10K, are used in our research.

Luo, Joshi, Phansalkar, John, and Gosh (2008) compare a number of clustering methods
as well as introducing a new feature for locating phases within a benchmark's instruction
stream. The benchmark is divided into several single-exit single-entry code slices. The
paper demonstrated the effectiveness of using the CLARANS (Clustering Large
Applications based on RAN-domized Search) algorithm over k-means. Additionally, it
introduced a feature, as alternative to using basic blocks, to measure data locality within
slices as an indicator of program phases. Our method differs, as it does with Sherwood's
(2002) use of basic block vectors, in that slices are measured based on architectural

events.

32

Phansalkar and John (2006) attempt to use program similarity to predict the cache-miss
rate of a benchmark with unknown performance characteristics by using a group of
benchmarks with known performance characteristics. They propose two methods: 1)
assigning weight to each of the benchmark programs with known performance
characteristics and applying the weighted mean to the new benchmark to predict
performance; 2) clustering the similar benchmarks with known performance
characteristics, and then use the representative benchmark from the cluster containing the

new benchmark.

Another benefit of determining program similarity is the ability to select a subset of
benchmarks out of an entire benchmark suite for simulation, rather than simulating the
entire benchmark suite. The goal is to select a subset of benchmarks that are distinct from
one another and are also representative of the entire benchmark suite. Joshi, Phansalkar,
Eeckhout, and John (2006) make use of microarchitecture-independent characteristics
such as instruction mix, control flow behavior, instruction level parallelism, data locality,
and instruction locality to characterize each benchmark in order to determine similarity.
The methodology described in this thesis does not consider similarities between two
benchmarks in order to characterize a microprocessor's workload. However, further
research could apply our use of cluster analysis and feature selection to identify

similarities between two benchmarks using ASTD.

4. METHODOLOGY

The methodology for reducing the amount of time required to estimate power
consumption is a sequential process involving the benchmark applications, simulator
software capable of performing ISA-level simulations and power estimations given a
program counter range, a means to extract data from the ISA-level simulations, and a
means to perform feature selection and cluster analysis on the extracted data. Figure 7
describes the process.

Benchmark Architecture Feature I;euag:(;te
Application(s) Simulator Extraction .
Selection

Cluster

Analysis — Power P Prototype
& Prototype Estimation Collection
Generation

Figure 7: The Components of the Methodology

This figure describes the sequence of power estimation using the slice-based
methodology. The benchmark applications are first run through the architecture simulator
to generate the ASTD. Following the architecture simulation, the features are extracted

from the ASTD. Feature selection is applied, resulting in an optimal subset of features.

33

34
Cluster analysis is performed to determine which ASTD slices most accurately represent
the benchmark test as representative slices. The corresponding instruction stream slices
are run using the system level simulator, which returns power estimation for each slice.
The original benchmark test is then expressed in terms of the representative instruction

stream slices, reducing data throughput for system level simulation.

4.1 Benchmark Applications

The choice of benchmark tests are ultimately up to the designers of the microprocessor.
The choice of benchmark tests does not affect the our methodology in the same manner
that it would affect workload characterization, as it is not dependent on the type or quality
of the benchmark itself. The microprocessor designer should only be aware of the
instructions used in the benchmark application, as the model may not be designed for or
capable of handling the specific aspects of the benchmark application. The execution of
the benchmark, especially if created by a third party, may result in the unintended

behavior of the model, skewing the performance results.

For the purposes of this paper, the following benchmark applications are used:

1. Basic Mathematical Operations — Runs basic mathematical operations on random

sets of data.

2. Fast Fourier Transform Algorithm — Runs the FFT algorithm on random sets of

data.

3. Dijkstra's Shortest Path Algorithm — Runs Dijkstra's SP algorithm on random sets

35

of data.

4. Q-Sort Algorithm — Runs the Q-Sort algorithm on random sets of data.

4.2 Architecture Simulator

The architecture simulator being used for this paper is Freescale's Architecture
Description Language (ADL) simulator. The ADL simulator takes an Executable and
Linking Format (ELF) binary and simulates its execution on a particular ADL model.
The output generated from the simulator is a trace through the model as the ELF machine

code is executed. This ASTD describes (Kahne, 2006):

1. The start of an instruction sequence

2. Information about the instruction itself

3. Resource update events

4. Breakpoint occurrences

5. Cache access

6. Memory data access

7. The occurrence of an exception

8. Register modification

9. MMU/TLB access

10. Watchpoint occurrence

36

4.3 Feature Extraction

A simple Python script has been written for the purposes of extracting the ASTD output
from the ADL Simulator. The script extracts information related to the execution of
instructions, memory and cache operations, and register modification. The script also
makes use of several subcategories for the various types of instructions (load, store,
mathematical, logical, etc.), each of which represent a single feature. The output from the
script is a file of comma-separated values, where each row represents a slice of the
ASTD, and each column represents a feature. The feature selection and cluster analysis
processes are then read in each row as a data element, where columns may be discarded

as the feature selection process determines.

4.4 Feature Selection

A library of cluster analysis and feature selection methods have been written specifically

for this thesis in C++.

1. Feature Selection

1. Exhaustive Search

2. Hill Climbing Algorithm

3. Genetic Algorithm

2. Cluster Analysis

1. ISODATA

37
The library reads the input from the feature extraction script and returns the best feature
subset, which the clustering algorithms use to return the high cluster quality. These

clusters form the representative slices, representative of the entire ASTD file.

4.5 Cluster Analysis

Each cluster identified by the ISODATA algorithm is associated with a representative
ASTD slice. Since each data element being clustered corresponds to a ASTD slice from
the simulation, the data element closest to the center of the cluster is regarded as the
representative slice. This representative slice is used in place of the other slices that
correspond to the data elements belonging to that particular cluster. The program counter
ranges of the representative ASTD slices are used to extract slices of the instruction
stream, which are run on the system level simulator. The system level simulator returns
power estimation for each slice, thus indicating how accurate the representative slices are

at representing the entire benchmark test in terms of power consumption.

4.6 Power Estimation

Freescale maintains an open source software suite for modeling a processor's architecture
using an architecture description language (Freescale Semiconductor, 2010). Models
designed using ADL can be simulated at the architecture level. Freescale has also
provided a power estimation script which uses a heuristic equation for power estimation
based on a power estimation model designed by Sunwoo, Al-Sukhni, and Holt (2007).
The simulation software is able to apply the power estimation script during the simulation

process to return the estimated power consumption for a given instruction stream. Instead

38
of using system level simulation software to estimate power consumption, the architecture
level simulation software is used in conjunction with power estimation script. This
enables a greater range of experimentation due to the speed of architecture level
simulation software. However, the power estimation accuracy demonstrated within the
experiments is not necessarily as accurate as it would be if system level simulation

software were used.

5. EXPERIMENTS

The following experiments are designed around the three hypotheses of this thesis:

1. The ISODATA algorithm may be effective in clustering ASTD slices, resulting in
accurate power estimation while reducing data throughput in system level

simulation.

2. Feature selection may result in increased power estimation accuracy by selecting
an optimal subset of features for the ISODATA algorithm to use in clustering the

ASTD slices.

3. Selecting the known power-affecting features may result in increased power

estimation accuracy.

The experiments fall into three categories:

1. Calibrating and evaluating the cluster analysis and feature selection algorithms.

The following is a list of experiments for this category:

1. ISODATA Calibration

2. Feature Selection Calibration

3. Feature Selection Algorithm Evaluations

39

40

1. Exhaustive Search

2. Genetic Algorithm

3. Hill Climbing

4. Small Feature Subset Sizes

5. Exhaustive Search vs. Genetic Algorithm

2. Demonstrating the affecting factors of power estimation accuracy. The following

is a list of experiments for this category:

1. ASTD Slice Size

2. ISODATA Slice Selection

3. Cluster Quality

3. Evaluating the effectiveness of the methodology based on the three hypotheses.

The following is a list of experiments for this category:

1. ASTD Compression

2. Genetic Algorithm Feature Selection

3. Known Power-Affecting Features

5.1 Algorithm Calibration and Evaluation

The following experiments describe the calibration of the ISODATA algorithm and the

evaluation of feature selection methods.

41

5.1.1 ISODATA Calibration

In an effort to maximize the effectiveness of the ISODATA in other experiments, the
algorithm is calibrated using a set of training data. A one-way ANalysis Of Variance
(ANOVA) test determines the statistical significance of the relationships between the
independent and dependent variables involved in the ISODATA algorithm. One-way
ANOVA produces an F-test statistic, which is the ratio of the variance between the means
of the data to the variance within the data samples. The F value determines the

significance of the independent variables with respect to the dependent variables.

In ISODATA, the independent variables, or parameters, are:

1. Maximum k (maximal number of clusters possible)

2. Minimum Cluster Size

3. Merge Threshold

4. Split Threshold

The dependent variables, or results, are:

1. Evaluation

2. Distortion Delta

3. Elimination Count

4. Merge Count

5. Split Count

There are three sets of experimental data by which to characterize the ISODATA

42
algorithm. Two are comprised of randomly generated points around eight cluster centers,
while the third is comprised of uniformly generated points around eight cluster centers.
Factorial design is applied to determine the ISODATA parameters or independent
variables to use. The design uses every combination of the following independent

variable values:
1. Maximum £ [10, 100, 1000]
2. Minimum Cluster Size [10, 100, 1000]
3. Merge Threshold [0.5, 1.0, 2.0]
4. Split Threshold [0.5, 1.0, 2.0]

The merge and split thresholds are actually coefficients applied to a default threshold that

is calculated under the assumption that the cluster centers are uniformly placed.

From the factorial design, ISODATA is run 81 times on each data set, or 3*; every
combination of the independent variable values. From each ISODATA run, the following
results are extracted as the dependent variables for the statistical analysis: evaluation,
distortion delta, elimination count, and merge count. Using one-way ANOVA the
significance of the independent variables with respect to the dependent variables (namely

the Evaluation), is established.

Table 1 represents the results from running ANOVA over all four of the calibration

datasets.

Table 1: ANOVA Table of Combined ISODATA Experiments

Independent Degrees |Sum |Mean |F Prob. > |Significan
Variables of of Squar |Value F ce
Freedom |Squar |es
es
(1) Max. K 1 154.99 |154.99 {423.03/0.000 99.90%
7 7 3
(2) Min. Cluster Size| 1 39.607 |39.607 | 108.11 |0.000 |99.90%
2
(3) Merge Threshold |1 3.013 |3.013 [8.225 |0.004 |95.00%
(4) Split Threshold |1 0.065 [0.065 |0.117 [0.674 |<90%
1,2 1 8.045 |8.045 |21.961 0.000 |99.90%
L3 1 1.206 [1.206 |3.291 |0.071 |<90%
1,4 1 0.037 10.037 |0.101 |0.751 < 90%
2,3 1 0.030 10.030 |0.081 [0.776 |<90%
2,4 1 0.004 10.004 |0.012 [0914 |<90%
3,4 1 0.137 10.137 |0.375 |0.541 |<90%
1,2,3 1 0.000 |0.000 |0.001 [0.981 |<90%
1,2,4 1 0.010]0.010 |0.027 |0.870 |<90%
1,3,4 1 0.008 [0.008 |0.023 |0.879 |<90%
2,3,4 1 0.019 10.019 |0.052 [0.820 |<90%
1,2,3,4 1 0.006 [0.006 |0.018 [0.894 |<90%

The two independent variables that stand out as being the most significant are the

maximum k value and the minimum cluster size.

Table 2 represents the results from running ANOVA on the average of all four of the

calibration datasets.

43

44

Table 2: ANOVA Table of Averaged ISODATA Experiments

Independent Degrees |Sum |Mean |F Prob. > |Significan
Variables of of Squar |Value F ce

Freedom |Squar |es
es

(1) Max. K 1 44722 |44.722 | 142.93 10.000 199.90%
5
(2) Min. Cluster Size | 1 11.149 |11.149 |35.632/0.000 99.90%
(3) Merge Threshold | 1 0.951 [0.951 |3.041 |0.086 |<90%
(4) Split Threshold |1 0.019 10.019 |0.061 [0.806 |<90%
1,2 1 2.353 12.353 |7.519 10.008 99.00%
I3 1 0.398 10.398 |1.273]0.263 |<90%
1,4 1 0.007 10.007 10.022]0.882 | <90%
2,3 | 0.005]0.005 |0.017]0.897 |<90%
2,4 1 0.002 10.002 |0.005 [0.945 |<90%
3,4 1 0.036 |0.036 |0.116 [0.735 | <90%
1,2,3 1 0.001]0.001 |0.002 [0.968 |<90%
1,2,4 1 0.006 [0.006 |0.020 |0.888 |<90%
1,3,4 1 0.003 10.003 |0.011 (0917 | <90%
2,3,4 | 0.007 10.007 |0.022 |0.884 |<90%
1,2,3,4 1 0.004 10.004 |0.011 0915 |<90%

The two independent variables that stand out as being the most significant are the
maximum k value and the minimum cluster size. These two variables have the most
bearing on the evaluation of the clusters generated by the ISODATA algorithm. The

maximum k constrains the number clusters that the ISODATA algorithm can generate.

5.1.2 Feature Selection Calibration

Only the mutation probability and survival percentage parameters of the genetic

algorithm require calibration using a set of training data. These parameters are calibrated

using ANOVA. Table 3 represents the results from running ANOVA on all four of the

feature selection calibration datasets averaged:

Table 3: ANOVA Table of Averaged Genetic Algorithm Feature Selection

Experiments

Independent Degrees |Sum of [Mean |F Prob. > |Significan
Variables of Square | Square | Value |F ce

Freedo |s S

m
(1) Mutation 1 0.001 |0.001 |1.1365 |0.335 |<90%
Probability
(2) Survival 1 0.001 |0.001 |1.3374 |0.300 |<90%
Probability
1,2 1 0.000 |0.000 |0.335 |0.588 |<90%

According to the calibration data, neither the mutation or survival probability have any

significant effect in determining the local optima returned from the search.

5.1.3 Feature Selection Algorithm Evaluation

45

These experiments demonstrate the effectiveness of the feature selection algorithms on a

set of calibration data. While some feature selection algorithms may identify optimal

feature subsets, they may be too slow or unpredictable.

The experiments are run using the following parameters (explained in “2.4.2

ISODATA*):

1. ISODATA and Genetic Algorithm parameters:

46

1. ISODATA k-Max Values: 10, 20, 50, 100, 200, 500, 1000

2. ISODATA Termination Condition: 0.3

3. ISODATA Max Iterations: 50

4. ISODATA Merge Condition: 1.0

5. ISODATA Split Condition: 1.0

6. Feature Selection Termination Condition: 0.3

7. Genetic Algorithm Max Iterations: 50

5.1.3.1 The Exhaustive Search

A comparison of the feature selection methods is put into perspective by comparing them
to an exhaustive search of all the feature subsets for a given subset size. Unfortunately,
the feasibility of an exhaustive search is not achievable for all subset sizes, given the
combinatorial effect. Figure 8 describes an exhaustive search through every possible
combination of feature subsets for subset sizes 1, 2, 3, 4, 5, 18, 19, 20, 21, and 22.
Additional graph points have been added to indicate the predicted values for the best and

worst evaluations returned from the exhaustive search.

47

Exhaustive Search

Best and Worst Evaluations

60
50
L 4 ®
N A A A A A .
‘_A’"
0 e |
‘w‘ \ B Best
c A * ~® Worst
'% 30 P V Best Predicted
% ¢ & Worst Predicted
0
20 ®
®
10
L

VVVVVVVVVVVV“/
.ool/./m

12 3 456 7 8 910111213 141516 17 18 19 20 21 22

Feature Subset Size

Figure 8: Exhaustive Search of Feature Subsets

The figure shows that the gap between the best and worst evaluations for the exhaustive
search is very distinct. The gap also grows very rapidly in the first few feature subset
sizes, while not necessarily shrinking symmetrically at the tail end of the feature subset

sizes.

5.1.3.2 Genetic Algorithm

Figure 9 represents the genetic algorithm being run for all possible feature subset sizes on

a single benchmark.

Genetic Algorithm

Best & Worst Evaluations

= .07000
9
v
@ 06000
2 ®
a ,
.05000
2 @
= PR 2
>
G 04000 P
g 4 * oo ?
5 .03000
&)

.02000

°
*eo o0 i:\:;/l

.01000

.00000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Feature Subset Size

Figure 9: Genetic Algorithm Identifying Optimal Feature Subsets

48

- Best
® Worst

A noticeable effect within this figure is the stabilization of the worst evaluations at subset

size 11, and also the stabilization of the best evaluations at subset size 5. The difference

between the best and worst cluster quality for each feature subset size is considerably

smaller than demonstrated with the exhaustive search.

5.1.3.3 Hill Climbing

Figure 10 describes the cluster quality returned from the hill climbing algorithm on all

possible feature subset sizes.

Forward Selection Algorithm

.1400
.1200 W
/\
| \ \
1000 [A
.0800 \ f‘ L

\\ ﬂ [/ \\ \\ ‘B Cluster Quality
| /\ [\
.0600 M. \ \\ | | |
\ |

\ \/
.0400 [

Cluster Quality (Dispersion)

.0200

.0000

12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22

Feature Subset Size

Figure 10: Hill Climbing Search of Feature Subsets

In the case of this figure, only one iteration of the algorithm is performed for each feature

subset size. The cluster quality rapidly increases starting at the feature subset size of 1 to

the feature subset size of 8.

5.1.3.4 Small Feature Subset Sizes

This experiment is designed to indicate the lack of correlation between cluster quality and

power estimation accuracy for very low feature subset sizes.

The experiments are run using the following parameters:

49

50

1. ISODATA and Genetic Algorithm parameters:

1. ISODATA k-Max Values (minimum k is always 1): 20

2. ISODATA Termination Condition: 0.3

3. ISODATA Max Iterations: 50

4. ISODATA Merge Condition: 1.0

5. ISODATA Split Condition: 1.0

6. Genetic Algorithm Termination Condition: 0.3

7. Genetic Algorithm Max Iterations: 50

8. Percent of Features Selected: T5%

2. Experiment parameters:

1. Execution Trace Slice Sizes: 1000, 2000, 5000, 10000

2. Benchmarks: Basic Math

3. Feature Selection: Genetic Algorithm

4. Known Power-Affecting Features: With, Without

Figures 11 through 14 demonstrates the cluster qualities achieved for each feature subset

size.

51

Slice Size 1000 Slice Size 2000

= =
o .3000 o .3000
B Rz = 0.14 ® Rz =0.2
8_ 2500 — Cluster 8_ 2500 — Cluster
@ .2000 Quality @ .2000 Quality
a a
< 1500 N Linear < 1500 N Linear
%’ .1000 Regres- % .1000 Regres-
S 0500 u sion for S 0500 sion for
J Cl J Cl
@ -0000 ust.er & 0000 USt.er
E NS o AL DY Quality g N X B O, Quality
(@] (@]

Feature Subset Size Feature Subset Size

Figure 11: Subset Size and Cluster Quality, Figure 12: Subset Size and Cluster Quality,

Slice Size 1000 Slice Size 2000
Slice Size 5000 Slice Size 10000

S .4000 S .4000
Iz R2 = 0.34 2 Re = 0.52
2 3000 — Cluster 2 3000 — Cluster
g Quality g Quality
= .2000 N Linear < .2000 N Linear
= Regres- = Regres-
g .1000 . © 1000)

sion for > sion for
S | o |
§ 10000 C ust.er § 10000 C ust.er
3 N R Quality 3 N o 00 A Quiality
(@) (@)

Feature Subset Size Feature Subset Size

Figure 13: Subset Size and Cluster Quality, Figure 14: Subset Size and Cluster Quality,
Slice Size 5000 Slice Size 10000

The cluster quality in the figures decreases as the feature subset size increases. Another
interesting trend is the small decrease in cluster quality variance as the feature subset size

increases. Cluster quality variance also decreases as the slice size increases.

Figures 15 through 18 demonstrate power estimation resulting from the feature selection

and subsequent cluster analysis on the data set demonstrated in figures 11 through 14.

Slice Size 1000

50

40

30 M Subset

Sizes 1-5

20 B Subset

10 Sizes 6-10

, — m -
0.10% 10.00%
0.01% 1.00% More

Figure 15: Subset Size and Power
Estimation Accuracy, Slice Size 1000

Slice Size 5000

50

40

30 M Subset

Sizes 1-5

20 M Subset

10 ‘ Sizes 6-10

ol B
0.10% 10.00%
0.01% 1.00% More

Figure 17: Subset Size and Power
Estimation Accuracy, Slice Size 5000

52

Slice Size 2000

40

30
M Subset

20 Sizes 1-5
M Subset

10 Sizes 6-10

0 L
0.10% 10.00%
0.01% 1.00% More

Figure 16: Subset Size and Power
Estimation Accuracy, Slice Size 2000

Slice Size 10000

30
25
20 M Subset
15 Sizes 1-5
10 M Subset

5 Sizes 6-10

0 | [

0.10% 10.00%
0.01% 1.00% More

Figure 18: Subset Size and Power
Estimation Accuracy, Slice Size 10000

Figures 11 through 14 show that cluster quality decreases as the feature subset size

increases. However, figures 15 through 18 demonstrate that, in some cases, larger feature

subset sizes result in greater power estimation accuracy. This demonstrates a lack of

correlation between cluster quality and power estimation accuracy for small feature subset

sizes.

5.1.3.5 Exhaustive Search Versus Genetic Algorithm Search

The genetic algorithm has been selected over the hill climbing method due to its greater

accuracy, and over the exhaustive method due to its greater speed. In order to gauge the

53
performance of the genetic algorithm feature selection method, its results are compared to

the results of an exhaustive search of the entire feature set.

The experiments are run using the following parameters:

1. ISODATA and Genetic Algorithm parameters:

1. ISODATA k-Max Values: 10

2. ISODATA Termination Condition: 0.3

3. ISODATA Max Iterations: 50

4. ISODATA Merge Condition: 1.0

5. ISODATA Split Condition: 1.0

6. Genetic Algorithm Termination Condition: 0.3

7. Genetic Algorithm Max Iterations: 50

8. Percent of Features Selected: 75%

2. Experiment parameters:

1. Execution Trace Slice Sizes: 1000, 2000, 5000, 10000

2. Benchmarks: Basic Math, FFT, Dijkstra, Q-Sort

3. Feature Selection: Exhaustive Search and Genetic Algorithm

4. Known Power-Affecting Features: With, Without

54
Figure 19 compares the cluster qualities returned from both exhaustive search and genetic

algorithm feature selection for the Basic Math benchmark.

Comparison of Exhaustive and Evolutionary Feature Selection
Benchmark: Basic Math, K-Max: 10

0.250
S 0.200
©
=)
o [|
u>J 0150 Evol., PAF
R M Ex., PAF
w
> 1 Evol., No PAF
£ 0.100 M Ex., No PAF
o)
3
S 0.050

0.000

1000 2000 5000 10000
Window Size

Figure 19: Exhaustive vs. GA Search, Basic Math Benchmark, k-Max: 10

In this figure, the evaluation differences between the exhaustive search and genetic

algorithm search seem to be the most minor for the slice size of 5K.

Figure 20 also compares the cluster qualities returned from both exhaustive search and

genetic algorithm feature selection, but for the Fast Fourier Transform benchmark.

55

Comparison of Exhaustive Search and Genetic Algorithm Feature Selection

Benchmark: Fast Fourier Transform, K-Max: 10

0.100 B Genetic, With
0.090 Power-Affecting

’S‘ 0.080 Features

'g 0.070 M Exhaustive,

o With Power-Af-

g 0060 fecting Features

Z 0.050] Genetic, With-

§ 0.040 out'Power—Af—

5 0.030 fecting Features

@ B Exhaustive,

o 0.020 Without Power-
0.010 Affecting Fea-
0.000 tures

1000 2000 5000 10000
Slice Size

Figure 20: Exhaustive vs. GA Search, Fast Fourier Transform Benchmark, k-Max: 10

Unlike figure 19, the evaluation differences between the exhaustive search and genetic
algorithm search, in this figure, seem to be the most minor for the slice size of 10K.
Despite different slice sizes having the most minor evaluation differences, all of the other
benchmarks demonstrated the exhaustive search returning higher cluster quality than the
genetic algorithm. The only exception to this trend is the Q-Sort algorithm at slice size

2000 when using power-affecting features.

5.2 Affecting Factors of Power Estimation Accuracy

The following experiments describe the various factors that may have a significant effect

56

on power estimation accuracy.

5.2.1 ASTD Slice Size

Simulation of an instruction stream slice is preceded by a cache warming phase in which
data is set in cache memory for processing before execution begins. The cache warming
affects the overall energy estimation per simulation, which means that the overall cache
warming effect will be much greater for smaller slices. These experiments demonstrate

the cache warming effect being mitigated by the larger slice sizes.

Figure 21 demonstrates the effect of the ASTD slice size on power estimation accuracy

for the Basic Math benchmark.

Effect of Slice Size on Power Estimation Accuracy
Benchmark: Basic Math
0.1400%
0.1200%
0.1000%
0.0800%
B Slice-totaled Power
0.0600%

0.0400%

0.0200%

% Error w.r.t. Power Estimation (mW)

0.0000%

2000 10000 50000 200000 1000000 5000000
1000 5000 20000 100000 500000 2000000 10000000

Window Size (Instructions)

Figure 21: Effect of Slice Size: Basic Math Benchmark

57
In this figure, the percent error becomes less than 0.1% at a slice size of 2K, and less than

0.01% at a slice size of 20K. Also, the power estimation accuracy is very high.

Figure 22, as with figure 21, demonstrates the effect of the ASTD slice size on power

estimation accuracy. This figure applies to the Q-Sort benchmark data, however.

Effect of Slice Size on Power Estimation Accuracy
Benchmark: Q-Sort

0.0600%
0.0500%
0.0400%
0.0300% = Sjice-totaled Power
0.0200%

0.0100%

% Error w.r.t. Power Estimation (mW)

0.0000%

2000 10000 50000 200000 1000000 5000000
1000 5000 20000 100000 500000 2000000 10000000

Window Size (Instructions)

Figure 22: Effect of Slice Size: Q-Sort Benchmark

Overall, the cache warm-up effect is much smaller for the Q-Sort benchmark than it is for
the Basic Math benchmark, given the low power estimation percent error.
Experimentation on the other two benchmarks, Dijkstra and Fast Fourier Transform, also
returned very a low power estimation percent error, at least an order of magnitude smaller

than the average errors returned from experiments related to the three hypotheses.

58

5.2.2 ISODATA Slice Selection

This experiment determines the effectiveness of the ISODATA clustering when compared

to randomly selected slices.

The experiments are run using the following parameters:

1. ISODATA and Genetic Algorithm parameters:

1. ISODATA k-Max Values: 10, 20, 50, 100, 200, 500, 1000

2. ISODATA Termination Condition: 0.3

3. ISODATA Max Iterations: 50

4. ISODATA Merge Condition: 1.0

5. ISODATA Split Condition: 1.0

6. Genetic Algorithm Termination Condition: 0.3

7. Genetic Algorithm Max Iterations: 50

8. Percent of Features Selected: T5%

2. Experiment parameters:

1. Execution Trace Slice Sizes: 1000, 2000, 5000, 10000

2. Benchmarks: Basic Math, FFT, Dijkstra, Q-Sort

3. Feature Selection: No Feature Selection

4. Known Power-Affecting Features: With, Without

59

Figure 23 compares random slice selection and ISODATA slice selection for the Basic

Math benchmark.

Comparison of Random Slice Selection vs. ISODATA Slice Selection

Basic Math Benchmark

160
140
120
- 100
S B Randomly Selected
o)
(&) 80 Slices
8 B ISODATA Selected
c .
) Slices
5 60
Q
[&]
(@]
40
20 J
o —m _H J
0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Percent Error w.r.t. Absolute Power

Figure 23: Effectiveness of ISODATA, Basic Math Benchmark

In this figure, the power estimation accuracy from the ISODATA selected slices is much
higher than the power estimation accuracy from the randomly selected slices. Using
ISODATA does not result in a power estimation error exceeding 5%, while using

randomly selected slices results in power estimation errors exceeding 10%.

60
Figure 24 compares random slice selection and ISODATA slice selection, but for the

Basic Math benchmark.

Comparison of Random Slice Selection vs. ISODATA Slice Selection

Fast Fourier Transform Benchmark

250

200
+~ 150
5 B Randomly Selected
o .
(&) Slices
3 B ISODATA Selected
C .
qta 100 Slices
>
Q
[$)
(@]

50 J I
0 —mm J ‘
0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Percent Error w.r.t. Absolute Power

Figure 24: Effectiveness of ISODATA, Fast Fourier Transform Benchmark

Power estimation accuracy from the ISODATA selected slices is much higher than the
power estimation accuracy from the randomly selected slices, as was observed in figure
23. Power estimation accuracy as a result of using of ISODATA does not exceed 5%
error, while use of randomly selected slices results in power estimation accuracy
exceeding 10% error. The results returned from experimentation with other two

benchmarks, Dijkstra and Q-sort, demonstrate the same effect in using ISODATA.

5.2.3 Cluster Quality

The purpose of this set of experiments is to determine the effect of cluster quality on
power estimation accuracy. In this set of experiments, cluster quality is the evaluation

score returned by the ISODATA algorithm.

The experiments are run using the following parameters:

1. ISODATA and Genetic Algorithm parameters:

1. ISODATA k-Max Values: 10, 20, 50, 100, 200, 500, 1000

2. ISODATA Termination Condition: 0.3

3. ISODATA Max Iterations: 50

4. ISODATA Merge Condition: 1.0

5. ISODATA Split Condition: 1.0

6. Genetic Algorithm Termination Condition: 0.3

7. Genetic Algorithm Max Iterations: 50

8. Percent of Features Selected: T5%

2. Experiment parameters:

1. Execution Trace Slice Sizes: 1000, 2000, 5000, 10000

2. Benchmarks: Basic Math, FFT, Dijkstra, Q-Sort

3. Feature Selection: No Feature Selection

61

62

4. Known Power-Affecting Features: With, Without

Figure 25 demonstrates the effect of cluster quality on power estimation accuracy for the

Basic Math benchmark.

Effect of Cluster Quality on Power Estimation % Error

Benchmark: Basic Math

5.00%

4.50%

4.00%
o
= 3.50%
o
o
g 3.00% — Percent Error w.r.t.
2 R? = 0.01 Absolute Power
2 2.50% N Linear Regression for
C Percent Error w.r.t.
2 2.00% Absolute Power
o
Y 150% H
c
8 |
o 1.00% LU ‘
& et il |

1 W ‘ i
0500 ’}HI[;WWWM'
0.00%

L N s PN PN N N = B T N N O)
FPFTPLPID IRl S

Cluster Evaluation (Within/Between)
Figure 25: Effect of Cluster Quality, Basic Math Benchmark
In this figure, the linear regression coefficient is 0.01, indicating no correlation between

power estimation accuracy and cluster quality. This lack of correlation may be due to the

dispersion metric used to evaluate the quality of the cluster configuration. The Fast

63
Fourier Transform benchmark also achieved no demonstrable correlation between cluster

quality and power estimation accuracy.

Figure 26 demonstrates the effect of cluster quality on power estimation accuracy for the

Dijkstra benchmark, which returns better results than the previous benchmarks.

Effect of Cluster Quality on Power Estimation % Error

Benchmark: Dijkstra

3.00%

2.50%

2.00%

— Percent Error w.r.t.
Absolute Power

1.50%

N\ Linear Regression for
Percent Error w.r.t.
Absolute Power

R? = 0.24

1.00°/O \} | ‘

|
- AN

N ® @ DA e O ®
NN SR ARN AR RN RN NN S

Percent Error w.r.t. Absolute Power

l’I .h |

L“U’M

Cluster Quality (Dispersion)

Figure 26: Effect of Cluster Quality, Dijkstra Benchmark

The regression coefficient is 0.24 for the data returned from experimenting with the

Dijkstra benchmark, indicating significant correlation between power estimation accuracy

and cluster quality. This benchmark has the highest regression coefficient for all four

benchmarks.

5.3 Verification of Hypotheses

The following experiments attempt to demonstrate verification of the three hypotheses.

5.3.1 ASTD Compression

This set of experiments compares the compression rate with the power estimation
accuracy. Compression, in this case, is a product of the slice size and the number of

clusters selected by ISODATA:

I : Total number of instructions
S :Slice size in instructions
K : Number of clusters selected by ISODATA

, 1
Compression=——-
K %S

The experiments are run using the following parameters:
1. ISODATA and Genetic Algorithm parameters:
1. ISODATA k-Max Values: 10, 20, 50, 100, 200, 500, 1000
2. ISODATA Termination Condition: 0.3
3. ISODATA Max Iterations: 50
4. ISODATA Merge Condition: 1.0
5. ISODATA Split Condition: 1.0

6. Genetic Algorithm Termination Condition: 0.3

64

65

7. Genetic Algorithm Max Iterations: 50

8. Percent of Features Selected: T5%

2. Experiment parameters:

1. Execution Trace Slice Sizes: 1000, 2000, 5000, 10000

2. Benchmarks: Basic Math, FFT, Dijkstra, Q-Sort

3. Feature Selection: No Feature Selection

4. Known Power-Affecting Features: With, Without

In order to isolate the effect of cluster selection on power estimation accuracy, no feature
selection methods are used. This results in 560 individual ISODATA runs per
benchmark, for a total of 2240 individual runs. The results for each benchmark are
described in the figures using a line graph, where the x-axis represents the compression
ratio for each experiment in descending order, and the y-axis represents the corresponding

power estimation accuracy.

Figure 27 demonstrates the effect of the compression ratio of the ASTD on the power

estimation accuracy for the Basic Math benchmark.

Effect of Compression Ratio on Power Estimation % Error

5.00%

4.50%

4.00%

3.50%

3.00%

2.50%

2.00%

1.50%

1.00%

Percent Error w.r.t. Absolute Power

0.50%

0.00%

@
p\'.

In this figure, the overall power estimation accuracy increases as the compression ratio

decreases, as indicated by a linear regression coefficient of 0.35.

Jl \‘
i

NG

Benchmark: Basic Math

|
?”I ‘r W M i

R? =0.35

“l ,H” "m

& ,\.‘5’3/ \n,q’% \.\Q’Q) \.\'gb SR

Compression Ratio

q

— Percent Error w.r.t.
Absolute Power

\ Linear Regression for
Percent Error w.r.t.
Absolute Power

Figure 27: Compression Ratio, Basic Math Benchmark

66

Figures 28 through 31 represents a per-slice-size decomposition of figure 27 by slice size.

This decomposition represents the effect compression on power estimation accuracy in

greater detail.

Slice Size 1000

Percent Error w.r.t
Absolute Power

Compression Ratio

Figure 28: Compression Ratio, Basic Math
Benchmark, Slice Size 1000

Slice Size 5000
3.00%

2.50%
2.00%
1.50% R? =0.16
1.00%
0.50%
0.00%
N N} o) O © o] 2 2
\{{9 \,qﬁD \,»;b \'c.?’ \"b \'(9 \'.b‘ \'(]/

Figure 30: Compression Ratio, Basic Math
Benchmark, Slice Size 5000

67

Slice Size 2000

Figure 29: Compression Ratio, Basic Math
Benchmark, Slice Size 2000

Slice Size 10000
4.00%

3.00%
2.00%
R? = 0.26
1.00%
0.00%
5 @ © ® L L D @
I SN NN NN N

Figure 31: Compression Ratio, Basic Math
Benchmark, Slice Size 10000

The power estimation accuracy increases as the slice size increases for these set of

figures, as it did in figure 27. Slice sizes of 5000 and 1000 achieve much higher power

estimation accuracy than slice sizes of 1000 and 2000. Additionally, while all of the

regression coefficients are above (.15, the slice size of 10000 returned a regression

coefficient of 0.26.

For the Q-Sort benchmark data, figure 32 demonstrates the effect of the ASTD

compression ratio on the power estimation accuracy.

Effect of Compression Ratio on Power Estimation % Error

Benchmark: Q-Sort

7.00%

6.00%
S 500%
8
g 4.00% — Percent Error w.r.t.
2 Re Absolute Power
2 =0.28 N\ Linear Regression for
t 3.00% Percent Error w.r.t.
E Absolute Power
o
W 2.00% I
C
3 | \
> 1 SR
o o Wi |

1.00% ‘ ' wl, LT

| LI
‘ l[H”W”’”'"" 'Im[r'llJ“ iHH \f
Wiaurs LR
0.00%
N) \o) Q v N Q N N 9% 0
Q %) > Q » N o) A Re) D Y
NN N A S S S

This figure

Compression Rate

Figure 32: Compression Ratio, Q-Sort Benchmark

demonstrates the overall power estimation accuracy increasing as the

compression ratio decreases. The correlation is indicated by a linear regression

coefficient

Figures 33

of 0.28.

through 36 represent a decomposition of figure 32 by slice size.

68

Slice Size 1000

8.00%

S 5 6.00%
E = 5 R2 = 0.27
5O 400%
0 L 200%
= 5
< o o,
S 2 0.00%
- O A
O < Q (%) Q QJ >

S & O 4 & &
& NN GERIN

Compression Ratio

Figure 33: Compression Ratio, Q-Sort
Benchmark, Slice Size 1000

Slice Size 5000

Figure 35: Compression Ratio, Q-Sort

Benchmark, Slice Size 5000

Slice Size 2000
5.00%
4.00%
3.00%
2.00%
1.00%
0.00%

R2 =0.44

.\QQQ
K2
Figure 34: Compression Ratio, Q-Sort
Benchmark, Slice Size 2000

Slice Size 10000

3.00%
2.50%
2.00%
1.50%
1.00%
0.50% UV
0.00%

h R? =0.18

Figure 36: Compression Ratio, Q-Sort
Benchmark, Slice Size 10000

69

For these figures, the power estimation accuracy increases as the slice size increases. For

all slice sizes, the power estimation accuracy increases as the compression ratio

decreases, all of which start out above 2.00% and decrease to below 2.00%. Power

estimation accuracy for slice sizes 5000 and 10000 decrease below 1.00%.

5.3.2 Genetic Algorithm Feature Selection

The intent behind this set of experiments is to determine the effectiveness of using feature

selection.

The experiments are run using the following parameters:

1. ISODATA and Genetic Algorithm parameters:

L.

8.

ISODATA k-Max Values: 10, 20, 50, 100, 200, 500, 1000

ISODATA Termination Condition: 0.3

ISODATA Max Iterations: 50

ISODATA Merge Condition: 1.0

ISODATA Split Condition: 1.0

Genetic Algorithm Termination Condition: 0.3

Genetic Algorithm Max Iterations: 50

Percent of Features Selected: 75%

2. Experiment parameters:

1.

2.

3.

4.

Figure 37 demonstrates the effect of genetic algorithm feature selection on power

Execution Trace Slice Sizes: 1000, 2000, 5000, 10000

Benchmarks: Basic Math, FFT, Dijkstra, Q-Sort

Feature Selection: Genetic Algorithm

Known Power-Affecting Features: With, Without

estimation accuracy for the Basic Math benchmark data.

70

71

Effect of Genetic Algorithm Feature Selection on Power Estimation Accuracy

Basic Math Benchmark

250
200

150
B With Genetic Algorithm

Feature Selection
B without Feature Selec-

l

0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Occurrence Count

o

Percent Error w.r.t. Absolute Power

Figure 37: Effect of GA Feature Selection on Basic Math Benchmark

In this figure, the power estimation accuracy is significantly higher when the genetic

algorithm feature selection is applied versus when it is not applied.

Figure 38, as with figure 37, demonstrates the effect of genetic algorithm feature selection
on power estimation accuracy. However this figure demonstrates the effect for the Fast

Fourier Transform benchmark data.

72

Effect of Evolutionary Feature Selection on Power Estimation Accuracy

Fast Fourier Transform Benchmark

250

200
= 150
5 B With Evolutionary Fea-
8 ture Selection
§ B without Feature Selec-
ut) 100 tion
5
(&)
[&)
(@]

50 '
o = |
0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Percent Error w.r.t. Absolute Power

Figure 38: Effect of GA Feature Selection on Fast Fourier Transform Benchmark

In this figure, the advantage of the genetic algorithm feature selection is unclear. The
trend from percent error range to percent error range does not give any indication of

evolutionary feature selection providing an advantage in power estimation accuracy.

Figure 39 demonstrates the effect of genetic algorithm feature selection on power

estimation accuracy for the Q-Sort benchmark.

73

Effect of Genetic Algorithm Feature Selection on Power Estimation Accuracy

Q-Sort Benchmark
160

140

120

100
B With Genetic Algorithm
80 Feature Selection
B without Feature Selec-
tion
6
4
2 L I_
0 ==

0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Occurrence Count
o

o

o

Percent Error w.r.t. Absolute Power

Figure 39: Effect of GA Feature Selection on Q-Sort Benchmark

In this figure, as with figure 37, the power estimation accuracy is significantly higher

when the genetic algorithm feature selection is applied.

5.3.3 Known Power-Affecting Features

This set of experiments measures the effect of including the known power affecting
features on power estimation accuracy after feature selection has been applied. Two sets
of results are displayed for each figure: power estimation accuracy yielded from including
the known power-affecting features in the complete feature set, and power estimation

accuracy yielded from excluding the known power-affecting features from the complete

74

feature set.

The experiments are run using the following parameters:

1. ISODATA and Genetic Algorithm parameters:

1. ISODATA k-Max Values: 10, 20, 50, 100, 200, 500, 1000

2. ISODATA Termination Condition: 0.3

3. ISODATA Max Iterations: 50

4. ISODATA Merge Condition: 1.0

5. ISODATA Split Condition: 1.0

6. Genetic Algorithm Termination Condition: 0.3

7. Genetic Algorithm Max Iterations: 50

8. Percent of Features Selected: T5%

2. Experiment parameters:

1. Execution Trace Slice Sizes: 1000, 2000, 5000, 10000

2. Benchmarks: Basic Math, FFT, Dijkstra, Q-Sort

3. Feature Selection: No Feature Selection

4. Known Power-Affecting Features: With, Without

Figure 40 demonstrates the effect of power affecting features on power estimation

accuracy, when included in the clustering and feature selection process, for slice sizes of

75

1000.
Effect of Power Affecting Features on Power Estimation % Error
All Benchmarks, Slice Size: 1000

180

160

140

120
% 100 B Power Affecting Fea-
(@) tures
3 B No Power Affecting
c 80
o Features
5
Cc)‘% 60

40

20 l

0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Percent Error w.r.t. Absolute Power

Figure 40: Effect of Power Affecting Features, Slice Size 1000

In this figure, determining whether or not power-affecting features result in higher power

estimation accuracy is unclear for slice sizes of 1000.

Figure 41 demonstrates the effect of power affecting features on power estimation

accuracy for slice sizes of 2000.

Effect of Power Affecting Features on Power Estimation % Error

All Benchmarks, Slice Size: 2000
250

200

150
B Power Affecting Fea-

tures
B No Power Affecting

100 Features
50 l
o mll mill . I L

0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Occurrence Count

Percent Error w.r.t. Absolute Power

Figure 41: Effect of Power Affecting Features, Slice Size 2000

In this figure, as with figure 40, determining whether or not power-affecting features

result in higher power estimation accuracy is unclear for slice sizes of 2000.

Figure 42 demonstrates the effect of power affecting features on power estimation

accuracy for slice sizes of 5000.

76

71

Effect of Power Affecting Features on Power Estimation % Error

All Benchmarks, Slice Size: 5000
160

140

120

100
B Power Affecting Fea-
5 tures
B No Power Affecting
Features
6
4
2 i
o M= lim L

0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Occurrence Count
o o

o

o

Percent Error w.r.t. Absolute Power

Figure 42: Effect of Power Affecting Features, Slice Size 5000

The inclusion of power-affecting features in the complete feature set consistently results

in greater power estimation accuracy for slice sizes of 5000.

Figure 43 demonstrates the effect of power affecting features on power estimation

accuracy.

78

Effect of Power Affecting Features on Power Estimation % Error

All Benchmarks, Slice Size: 10000
180

160
140

120

100 B Power Affecting Fea-

tures

8 B No Power Affecting
Features

6

4

2

—

0.02% 0.10% 0.50% 2.00% 10.00%
0.01% 0.05% 0.20% 1.00% 5.00% More

Occurrence Count
o o o

o

Percent Error w.r.t. Absolute Power

Figure 43: Effect of Power Affecting Features, Slice Size 10000

Similar to figure 42, figure 43 demonstrates that the inclusion of power-affecting features

also results in greater power estimation accuracy for slice sizes of 10000.

6. ANALYSIS OF RESULTS

The following subsections analyze the results returned from the experimentation.

6.1 Algorithm Calibration and Evaluation

The following subsections are the results returned from the calibration and evaluation

experiments.

6.1.1 Feature Selection Algorithm Evaluation

The exhaustive feature selection algorithm evaluates every possible feature subset, hence
the large gap between the best and worst cluster qualities. Increasing feature subset sizes
result in a factorial growth in the number of feature subsets evaluated, thus this gap
rapidly grows in the first few feature subset sizes. However, the gap does not shrink
symmetrically at the tail end of the feature subset sizes, as the clustering now must

contend with many less-relevant features in the data set.

Beyond a certain feature subset size, adding a feature to the data does not effect the
cluster quality in a significant way. In other words, there are a certain number of relevant

features within the entire feature set, and all or most of those features have already been

79

80
discovered by feature selection. Thus, the addition of less relevant features at larger
subset sizes should not effect the cluster quality significantly. Also, the increasing
dimensionality of the data limits the optimization potential on the k-centroids, reducing

any potential gains in cluster quality.

Rapidly decreasing cluster quality up to a certain subset size indicates the discovery of
the minimal feature subset size, i.e. the feature subset size which contains only the most
relevant features. The high cluster qualities achieved by feature selection at very low
subset sizes do not correlate with the power estimation accuracy yielded at these subset
sizes. Reducing the feature subset size too far eliminates relevant features, which results

in less accurate power estimations.

6.1.2 Exhaustive Search Versus Genetic Algorithm Search

The cluster quality for exhaustive feature selection is consistently higher than the genetic
algorithm feature selection in every case, except for the Q-Sort benchmark at slice size
2000. Exhaustive feature selection may not always return the best cluster quality, as the
ISODATA algorithm is non-deterministic in its random initialization of the kK means.
However, the overwhelming majority of the cases demonstrate exhaustive feature
selection resulting in the best cluster quality. These results are not surprising, given that
the exhaustive feature selection searches all feature subsets, whereas the genetic algorithm

only searches through some of them.

81

6.2 Affecting Factors of Power Estimation Accuracy

The following sections are the results returned from the experiments which demonstrate

the factors that affect power estimation accuracy.

6.2.1 ASTD Slice Size

The experiment demonstrates cache warm-up having a greater effect on power estimation
accuracy as the slice size decreases. The power estimation percent error is very small
when compared to the power estimation percent error in other experiments. As such,
slice size does not have a significant effect on power estimation accuracy for the

experiments in our research.

6.2.2 ISODATA Slice Selection

The use of the ISODATA algorithm to determine representative slices significantly
improves the accuracy of power estimation. The power estimation accuracy from the
ISODATA algorithm is consistently higher than the power estimation accuracy from

randomly selected representative slices.

6.2.3 Cluster Quality

Cluster quality has a small effect on power estimation accuracy for some of the
benchmark applications. The effect is smaller than expected, possibly due to the
dispersion metrics used in the ISODATA algorithm. Different dispersion metrics may
result in more significant correlation between cluster quality and power estimation

accuracy.

82

6.3 Verification of Hypotheses

These final subsections are the results returned from the calibration and evaluation

experiments.

6.3.1 ASTD Compression

This experiment successfully demonstrates the trade-off between lossy compression and
data integrity. In other words, a strong correlation is demonstrated between compression
(reduced system level simulation throughput) and power estimation accuracy. The
ISODATA algorithm thus yields a level of predictability in power estimation accuracy

given a particular compression ratio.

6.3.2 Genetic Algorithm Feature Selection

This experiment successfully demonstrates that the genetic algorithm feature selection
significantly improves the accuracy of power estimation for most of the benchmark tests.
Most of the experiments demonstrated gains in power estimation accuracy from applying

genetic algorithm feature selection.

6.3.3 Known Power-Affecting Features

Some of the slice sizes for the benchmarks demonstrated an improvement in power
estimation accuracy by including the known set of power-affecting features. However, no
observable trend is identified in order to determine why the improvement only occurs for
some slices and not others. The reason for this may be specific to each benchmark's

ASTD or to the result of slicing the ASTD into different sizes.

7. CONCLUSIONS

This thesis attempts to reduce system level simulation throughput while maintaining
power estimation accuracy. Cluster analysis is used to identify similar ASTD slices
generated from an architecture simulation of a benchmark test. Instruction stream slices
which correspond to ASTD slice representatives of each cluster are run through system
level simulation, returning the power estimation for each slice. These power estimations
are multiplied by the number of slices in each cluster and then summed, according to
equation 1, resulting in an approximation of the power estimation otherwise returned by
simulating the entire benchmark test at the system level. Feature selection allows for
further gains in power estimation accuracy by eliminating the less relevant features from
the data set. Additional gains are made by prioritizing feature selection towards the
features which are known to affect power. These three operations: cluster analysis,

feature selection, and use of known power-affecting features form the three hypotheses.

The experiments are designed to verify the effectiveness of using cluster analysis, feature
selection, and selection of known power-affecting features. The first category of

experiments calibrate the algorithms and evaluate the feature selection algorithms. The

83

84
second category explores various factors which may affect power estimation accuracy.
The third category is designed to directly verify the effectiveness of cluster analysis,
feature selection, and use of known power affecting features. The results from these
experiments align with expectations, and the overall results from the third category

appear successful in verifying the three hypotheses.

The ISODATA algorithm is demonstrated as effective in selecting representative slices,
resulting in accurate power estimation, for a number of reasons. The ISODATA
algorithm results in greater power estimation accuracy than randomly selected
representative ASTD slices. The ISODATA algorithm also results in increased power
estimation accuracy as ASTD compression decreases. Power estimation accuracy
achieved using the ISODATA algorithm conforms to the classic trade-off between lossy

data compression and data integrity.

Feature selection is effective in further increasing the power estimation accuracy achieved
from using the ISODATA algorithm. Results for most of the benchmarks clearly indicate
the effectiveness of using feature selection. And finally, giving priority to the known
power-affecting features when selecting the feature subset results in increased power for
some some slice sizes, as these features are known to have the most significant bearing on
power consumption. For those particular slice sizes, the results demonstrate that the
advantage of using the known power-affecting features becomes significant for larger

slice sizes.

As stated previously, the methodology described in this thesis is evaluated based on the

three hypotheses:

1. The ISODATA algorithm is demonstrated as effective in achieving high power

estimation accuracy.

2. Feature selection is demonstrated to be effective in achieving further gains in

power estimation accuracy.

85

3. Prioritizing the use of power-affecting features results in greater power estimation

accuracy.

Given the outcome of the experimentation, the first two hypotheses are verified to be
successful in a majority of the experimental cases. The third hypothesis seems only
effective in specific instances. However, as many questions about the successes
demonstrated in experimentation inevitably arise, future work is required to further

evaluate the boundaries and parameters of such success.

7.1 Future Work

The primary interest in future work is using a system level microprocessor simulation
software to verify the results obtained within this thesis paper. The range of
experimentation demonstrated in this paper provides a basis for further narrowing the
focus of experimentation with system level simulation software, provided that the

heuristic power estimation equation (Sunwoo et al., 2007) for estimating power using

86
architecture level simulation is reasonably accurate. Use of the system level simulation
software would also provide insight on the practicality of our methodology with respect

to time.

Other interesting applications for future work are in other heuristics and information
theoretic methods as alternatives to the genetic algorithm feature selection and the
ISODATA clustering algorithm. Other methods may result in improved feature selection,
increased cluster quality, increased power estimation accuracy, and reductions in the time
required for feature selection and cluster analysis. The methodology described in this
paper is not dependent on any particular type of feature selection or cluster analysis
algorithm. As such, many other algorithms could be substituted for those used in this

thesis paper.

Research goals other than fast and accurate power estimation could also benefit from
cluster analysis and feature selection. The methodology in this paper could be modified
to apply to similar problems, such as the program similarity problem looked at by Joshi et
al. (2006). It could also be modified to apply to a completely different field of research

where data classification is necessary.

BIBLIOGRAPHY

Armstrong, J. R., Woodruff, G. (1977). Simulation Techniques For Microprocessors. In
Proceedings of the 14th Conference on Design automation, 225-229.

Beatty, D. L., Bryant, R. E. (1994). Formally verifying a microprocessor using a
simulation methodology. In Proceedings of the 31" Annual Conference on Design
Automation, 596-602.

Brandolese, C., Fomacian, & W., Salice, F. (2000). An Instruction-Level Functionality-
based Energy Estimation Model for 32-bit Microprocessors. In Proceedings of
37™ Design Automation Conference, 346-350.

Chang, C. (1972) Dynamic Programming as Applied to Feature Selection In a Pattern
Recognition System, In Proceedings of the 3rd ACM Annual Conference, 166-171.

Cook, R. (2000). Detection of Influential Observations in Linear Regression.
Technometrics, 42, 65-68.

Downey, A., & Feitelson, D. (1999). The Elusive Goal of Workload Characterization,
ACM SIGMETRICS Performance Evaluation Review, 26, 14-29.

Freescale Semiconductor. (2010). ADL Project Release Directory. Retrieved from
Freescale Semiconductor website: http://opensource.freescale.com/fsl-oss-
projects/adl/.

Guyon, 1., Elisseeff, A. (2003). An Introduction to Variable and Feature Selection, In
Journal of Machine Learning Research, 3, 1157-1182.

Hennessy, J. L., Patterson, D. A. (2003). Computer Architecture: A Quantitative
Approach, Third Edition, Morgan Kaufmann Publishers, Inc. ISBN 1558605967.

Hsieh, C., Chen, L., Pedram, M. (2001). Microprocessor Power Analysis by Labeled

Simulation. In Proceedings of the Conference on Design, Automation, and Test in
Europe, 182-189.

87

88

Jain, A., Murty, M., Flynn, P., (1999) Data Clustering: A Review. ACM Computing
Surveys, 31, 264-323.

John, G., Kohavi, R., Pfleger, P. (1994). Irrelevant Features and the Subset Selection
Problem. In Proceedings of the 11" International Conference on Machine
Learning, 121-129.

John, L., Vasudevan, P., Sabarinathan, J. (1998). Workload Characterization: Motivation,

Goals, and Methodology. Workload Characterization: Methodology and Case
Studies, 3-14.

Joshi, A., Luo, Y., & John, L.K. (2007). Applying Statistical Sampling for Fast and
Efficient Simulation of Commercial Workloads. In /EEE Transactions on
Computers, 56, 1520-1533.

Joshi, A., Phansalkar, A., Eeckhout, L., & John, L.K (2006) Measuring Benchmark
Similarity Using Inherent Program Characteristics. In IEEE Transactions on
Computers, 55, 769-782.

Kahne, B. (2006). The ADL Trace Format: A Description of DAT Files, Freescale.

Kohavi, R., John, G. H. (1997). Wrappers for Feature Selection. In Artificial Intelligence,
36, 273-324.

Li, T., John, L. (2003). Run-time Modeling and Estimation of Operating System Power
Consumption, In Proceedings of the 31" ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, 160-171.

Luo, Y., Joshi, A., Phansalkar, A., John, L. K., & Ghosh, J. (2008). Analyzing and
Improving Clustering Based Sampling for Microprocessor Simulation. In
Proceedings of the 17" International Symposium on Computer Architecture and
High Performance Computing, 193-200.

Phansalkar, A., & John, L. (2006). Performance Prediction Based on Inherent Program
Similarity. In Proceedings of the 15" International Conference on Parallel
Architectures and Compilation Techniques, 114-122.

Ravi, S., Raghunathan, A., & Chakradhar, S. (2003). Efficient RTL Power Estimation
for Large Designs. In Proceedings of the 16™ International Conference on VLSI
Design, 431-439.

Rose, D.T. (2006). Data Mining Methods and Models. Wiley-1EEE Press.

89

Sherwood, T., Perelman, E., Hamerly, G., Calder, B. (2002). Automatically
Characterizing Large Scale Program Behavior. In Proceedings of the 10"
International Conference on Architectural Support for Programming Languages
and Operating Systems, 45-57.

Sherwood, W. (1977). Simulation hierarchy for microprocessor design. In Proceedings of
the Symposium on Design Automation and Microprocessors, 44-49.

Sunwoo, D., Al-Sukhni, H., Holt, J. (2007). Early Models for System-Level Power
Estimation. In Proceedings of the 8" International Workshop on Microprocessor

Test and Verification, 8-14.

Tan, T., Raghunathan, A., Lakshminarayana, G., & Jha, N. (2001). High-level Software
Energy Macro-modeling. In Proceedings of Design Automation Conference, 605-
610.

Ting, S., Dy, J. (2004). A Deterministic Method for Initializing K-Means Clustering. In
Proceedings of the 16™ International Conference on Tools with Artificial
Intelligence, 784-786.

Todi, T. (2001). SPEClite: Using Representative Samples to Reduce SPEC CPU2000
Workload. IEEE International Workshop on Workload Characterization, 15-23.

Wunderlich, R., Wenisch, T., Falsafi, B., & Hoe, J. (2003) SMARTS: Accelerating
Microarchitecture Simulation via Rigorous Statistical Sampling. In Proceedings
of 30" Annual International Symposium on Computer Architecture, 84-95.

Xi, J., Huang, Z., & Zhong, P. (2005). Energy Macro-Modeling of Embedded
Microprocessors Using SystemC. In Proceedings of IEEE International
Conference on Electro Information Technology, 1-6.

Zhang, Y., & Zhang, G. (2009). Fast Gate-level Simulation and Power for High
Performance Microprocessors. In Proceedings of the 4™ International Conference
on Computer Science & Education, 1155-1158.

Zhao, J., Wang, G., Wu, Z., Tang, H.,& Li, H. (2002) The Study on Technologies for
Feature Selection. In Proceedings of the 2™ International Conference on Machine
Learning and Cybernetics, 689-693.

VITA

Matthew Valdez Brock was born in Chicago, Illinois, on July 28" 1982, the son of
Beatrice Valdez Brock and Thomas William Brock. After completing his work at Tivy
High School, Kerrville, Texas, in 2001, he entered Texas Lutheran University. He
received the degree of Bachelor of Science from Texas Lutheran University in May 2005.
During the following years he was employed as a graduate research assistant at Los
Alamos National Laboratory in Los Alamos, New Mexico. In August 2005, he entered

the Graduate College of Texas State University-San Marcos.

Permanent Address: 2002 Sharon Ln., Apt. B
Austin, Texas 78703

This thesis was typed by Matthew V. Brock.

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Workload Characterization
	2.2 Microprocessor Modeling and Simulation
	2.3 Architecture and System Level Model Simulations
	2.4 Partitional Cluster Analysis
	2.4.1 K-Means
	2.4.2 ISODATA
	2.4.3 Cluster Dispersion Metrics

	2.5 Feature Selection
	2.5.1 Hill Climbing
	2.5.2 Genetic Algorithm

	2.6 Known Power-Affecting Features

	3. RELEVANT WORK
	4. METHODOLOGY
	4.1 Benchmark Applications
	4.2 Architecture Simulator
	4.3 Feature Extraction
	4.4 Feature Selection
	4.5 Cluster Analysis
	4.6 Power Estimation

	5. EXPERIMENTS
	5.1 Algorithm Calibration and Evaluation
	5.1.1 ISODATA Calibration
	5.1.2 Feature Selection Calibration
	5.1.3 Feature Selection Algorithm Evaluation
	5.1.3.1 The Exhaustive Search
	5.1.3.2 Genetic Algorithm
	5.1.3.3 Hill Climbing
	5.1.3.4 Small Feature Subset Sizes
	5.1.3.5 Exhaustive Search Versus Genetic Algorithm Search

	5.2 Affecting Factors of Power Estimation Accuracy
	5.2.1 ASTD Slice Size
	5.2.2 ISODATA Slice Selection
	5.2.3 Cluster Quality

	5.3 Verification of Hypotheses
	5.3.1 ASTD Compression
	5.3.2 Genetic Algorithm Feature Selection
	5.3.3 Known Power-Affecting Features

	6. ANALYSIS OF RESULTS
	6.1 Algorithm Calibration and Evaluation
	6.1.1 Feature Selection Algorithm Evaluation
	6.1.2 Exhaustive Search Versus Genetic Algorithm Search

	6.2 Affecting Factors of Power Estimation Accuracy
	6.2.1 ASTD Slice Size
	6.2.2 ISODATA Slice Selection
	6.2.3 Cluster Quality

	6.3 Verification of Hypotheses
	6.3.1 ASTD Compression
	6.3.2 Genetic Algorithm Feature Selection
	6.3.3 Known Power-Affecting Features

	7. CONCLUSIONS
	7.1 Future Work

	BIBLIOGRAPHY

