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MULTIPLICITY AND ASYMPTOTIC BEHAVIOR OF

SOLUTIONS TO FRACTIONAL FIGURE-KIRCHHOFF TYPE

PROBLEMS WITH CRITICAL SOBOLEV-HARDY EXPONENT

XIAOLU LIN, SHENZHOU ZHENG

Abstract. Let Ω ⊂ RN be a bounded domain with smooth boundary and
0 ∈ Ω. For 0 < s < 1, 1 ≤ r < q < p, 0 ≤ α < ps < N and a positive

parameter λ, we consider the fractional (p, q)-Laplacian problems involving a

critical Sobolev-Hardy exponent. This model comes from a nonlocal problem
of Kirchhoff type(
a+ b[u]

(θ−1)p
s,p

)
(−∆)spu+ (−∆)squ =

|u|p∗s(α)−2u

|x|α
+ λf(x)

|u|r−2u

|x|c
in Ω,

u = 0 in RN \ Ω,

where a, b > 0, c < sr + N(1 − r/p), θ ∈ (1, p∗s(α)/p) and p∗s(α) is critical
Sobolev-Hardy exponent. For a given suitable f(x), we prove that there are

least two nontrivial solutions for small λ, by way of the mountain pass theorem

and Ekeland’s variational principle. Furthermore, we prove that these two
solutions converge to two solutions of the limiting problem as a → 0+. For

the limiting problem, we show the existence of infinitely many solutions, and

the sequence tends to zero when λ belongs to a suitable range.

1. Introduction

Let 0 < s < 1, q < p < N
s and Bδ(x) = {y ∈ RN : |x − y| < δ}. The fractional

t-Laplacian (−∆)st with t ∈ {p, q} is defined (up to normalization factors) for any
x ∈ RN with

(−∆)stϕ = 2 lim
δ→0+

∫
RN\Bδ(x)

|ϕ(x)− ϕ(y)|t−2
(
ϕ(x)− ϕ(y)

)
|x− y|N+sp

dy ∀ϕ ∈ C∞0 (RN ).

For further details on the fractional p-Laplacian, we can refer to [17, 22] and the
references therein. Let Ω ⊂ RN be a bounded domain with smooth boundary and
0 ∈ Ω. In this paper, we prove the existence of multiple solutions for Kirchhoff type
problem of fractional (p, q)-Laplacian, with 0 ≤ α < sp and λ a positive parameter,(

a+ b[u](θ−1)p
s,p

)
(−∆)spu+ (−∆)squ =

|u|p∗s(α)−2u

|x|α
+ λf(x)

|u|r−2u

|x|c
in Ω,

u = 0 in RN \ Ω,

(1.1)
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where a, b > 0, r ∈ [1, q) is a constants, θ ∈ (1, p∗s(α)/p) with p∗s(α) = p(N−α)
N−sp ≤

p∗s(0) = p∗s is the so-called critical Hardy-Sobolev exponent.
Nonlocal fractional operators arise in a quite natural way in contexts, such as

optimization, continuum mechanics, phase transition phenomena, and game theory;
see [4, 5, 13, 17] and the references therein. As we know, for the classical setting of
s = 1, problem (1.1) reduces to a (p, q)-Laplacian elliptic problem of the form

−∆pu−∆qu = g(x, u) in Ω

u = 0 on ∂Ω,

where several and interesting results have been obtained by many authors [6, 7, 24,
25, 36]. For s = 1 and p = q = 2, He and Zou [21] proved the existence of infin-
itely many solutions to a singular elliptic problem involving critical Hardy-Sobolev
exponents. Subsequently, such a result has been extended to that of quasilinear
equations in [26]. For the setting of fractional p-Laplacian with p = q, Fiscella and
Mirzaee [20] established the existence of infinitely many solutions to the problem

(−∆)spu− µ
|u|p−2u

|x|ps
= λ
|u|q−2u

|x|a
+
|u|p∗s(b)−2u

|x|b
in Ω,

u = 0 in RN \ Ω.

In particular, we would like to mention that Ambrosio and Isernia [3] also obtained
the existence of infinitely many solutions to the fractional (p, q)-Laplacian problem
involving critical Hardy-Sobolev exponents. To this end, the main point in the
study of these problems is due to the lack of compactness caused by the presence
of the critical Hardy-Sobolev exponent.

On the other hand, great interest recently has been devoted to Kichhoff type
equations in the past decades. For example, Xie and Chen [33] presented a mul-
tiplicity result on the Kirchhoff-type problems in the bounded domain by using
the Nehari manifold, fibering maps and Ljusternik-Schnirelmann category. Xiang
et al.[32] recently generalized the above fractional p-Laplacian analysis with the
subscritical growth to the Kichhoff type problem(

a+ b
( ∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)θ−1
)

(−∆)spu = |u|p
∗
s(α)u+ λf(x) in RN ,

and they proved the existence of at least two different solutions to the above prob-
lem by way of a combination of mountain pass lemma and Ekeland variational
principle. It is a well-known fact that the Kirchhoff equation is related to the
following stationary analogue of equation

ρ
∂2u

∂t2
−
((p0

h
+

E

2L

) ∫ L

0

∣∣∂u
∂x

∣∣2dx)∂2u

∂x2
= 0,

where ρ, p0, h, E, L are the constants which represent some physical meanings, re-
spectively. This is an extension of the classical D’Alembert wave equation by con-
sidering the effect of changes in the length of strings during the vibrations. The
Kichhoff equation received much attention due to Lions’ seminal work [27] where
he proposed an abstract framework to this kind of problems, see also for example
[1, 11] and the references therein.

As a natural extension of the above papers, we are mainly interested in searching
multiplicity of solutions to Problem (1.1). Our main point is here a combination of
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fractional double-phase problems of (p, q)-Kichhoff problems and critical Sobolev-
Hardy exponents. To the best of our knowledge, there is only few papers deal with
fractional (p, q)-Kichhoff type problems with critical Sobolev-Hardy exponents and
Hardy term. Our main aim is in an effort to handle the multiplicity of solutions
to Problem (1.1) by comparison with the recent paper [3] regarding the existence
of solutions. Inspired by the papers in [34, 35], we additionally prefer to study
an asymptotic behavior of solutions to Problem (1.1). More precisely, we are to
show that there exists a sequence of many arbitrarily small solutions converging
to zero for the limit problem of (1.1) by using a new version of the symmetric
mountain-pass lemma due to Kajikiya [23].

Before stating our main results, let us recall some related notations and useful
facts. For 0 < s < 1, 1 < p <∞, we first recall some basic conclusions involved in
the fractional Sobolev spaceW s,p(RN ), for more details also see [8]. For u : RN → R
be a measurable function, we set[

u
]
s,p

=
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)1/p

.

Then the fractional Sobolev space is

W s,p(Ω) :=
{
u ∈ Lp(Ω) : u is a measurable function and [u]s,p <∞

}
with the norm∥∥u∥∥

s,p
=
(

[u]ps,p + |u|pp
)1/p

with
∣∣u∣∣

p
:=
(∫
RN

|u|pdx
)1/p

.

Note that the fractional Sobolev space X := W s,p
0 (Ω) = {u ∈ W s,p(Ω)|u = 0, x ∈

RN \ Ω} is equipped with the norm ‖ · ‖ = [·]s,p, which is a uniformly convex
Banach space. As mentioned in Section 2 below, we know that W s,p

0 (Ω) ⊂W s,q
0 (Ω)

for q ≤ p, which allows us to consider the problem (1.1) easily in X. We are now
to give the definition of weak solution to (1.1).

Definition 1.1. We say that u ∈ X is a weak solution of (1.1), if u satisfies(
a+ b‖u‖(θ−1)p

)
〈u, v〉s,p + 〈u, v〉s,q = 〈u, v〉Hα + λ

∫
Ω

f(x)
|u|r−2uv

|x|c
dx,

for all v ∈ X, where

〈u, v〉s,p =

∫∫
R2N

|u(x)− u(y)|p−2
(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|N+sp

dx dy,

〈u, v〉s,q =

∫∫
R2N

|u(x)− u(y)|q−2
(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|N+sq

dx dy,

〈u, v〉Hα =

∫
Ω

|u(x)|p∗s(α)−2u(x)v(x)

|x|α
dx.

The energy functional I : X→ R associated with problem (1.1) is

I(u) =
a

p
‖u‖p +

b

θp
‖u‖θp +

1

q
[u]qs,q −

1

p∗s(α)

∫
Ω

|u|p∗s(α)

|x|α
dx− λ

r

∫
Ω

f(x)
|u|r

|x|c
dx.

Let us now make a necessary assumption on the function f(x),

(A1) f ∈ L∞(Ω), and there are two positive constants ω1 and ω2 such that
0 < ω1 ≤ f(x) ≤ ω2 < +∞,∀x ∈ Ω.
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It is clear that we can employ the argument used in [31] to prove that I(u) is
well-defined and of the class C1(X, R). Moreover, we see that any solution of the
problem (1.1) is just a critical point of I(u). Therefore, we are now in a position
to state our first main results as follows.

Theorem 1.2. Assume that f(x) satisfies (A1). Then there exists a constant
λ∗ > 0 such that problem (1.1) has at least two nontrivial solutions u1 and u2

satisfying
I(u2) < 0 < I(u1), ∀λ ∈ (0, λ∗).

To show the existence of at least two critical points of the energy functional.
We use the mountain pass theorem (cf. [2]) to prove the existence of solution u1

with I(u1) > 0, and employ Ekeland variational principle (cf.[18]) to show the
second solution u2 with I(u2) < 0. Indeed, the techniques for finding the solutions
are partially borrowed from Cao, Li and Zhou’s work in [10]. Here, a key point
of proving Theorem 1.2 mainly stems from the critical nonlocal terms, where the
(PS)c condition is verified by the concentration-compactness lemma developed by
Fiscella [19] and Mosconi [28].

Furthermore, an asymptotic behavior of the solutions of Problem (1.1) obtained
by Theorem 1.2 is stated as follows.

Theorem 1.3. Let f(x) satisfy (A1). For λ ∈ (0, λ∗) and fixed b > 0, if u1
a and u2

a

are two solutions of (1.1) obtained in Theorem 1.2. Then u1
a → u1 and u2

a → u2

in X as a → 0+, where u1 6= u2, respectively, are two nontrivial solutions of the
problem

b[u](θ−1)p
s,p (−∆)spu+ (−∆)squ =

|u|p∗s(α)−2u

|x|α
+ λf(x)

|u|r−2u

|x|c
in Ω,

u = 0 in RN \ Ω.

(1.2)

Our approach of proving asymptotic behavior of the solutions for problem (1.1)
comes from the idea of the papers [30, 35]. By analyzing the convergence property
of u1

a and u2
a as a→ 0+, we derive Theorem 1.3. Finally, we state the existence of

infinitely many solutions of the problem (1.2).

Theorem 1.4. Let f(x) satisfy (A1). Then there exists a constant Λ > 0 such that
(1.2) has infinitely many solutions for any λ ∈ (0,Λ).

The idea to prove Theorem 1.4 is based on this argument developed by He and
Zou in [21], where the authors proved the existence of infinitely many solutions
by combining a variant of the fractional concentration-compactness lemma (cf. [19,
28]) and the symmetric mountain pass lemma (cf. [23]). Additionally, it is necessary
to introduce a truncated functional that allows us to apply the symmetric mountain
pass lemma in [23]. As its application of the above consequence, we know that the
critical points of the corresponding truncated functional are just the solutions of
the original problem (1.2). Finally, it is unavoidable that the presence of fractional
(p, q)-Laplacian operators makes our analysis more complicated so that we employ
a more delicate technique above to adapt our setting.

The rest of this paper is organized as follows. In Section 2, the variational
framework and some preliminaries are recalled. We devote Section 3 to show two
distinct nontrivial weak solutions for problem (1.1) by using the mountain pass
theorem and Ekeland variational principle. In Section 4, the concentration of the
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weak solutions is considered. Finally, we focus on the existence of infinitely many
solutions of the problem (1.2) based on the symmetric mountain pass theorem in
Section 5.

2. Preliminaries

We devote this section to state some related notation and useful facts. Let us
begin with recalling a few of elementary embedding inequalities.

Lemma 2.1 ([3]). For q ≤ p, the embedding W s,p
0 (Ω) ↪→ W s,q

0 (Ω) is continuous,
i.e., there exists a positive constant Cq such that

[u]s,q ≤ Cq[u]s,p for any u ∈W s,p
0 (Ω).

Lemma 2.2 (Hardy-Sobolev inequality, [12, 19]). For 0 ≤ α < ps, there exists a
positive constant Cα possibly depending only on N , p, s and α such that(∫

Ω

|u(x)|p
∗
s(α) dx

|x|α
)1/p∗s(α)

≤ Cα
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

(2.1)

for every u ∈ X.

Consequently, this fractional Hardy-Sobolev embedding relation X ↪→ Lp
∗
s(α)(Ω,

|x|−α) is continuous, but not compact. Further, the best Hardy-Sobolev constant
Hα is given by

Hα = inf
u∈W s,p

0 (Ω)\{0}

[u]ps,p
‖u‖pHα

with ‖u‖Hα :=
(∫

Ω

|u|p∗s(α)

|x|α
dx
) 1
p∗s (α)

.

We remark that the number Hα is strictly positive, and it coincides with the best
fractional Sobolev constant for α = 0. The following embedding results has been
proved in [12, 19].

Lemma 2.3. For 0 ≤ α < ps, let Ω ⊂ RN be a bounded domain with smooth

boundary, and 0 ∈ Ω. Then for any 1 ≤ r < p(N−α)
N−ps and µ < sr +N(1− r

p ), there

exists a constant Cr,c = C(N, s, α, r, c) > 0 such that∫
Ω

|u|r

|x|µ
dx ≤ Cr,c‖u‖rHα

for any u ∈ X. Moreover, the embedding X ↪→ Lr(Ω, |x|−µ) is compact.

In what follows, let us introduce the Brézis-Lieb type Lemma (cf. [3, Lemma
2.1]). We briefly prove it by a usual way due to the lack for the fractional Sobolev
version.

Lemma 2.4. If {un}n∈N is bounded in W s,p
0 (Ω), then, up to a subsequence, there

exists a function u in W s,p(Ω) such that un ⇀ u in W s,p(Ω) with

[un − u]ps,p = [un]ps,p − [u]ps,p + o(1), (2.2)

‖un − u‖
p∗s(α)
Hα = ‖un‖

p∗s(α)
Hα − ‖u‖p

∗
s(α)

Hα + o(1) (2.3)

Proof. Thanks to the Brézis-Lieb Lemma [9], we see that if {gn}n∈N ⊂ Lp(RN ) for
p ∈ (1,∞) is a bounded sequence such that gn → g a.e. in RN , then we have

|gn − g|pLp(RN )
= |gn|pLp(RN )

− |g|p
Lp(RN )

+ on(1).



6 X. LIN, S. ZHENG EJDE-2021/66

By taking

gn =
un(x)− un(y)

|x− y|
N+sp
p

and g =
u(x)− u(y)

|x− y|
N+sp
p

,

we find that

[un − u]ps,p = [un]ps,p − [u]ps,p + o(1),

which leads to the desired result (2.2). Similarly, we can obtain formula (2.3). �

Next, we recall the concentration-compactness principle for the version of frac-
tional p-Laplacian. The following definition can be found in [31].

Definition 2.5. Let M(RN ) denote the finite nonnegative Borel measure space
in RN . For µ ∈ M(RN ) with µ(RN ) = ‖µ‖0, we say that µn ⇀ µ weakly ∗ in
M(RN ), if (µn, η)→ (µ, η) holds for all η ∈ C0(RN ) as n→∞.

Let us recall the following fractional concentration-compactness lemma, see [19,
28].

Lemma 2.6. For 0 ≤ α < sp, let {un}n∈N ⊂ Ds,p(RN ) be a bounded sequence
satisfying

un ⇀ u ∈ Ds,p(RN );∫
RN

|un(x)− un(y)|p

|x− y|N+sp
dy ⇀ µ weakly* in M(RN );

|un|p
∗
s(α)|x|−α ⇀ ν weakly* in M(RN ).

Then there exist a countable sequence of points {xj}j∈J ⊂ RN , the families of
positive numbers {µj}j∈J and {νj}j∈J such that

ν =
|u|p∗s(α)

|x|α
+
∑
j∈J

νjδxj , µ ≥
∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dy +

∑
j∈J

µjδxj .

Moreover,

µj ≥ Hαν
p/p∗s(α)
j for all j ∈ J,

where δxj is the Dirac mass centered at xj.

Finally, the following proposition, which can be found in [32], is useful to our
main proofs.

Proposition 2.7. Assume that {un} ⊂ Ds,p(RN ) is the sequence given by Lemma
2.6. Let x0 ∈ RN be fixed point, and φ be a smooth cut-off function such that
0 ≤ φ ≤ 1, φ ≡ 0 for x ∈ Bc2(0), φ ≡ 1 for x ∈ B1(0) and |∇φ| ≤ 2. Then for any
ε > 0, we have

lim
ε→0

lim sup
n→∞

(∫∫
R2N

∣∣(φε,j(x)− φε,j(y)
)
un(x)

∣∣p
|x− y|N+ps

dx dy
)1/p

= 0,

where φε,j(x) = φ(
x−xj
ε ) for any x ∈ RN .
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3. Proof of Theorem 1.2

To show the existence of solutions for (1.1), let us recall the following general
mountain pass theorem (cf. [2]), which allows us to find a (PS)c sequence.

Theorem 3.1. Let E be a real Banach space, and J ∈ C1(E,R) with J(0) = 0.
Suppose that

(i) there exists ρ, δ > 0 such that J(u) ≥ δ for u ∈ E with ‖u‖E = ρ;
(ii) there exists e ∈ E satisfying ‖u‖E > ρ such that J(e) < 0.

Then, for Γ = {γ ∈ C1([0, 1] ;E) : γ(0) = 0, γ(1) = e} we have

c = inf
γ∈Γ

max
0≤t≤1

J
(
γ(t)

)
≥ δ,

and there exists a (PS)c sequence {un}n ⊂ E.

Before employing the mountain pass theorem to prove Theorem 1.2, we first
verify that the functional I possesses the mountain pass geometry (i) and (ii).

Lemma 3.2. Let f(·) satisfy Condition (A1). Then there exist λ0 > 0 and two
positive constants δλ and ρ such that I(u) ≥ δλ > 0 (independent of a), for any
u ∈ X with ‖u‖ = ρ and λ ∈ (0, λ0).

Proof. By (A1) and Lemma 2.3, for all u ∈ X we have∫
Ω

f(x)|x|−c|u|rdx ≤ ω2Cr,c

(∫
Ω

|u|p∗s(α)

|x|α
dx
)r/p∗s(α)

. (3.1)

Therefore,

I(u) ≥ b

θp
‖u‖θp − 1

p∗s(α)

∫
Ω

|u|p∗s(α)

|x|α
dx− λω2Cr,c

r

(∫
Ω

|u|p∗s(α)

|x|α
dx
)r/p∗s(α)

.

It follows from the definition of Hα that

I(u) ≥ b

θp
‖u‖θp − 1

p∗s(α)
H
−p∗s(α)/p
α [u]

p∗s(α)
s,p − λω2Cr,c

r
H−r/pα [u]rs,p

≥
( b
θp
‖u‖θp−r − 1

p∗s(α)
H
−p∗s(α)/p
α ‖u‖p

∗
s(α)−r − λω2Cr,c

r
H−r/pα

)
‖u‖r.

Let us define

g(t) :=
b

θp
tθp−r − 1

p∗s(α)
H
−p∗s(α)/p
α tp

∗
s(α)−r − λω2Cr,c

r
H−r/pα for all t ≥ 0.

It is easy to check that for t = t∗ =
(

bp∗s(α)(θp−r)
θpH

−p∗s (α)/p
α

(
p∗s(α)−r

)) 1
p∗s (α)−θp

one has

max
t≥0

g(t) =
b
(
p∗s(α)− θp

)
θp
(
p∗s(α)− r

)( bp∗s(α)(θp− r)
θpH

−p∗s(α)/p
α

(
p∗s(α)− r

)) θp−r
p∗s (α)−θp −λω2Cr,c

r
H−r/pα > 0,

provided that

0 < λ < λ0 =
bH

r/p
α r

(
p∗s(α)− θp

)
ω2Cr,cθp

(
p∗s(α)− r

)( bp∗s(α)(θp− r)
θpH

−p∗s(α)/p
α

(
p∗s(α)− r

)) θp−r
p∗s (α)−θp

.

Then the conclusion follows only by letting ρ = t∗ > 0 and δλ = g(ρ)ρr > 0. The
proof is complete. �
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Lemma 3.3. Let f(·) satisfy (A1). Then there exists a∗ > 0 such that for each
a ∈ (0, a∗), we have I(e) < 0 for some e ∈ X with ‖e‖ > ρ, where ρ > 0 is shown
as in Lemma 3.2.

Proof. Firstly, we notice that f(x) > 0 for a.e. x ∈ Ω due to Condition (A1). Let
us choose a function u0 ∈ X such that

‖u0‖ = 1 and
1

p∗s(α)

∫
Ω

|u0|p
∗
s(α)

|x|α
dx > 0.

Then

I(tu0) ≤ a

p
tp‖u0‖p +

b

θp
tθp‖u0‖θp +

1

q
tq[u0]qs,q −

1

p∗s(α)
tp

∗
s(α)

∫
Ω

|u0|p
∗
s(α)

|x|α
dx.

By considering q < p < θp < p∗s(α) we see that there exists t ≥ 1 large enough that
‖tu0‖ > ρ and I(tu0) < 0. The proof is proved by letting e = tu0. �

With Lemmas 3.2–3.3 and Theorem 3.1 in hand, the (PS)c sequence of the
functional I(u) at the level

c := inf
γ∈Γ

max
0≤t≤1

I
(
γ(t)

)
≥ δλ > 0

can be constructed, where the set of paths is defined by Γ = {γ ∈ C1([0, 1] ;X) :
γ(0) = 0, γ(1) = e}. In other words, there exists a sequence {un} ⊂ X such that

I(un)→ c I ′(un)→ 0 as n→∞.

Definition 3.4. A sequence {un}n ⊂ X is called a (PS)c sequence, if I(un) → c
and I ′(un) → 0. We say I satisfies (PS)c condition if any (PS)c sequence admits
a converging subsequence.

Lemma 3.5. Let f(·) satisfy (A1). If {un}n ⊂ X is a (PS) sequence, then there
exists C > 0 (independent of a and n) such that ‖un‖ ≤ C for every a ∈ (0, a∗).

Proof. Let {un}n∈N ⊂ X be a Palais-Smale sequence of I, that is to say,

I(un) = c+ o(1) and 〈I ′(un), un〉 = o(1)‖un‖ as n→∞. (3.2)

Taking into account (A1), 1 ≤ r < q < p and θ ∈ (1, p∗s(α)/p), we obtain

c+ o(1)‖un‖

= I(un)− 1

p∗s(α)
〈I ′(un), un〉

=
(a
p
− a

p∗s(α)

)
‖un‖p +

( b
θp
− b

p∗s(α)

)
‖un‖θp −

(1

r
− 1

p∗s(α)

)
λ

∫
Ω

f(x)
|u|r

|x|c
dx

≥
( b
θp
− b

p∗s(α)

)
‖un‖θp −

(1

r
− 1

p∗s(α)

)
λω2Cr,cH

−r/p
α ‖un‖r,

which implies that ‖un‖ ≤ C (independent of a) for all λ > 0 because θp > r. This
completes the proof. �

Lemma 3.6. Let f(·) satisfy (A1) and λ > 0. Then there exists a∗ > 0 such that,
for each a ∈ (0, a∗), I(·) satisfies the (PS)c condition in X for all

c <
( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0
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with

C0 =
(p∗s(α)− r)
p∗s(α)

(
ω2Cr,c

(1

r
− 1

θp

)( 1

θp
− 1

p∗s(α)

)−r)1/(p∗s(α)−r)
.

Proof. Since {un}n ⊂ X is bounded, up to a subsequence, there exists a function
u ∈ X such that un ⇀ u in X. Hence, in view of Lemma 2.6, there exist a countable
sequence of points {xj}j∈J ⊂ RN and the families of positive numbers {µj}j∈J ,
{νj}j∈J such that as n→∞ we have∫

RN

|un(x)− un(y)|p

|x− y|N+sp
dy ⇀ µ ≥

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dy +

∑
j∈J

µjδxj (3.3)

and

|un|p
∗
s(α)|x|−α ⇀ ν = |u|p

∗
s(α)|x|−α +

∑
j∈J

νjδxj (3.4)

in the sense of measure, where δxj is the Dirac measure concentrated at xj . More-
over,

µj ≥ Hαν
p

p∗s (α)

j for all j ∈ J. (3.5)

Next, we prove that νj = 0 for all j ∈ J . To this end, let xj be a singular

point of the measures µ, ν, and m(‖un‖) :=
(
a+ b‖un‖(θ−1)p

)
. We define a cut-off

function φε,j(x) := φ
(x−xj

ε

)
, where φ ∈ C∞0 (Ω) is such that 0 ≤ φ(x) ≤ 1, φ(x) = 1

in B1(0), φ(x) = 0 in RN \ B2(0) and |∇φ(x)| ≤ 2
ε . Obviously, {φε,jun}n∈N is

bounded in X. It follows from 〈I ′(un), φε,jun〉 → 0 that

m(‖un‖)
∫∫

R2N

|un(x)− un(y)|p−2
(
un(x)− un(y)

)(
φε,j(x)− φε,j(y)

)
un(x)

|x− y|N+ps
dx dy

+

∫∫
R2N

|un(x)− un(y)|q−2
(
un(x)− un(y)

)(
φε,j(x)− φε,j(y)

)
un(x)

|x− y|N+qs
dx dy

+m(‖un‖)
∫∫

R2N

|un(x)− un(y)|p

|x− y|N+ps
φε,j(x) dx dy (3.6)

+

∫∫
R2N

|un(x)− un(y)|q

|x− y|N+qs
φε,j(x) dx dy

=

∫
Ω

|un(x)|p∗s(α)φε,j(x)

|x|α
dx+ λ

∫
Ω

f(x)
|un(x)|rφε,j(x)

|x|c
dx+ o(1).

To the first term on the left hand side of the above formula (3.6), according to
Proposition 2.7 we have

lim
ε→0

lim sup
n→∞

(∫∫
R2N

∣∣(ϕε,j(x)− ϕε,j(y)
)
un(x)

∣∣p
|x− y|N+ps

dx dy
)1/p

= 0.

By employing Hölder’s inequality we obtain∣∣∣m(‖un‖)
∫∫

R2N

|un(x)− un(y)|p−2
(
un(x)− un(y)

)(
φε,j(x)− φε,j(y)

)
un(x)

|x− y|N+ps
dx dy

∣∣∣
≤ C

(∫∫
R2N

∣∣un(x)− un(y)
∣∣p

|x− y|N+ps
dx dy

)1− 1
p

×
(∫∫

R2N

∣∣(ϕε,j(x)− ϕε,j(y)
)
un(x)

∣∣p
|x− y|N+ps

dx dy
)1/p

(3.7)
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≤ C
(∫∫

R2N

∣∣(ϕε,j(x)− ϕε,j(y)
)
un(x)

∣∣p
|x− y|N+ps

dx dy
)1/p

→ 0 as ε→ 0, n→∞.

From the second term on the left-hand side of (3.6), similarly we obtain

lim
ε→0

lim
n→∞

∫∫
R2N

|un(x)− un(y)|q−2
(
un(x)− un(y)

)(
φε,j(x)− φε,j(y)

)
un(x)

|x− y|N+qs
dx dy

= 0. (3.8)

For the third term on the left hand side of (3.6), it follows from a > 0 and (3.3)
that

lim
ε→0

lim sup
n→∞

m(‖un‖)
∫∫

R2N

|un(x)− un(y)|p

|x− y|N+ps
φε,j(x) dx dy (3.9)

≥ lim
ε→0

lim sup
n→∞

b
(∫∫

R2N

|un(x)− un(y)|p

|x− y|N+ps
φε,j(x) dx dy

)θ
(3.10)

≥ lim
ε→0

b
(∫∫

R2N

|u(x)− u(y)|p

|x− y|N+ps
φε,j(x) dx dy + µj

)θ
= bµθj . (3.11)

In addition, by (3.4) we obtain that

lim
ε→0

lim
n→∞

∫
Ω

|un(x)|p∗s(α)

|x|α
φε,j(x) dx = lim

ε→0

∫
Ω

|u(x)|p∗s(α)

|x|α
φε,j(x) dx+νj = νj (3.12)

and

lim
ε→0

lim
n→∞

∫
Ω

f(x)
|un(x)|rφε,j(x)

|x|c
dx = lim

ε→0

∫
Ω

f(x)
|u(x)|rφε,j(x)

|x|c
dx = 0, (3.13)

where we used the fact that X ↪→ Lr(RN , |x|−c) is a compact embedding due to
Lemma 2.3.

Now let us put (3.7)–(3.13) into (3.6) to obtain that

νj ≥ bµθj .

Therefore, νj ≥ bµθj ≥ b
(
Hαν

p/p∗s(α)
j

)θ
in accordance with (3.5). This gives νj = 0

or νj ≥
(
bHθ

α

) p∗s (α)

p∗s (α)−θp .

Next we prove by contradiction that it is impossible for νj ≥
(
bHθ

α

) p∗s (α)

p∗s (α)−θp for
j ∈ J . Applying (A1), Lemma 2.6, (3.5) and Young’s inequality we obtain

c = lim
n→∞

(
I(un)− 1

θp
〈I ′(un), un〉

)
≥ lim
n→∞

(a
p
− a

θp

)
‖un‖p +

( 1

θp
− 1

p∗s(α)

) ∫
Ω

|un|p
∗
s(α)

|x|α
dx− λ

(1

r

− 1

θp

) ∫
Ω

f(x)
|un|r

|x|c
dx

≥
( 1

θp
− 1

p∗s(α)

)( ∫
Ω

|u|p∗s(α)

|x|α
dx+ νj

)
− λ

(1

r
− 1

θp

)
ω2Cr,c

(∫
Ω

|u|p∗s(α)

|x|α
dx
)r/p∗s(α)

≥
( 1

θp
− 1

p∗s(α)

)
νj − λ

p∗s (α)

p∗s (α)−r
(p∗s(α)− r)
p∗s(α)

×
(
ω2Cr,c(

1

r
− 1

θp
)(

1

θp
− 1

p∗s(α)
)−r
) 1

(p∗s (α)−r)
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≥
( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0,

which contradicts c <
(

1
θp −

1
p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0. Therefore νj = 0

for any j ∈ J , and then

lim
n→∞

∫
Ω

|un|p
∗
s(α)

|x|α
dx =

∫
Ω

|u|p∗s(α)

|x|α
dx.

Moreover, using the Proposition 2.4 (Brezis-Lieb Lemma), we have

lim
n→∞

∫
Ω

|un − u|p
∗
s(α)

|x|α
dx = 0. (3.14)

Finally, we show that un → u in X. Let {un} be a (PS)c sequence, then we
obtain

on(1) = 〈I ′(un)− I ′(u), un − u〉
= m(‖un‖)〈un, un − u〉s,p −m(‖un‖)〈u, un − u

〉
s,p

+
(
〈un, un − u〉s,q − 〈u, un − u〉s,q

)
+

∫
Ω

(
|un|p

∗
s(α)−2un − |u|p

∗
s(α)−2u

)(
un − u

)
|x|α

dx

+ λ

∫
Ω

f(x)

(
|un|r−2un − |u|r−2u

)(
un − u

)
|x|c

dx.

(3.15)

For the fourth term on the right-hand side of (3.15), we claim that

lim
n→∞

∫
Ω

(
|un|p

∗
s(α)−2un − |u|p

∗
s(α)−2u

)(
un − u

)
|x|α

dx = 0.

Indeed, since {un} is uniformly bounded in X, this means that there exists a sub-
sequence of {un} (still denoted by {un}) and u ∈ X such that

un ⇀ u in X and in Lp
∗
s(α)(Ω, |x|−α),

|un|p
∗
s(α)−2un ⇀ |u|p

∗
s(α)−2u in L

p∗s (α)

p∗s (α)−1 (Ω, |x|−α),

un → u a.e. in Ω,

|un|r−2un → |u|r−2u in L
r
r−1 (Ω, |x|−c)

(3.16)

as n→∞. This yields

lim
n→∞

∫
Ω

(
|un|p

∗
s(α)−2un − |u|p

∗
s(α)−2u

)(
un − u

)
|x|α

dx

=

∫
Ω

|un − u|p
∗
s(α)

|x|α
dx+ o(1),

(3.17)

which together with (3.14) implies

lim
n→∞

∫
Ω

(
|un|p

∗
s(α)−2un − |u|p

∗
s(α)−2u

)(
un − u

)
|x|α

dx = 0. (3.18)

For the last term on the right-hand side of (3.15), by (3.16) we have

lim
n→∞

∫
Ω

f(x)

(
|un|r−2un − |u|r−2u

)(
un − u

)
|x|c

dx = 0. (3.19)
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To estimate the third term on the right-hand side, let us recall the well-known
Simon inequalities:

|ξ − η|p

≤

{
C ′p
(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η) for p ≥ 2

C ′′p
[(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η)

]p/2(|ξ|p + |η|p
)(2−p)/2

for 1 < p < 2,

(3.20)

for all ξ, η ∈ RN , where C ′p and C ′′p are positive constants depending only on p.
Therefore, to the third term on the right hand side of (3.15), we obtain

〈un, un − u〉s,q − 〈u, un − u〉s,q ≥ 0. (3.21)

Let us now put (3.18), (3.19) and (3.21) into (3.15), which yields the inequality

o(1) ≥ m(‖un‖)
(
〈un, un − u〉s,p − 〈u, un − u〉s,p

)
+m(‖un‖)〈u, un − u〉s,p −m(‖un‖)〈u, un − u〉s,p.

(3.22)

Note that the {un}n is uniformly bounded which lead to that un ⇀ u in X, we
deduce that

lim
n→∞

m(‖un‖)〈u, un − u〉s,p = 0, lim
n→∞

m(‖un‖)〈u, un − u〉s,p = 0.

Hence

lim
n→∞

m(‖un‖)
(
〈un, un − u〉s,p − 〈u, un − u〉s,p

)
≤ 0.

This together with d := infn≥1 ‖un‖ > 0 and b > 0 yields

lim
n→∞

(
〈un, un − u〉s,p − 〈u, un − u〉s,p

)
≤ 0.

It remains to prove the strong convergence of {un} in X. To this end, we part it
in the settings of p > 2 and 1 < p < 2. For p > 2, it follows from (3.20) that

0 ≤ lim
n→∞

∫∫
R2N

∣∣(un(x)− un(y)
)
−
(
u(x)− u(y)

)∣∣p
|x− y|N+ps

dx dy

≤ C ′p lim
n→∞

(
〈un, un − u〉s,p − 〈u, un − u〉s,p

)
≤ 0

as n→∞. Hence un → u in X. For 1 < p < 2, by (3.20) we have

0 ≤ lim
n→∞

∫∫
R2N

∣∣(un(x)− un(y)
)
−
(
u(x)− u(y)

)∣∣p
|x− y|N+ps

dx dy

≤ C ′′p lim
n→∞

(
〈un, un − u〉s,p − 〈u, un − u〉s,p

)p/2
×
(∫∫

R2N

∣∣un(x)− un(y)
∣∣p +

∣∣u(x)− u(y)
∣∣p

|x− y|N+ps
dx dy

)(2−p)/2

≤ C lim
n→∞

(
〈un, un − u〉s,p − 〈u, un − u〉s,p

)p/2 ≤ 0

(3.23)

as n→∞. Hence un → u in X. In conclusion, we obtain un → u strongly in X as
n→∞.

Finally, we consider infn∈N ‖un‖ = 0. If 0 is an accumulation point of the
sequence {un}n, then there exists a subsequence of {un}n strongly converging
to u = 0, which leads to the desired result. If 0 is an isolated point of the se-
quence {un}n, then there exists a subsequence, still denoted by {un}n, such that
infn∈N ‖un‖ > 0, which was proved as above. This completes the proof. �
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Next, we show that the corresponding energy functional satisfies the Palais-Smale
condition at the levels less than( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0

by constructing sufficiently small mini-max levels, which is mainly inspired by the
reference [16]. By Lemma 2.1 and Condition (A1), we have

I(u) ≤ a

p
‖u‖p +

b

θp
‖u‖θp +

1

q
[u]qs,q −

1

p∗s(α)

∫
Ω

|x|−α|u|p
∗
s(α)dx

≤ a

p
‖u‖p +

b

θp
‖u‖θp +

C

q
‖u‖q − 1

p∗s(α)

∫
Ω

|x|−α|u|p
∗
s(α)dx

for all u ∈ X. Define the functional J(u) : X→ R by

J(u) =
a

p
‖u‖p +

b

θp
‖u‖θp +

C

q
‖u‖q − 1

p∗s(α)

∫
Ω

|x|−α|u|p
∗
s(α)dx.

Then I(u) ≤ J(u) for all u ∈ X. Hence it suffices to construct small mini-max levels
for J(u).

For any δ > 0, one can choose φδ ∈ C∞0 (RN ) with
∫

Ω
|x|−α|φδ|p

∗
s(α)dx = 1 and

suppφδ ⊂ Ω such that ‖φδ‖ < δ. Thus, for t ≥ 0 we have

J(tφδ) =
atp

p
δp +

btθp

θp
δθp +

Ctq

q
δq − tp

∗
s(α)

p∗s(α)
.

Then there exists t∗ > 0 such that

max
t≥0

J(tφδ) = J(t∗φδ) =
atp∗
p
δp +

btθp∗
θp

δθp +
Ctq∗
q
δq − t

p∗s(α)
∗

p∗s(α)

≤ a∗t
p
∗

p
δp +

btθp∗
θp

δθp +
Ctq∗
q
δq − t

p∗s(α)
∗

p∗s(α)
.

Let us take δ > 0 small enough such that

a∗t
p
∗

p
δp +

btθp∗
θp

δθp +
Ctq∗
q
δq − tp

∗
s(α)

p∗s(α)
<
( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0.

This leads to the following result.

Lemma 3.7. Under the assumption of Lemma 3.2, there exist a∗ > 0 and λ∗ > 0

such that for each a ∈ (0, a∗) and λ ∈ (0, λ∗), we have that φ̂δ ∈ X with ‖φ̂δ‖ > ρ,

I(φ̂δ) < 0 and

max
t∈[0,1]

I(tφ̂δ) ≤
( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0

Proof. It is obvious that there exists λ∗ ∈ (0, λ0) independent of a such that( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0 > 0 for any λ ∈ (0, λ∗).

Let φδ ∈ X be the function defined as above and choosing t̂ > 0 be such that

t̂‖φδ‖ > ρ and I(tφδ) < 0 for all t ≥ t̂. The result follows by letting φ̂δ = t̂φδ. �

Theorem 3.8. Let f(·) satisfy (A1). Then there exist a∗ > 0 and λ∗ > 0 such that
for each a ∈ (0, a∗) and λ ∈ (0, λ∗), Problem (1.1) has a nontrivial solution u1 in
X with I(u1) > 0.
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Proof. According to Lemma 3.7, we define

c = inf
y∈Γ

max
t∈[0,1]

I(tφ̂δ),

where Γ = {y ∈ C
(
[0, 1],X

)
: y(0) = 0 and y(1) = φ̂δ}.

By Lemma 3.2, we have 0 < δλ ≤ c <
(

1
θp −

1
p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0.

In view of Lemma 3.6, we know that I satisfies the (PS)c condition, and there
exists u1 ∈ X such that I ′(u1) = 0 and I(u1) = c for all λ ∈ (0, λ∗). Thus, u1 is a
solution of (1.1). �

Before give the second solution, we need to introduce the following important
proposition.

Proposition 3.9 (Ekeland variational principle, [18, Theorem 1.1]). Let V be a
complete metric space and F : V → R ∪ {+∞} be lower semicontiuous, bounded
from below. Then, for any ε > 0, there exists some point ν ∈ V with

F (ν) ≤ inf
V

+ ε, F (w) ≥ F (ν)− εd(ν, w) for all w ∈ V.

In the following, we set Bρ = {u ∈ X : ‖u‖ < ρ}, where ρ > 0 is given by Lemma
3.2.

Theorem 3.10. Let f(·) satisfy (A1). Then there exist a∗ > 0 and λ∗ > 0 such
that for each a ∈ (0, a∗) and λ ∈ (0, λ∗], Problem (1.1) has another nontrivial
solution u2 in X with I(u2) < 0.

Proof. Define c̃ = inf{I(u) : u ∈ Bρ}, we first claim that c̃ < 0. Indeed, by choosing
a nonnegative function ω0 ∈ C∞0 (RN ) we have

lim
τ→0

I(τω0)

τ r
= −λ

r

∫
Ω

f(x)|ω0|rdx < 0.

Therefore there exists a sufficiently small τ > 0 such that ‖τω0‖ ≤ ρ and I(τω0) <
0, which yields that c̃ < 0.

Considering Lemma 3.2 and the Ekeland variational principle yields that there
exists a sequence {un}n such that

c̃ ≤ I(un) ≤ c̃+
1

n
, (3.24)

I(ν) ≥ I(un)− ‖un − ν‖
n

(3.25)

for all ν ∈ Bρ.
Now we show that ‖un‖ < ρ for n sufficiently large. Arguing by contradiction,

we assume that ‖un‖ = ρ for any n ∈ N. By Lemma 3.2 we deduce that

I(un) ≥ δλ > 0.

This and (3.24) imply that c̃ ≥ δλ > 0, which contradicts c̃ < 0.
Next we prove that I ′(un)→ 0 in X∗. Set

ωn = un + τν, ∀ν ∈ B1 := {ν ∈ X : ‖ν‖ = 1},

where τ > 0 small enough that 0 < τ ≤ ρ− ‖un‖ for fixed n large. Then

‖ωn‖ = ‖un + τν‖ ≤ ‖un‖+ τ ≤ ρ,
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which means that ωn ∈ Bρ. Thus, it follows from (3.25) that

I(ωn) ≥ I(un)− 1

n
‖un − ωn‖,

or
I(un + τν)− I(un)

τ
≥ − 1

n
.

By letting τ → 0+, we obtain 〈I ′(un), ν〉 ≥ − 1
n for any fixed n large. Similarly, by

choosing τ < 0 such that |τ | small enough, let us repeat the process as above to
obtain

〈I ′(un), ν〉 ≤ 1

n
for any fixed n large.

We immediately conclude that

lim
n→∞

sup
ν∈B1

|〈I ′(un), ν〉| = 0,

which yields that I ′(un) → 0 in X∗ as n → ∞. Hence, {un}n is a (PS)c̃ sequence
for the functional I with c̃ < 0.

Taking λ∗ ∈ (0, λ∗] such that 0 <
(

1
θp −

1
p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ −λ
p∗s (α)

p∗s (α)−rC0 for all

λ ∈ (0, λ∗). We deduce from c̃ < 0 and Lemma 2.6 that there exists u2 such that
un → u2 in X. Then, we obtain a nontrivial solution u2 of (1.1) satisfying

I(u2) = c̃ < 0 and ‖u2‖ < ρ,

which completes the proof. �

Proof of Theorem 1.2. This proof follows immediately by the combination of The-
orem 3.8 and Theorem 3.10. �

4. Asymptotic behavior of solutions

We devote this section to proving the concentration of solutions for Problem
(1.1), which is stated by Theorem 1.2. Our main idea is motivated by the recent
papers [30, 35].

Proof of Theorem 1.3. For the sequence {an} with an → 0 as n→∞, let uin := uian
be the critical points of the energy functional I obtained in Theorem 1.2 for i = 1, 2,
that is to say,

I ′(u1
n) = 0, I(u1

n) = cn,

I ′(u2
n) = 0, I(u2

n) = c̃n.

It is clear that by Lemma 3.5 and an ∈ (0, a∗) there exists a constant C > 0
independent of an and n such that

‖uin‖ ≤ C for all n,

which shows that {uin}n are uniformly bounded in X. Passing to a subsequence if
necessary, we may assume that uin ⇀ ui weakly in X. Thanks to Lemma 3.6 we
immediately obtain that the sequence {uin}(i = 1, 2) contain strongly convergent
subsequences with

{cn, c̃n} <
( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0.
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We employ a similar proof as in Lemmas 3.2 and 3.7 to deduce that

0 < δλ ≤ cn ≤
( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0,

and obtain that c̃n < 0 with the same proof as Theorem 3.10. Hence there exists
subsequences still denoted by themselves, and ui ∈ X such that uin → ui in X as
a→ 0+ for i = 1, 2. Therefore, for all φ ∈ C∞0 (RN ), we have

0 = (a+ b‖uin‖(θ−1)p)

∫∫
R2N

|uin(x)− uin(y)|p−2(uin(x)− uin(y))(φ(x)− φ(y))

|x− y|N+ps
dx dy

+

∫∫
R2N

|uin(x)− uin(y)|q−2(uin(x)− uin(y))(φ(x)− φ(y))

|x− y|N+qs
dx dy

−
∫

Ω

|un(x)i|p∗s(α)−2uin(x)φ(x)

|x|α
dx− λ

∫
Ω

f(x)
|uin(x)|r−2uin(x)φ(x)

|x|c
dx

→ b‖ui‖(θ−1)p

∫∫
R2N

|ui(x)− ui(y)|p−2(ui(x)− ui(y))(φ(x)− φ(y))

|x− y|N+ps
dx dy

+

∫∫
R2N

|uin(x)− ui(y)|q−2(ui(x)− ui(y))(φ(x)− φ(y))

|x− y|N+qs
dx dy

−
∫

Ω

|ui(x)|p∗s(α)−2ui(x)φ(x)

|x|α
dx− λ

∫
Ω

f(x)
|ui(x)|r−2ui(x)φ(x)

|x|c
dx as b→ 0+.

This makes clear that ui ∈ X for i = 1, 2 are solutions of Problem 1.2. Moreover,
it follows from the constant δλ independent of a that

I(u2) < 0 < δλ ≤ I(u1),

which means that ui 6= 0 and u1 6= u2. The proof is complete. �

5. A sequence of arbitrarily small solutions

In this section we prove that Problem (1.2) admits a sequence of nontrivial
solutions {un}n∈N ⊂ X such that un → 0 as n → ∞ provided that λ belongs to a
suitable range. Let us recall some basic facts involved in the so-called Krasnoselskii
genus, which can be found in [14, 29]. For a symmetric group Z2 = {id,−id} and
E being a Banach space, we set

Γ :=
{
A ⊂ E \ {0} : A is closed and A = −A

}
.

Definition 5.1. For any A ∈ Γ, the Krasnoselskii genus of A is defined by

γ(A) := inf
{
κ : ∃φ ∈ C(A,Rκ \ {0}) and φ is odd

}
.

If such a κ does not exist, then we set γ(A) =∞.

By definition, it is obvious that γ(∅) = 0. Let Γk denote the family of closed
symmetric subsets A of E such that 0 /∈ A and γ(A) ≥ k. First of all, let us list
the following main properties of Krasnoselskii genus, see [14] or [23].

Proposition 5.2. Let A and B be closed symmetric subsets of E which do not
contain the origin. Then the following statements hold:

(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B).
(2) If A ⊂ B, then γ(A) ≤ γ(B).
(3) If there exists an odd homeomorphism from A to B, then γ(A) = γ(B).
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(4) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam
Theorem.

(5) If γ(B) <∞, then γ(A \B) ≥ γ(A)− γ(B).
(6) If A is compact, then γ(A) < ∞ and there exists δ > 0 and a closed and

symmetric neighborhood Nδ(A) = {x ∈ E : ‖x − A‖ ≤ δ} of A such that
γ(Nδ(A)) = γ(A).

The following version of the symmetric mountain pass lemma is form Kajikiya’s
work in [23].

Lemma 5.3. Let E be an infinite-dimensional Banach space. Suppose I ∈ C1(E,R)
satisfies the following conditions:

(1) I(u) is even, bounded from below with I(0) = 0, and I(u) satisfies the
local Palais-Smale condition, i.e. for some c∗ > 0, every sequence {uk}
in X satisfying limk→∞ I(uk) = c < c∗ and limk→∞ ‖I ′(uk)‖E∗ = 0 has a
convergent subsequence.

(2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak I(u) < 0.

Then either (i) or (ii) below holds.

(i) There exists a sequence {uk} such that I ′(uk) = 0, I(uk) < 0 and {uk}
converges to zero.

(ii) There exist two sequences {uk} and {νk} such that I ′(uk) = 0, I(uk) = 0,
uk 6= 0, limk→∞ uk = 0; I ′(νk) = 0, I(νk) < 0, limk→∞ I(νk) = 0 and {νk}
converges to a non-zero limit.

We denote by λ1 the first eigenvalue of (−∆)sp, that is,

λ1 := inf
u∈X\{0}

‖u‖p

|u|pLp(Ω)

.

By using Young’s inequality with ε = 1
λ1

, Condition (A1) and the definition of Hα,

we obtain that for any λ ∈ (0, λ1) it holds

I(u) ≥ b

θp
‖u‖θp − 1 + λεp∗s(α)

p∗s(α)
H
−p∗s(α)/p
α ‖u‖p

∗
s(α) − λb(ε)

(ω2Cr,c
r

) p∗s (α)

p∗s (α)−r

≥ b

θp
‖u‖θp − 1 + p∗s(α)

p∗s(α)
H
−p∗s(α)/p
α ‖u‖p

∗
s(α) − λb

( 1

λ1

)(ω2Cr,c
r

) p∗s (α)

p∗s (α)−r

= A‖u‖θp −B‖u‖p
∗
s(α) − λC

with

A :=
b

θp
, B :=

1 + p∗s(α)

p∗s(α)
H
−p∗s(α)/p
α , C := b

( 1

λ1

)(ω2Cr,c
r

) p∗s (α)

p∗s (α)−r .

Therefore, we let g(t) := Atθp − Btp∗s(α) − λC which leads to I(u) ≥ g(‖u‖). If we
select

λ∗1 := min
{
λ1,

A(p∗s(α)− θp)
Cp∗s(α)

( Aθp

Bp∗s(α)

) θp
p∗s (α)−θp

}
> 0,

we see that for any λ ∈ (0, λ∗1), the function g(t) achieves its positive maximum at

t1 =
(

Aθp
Bp∗s(α)

) 1
p∗s (α)−θp , which means that

M1 = g(t1) = max
t≥0

g(t) > 0.

Hence, it is clear that for anyM0 ∈ (0,M1) we can find t0 < t1 such that g(t0) = M0.
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To our aim, it necessary to introduce a suitable truncated functional related to
I(u) so that it satisfies the assumptions of Lemma 5.3. Let us first introduce the
function

β(t) :=


1 for 0 ≤ t ≤ t0;

Atθp−λC−M1

Btp
∗
s (α) for t ≥ t1;

C∞ & β(t) ∈ [0, 1] for t0 ≤ t ≤ t1.
Then, it is easy to check that β(t) ∈ [0, 1] and β(t) ∈ C∞. Let φ(u) := β(‖u‖) and
we consider the truncated functional Φ : X→ R defined as

Φ(u) =
b

θp
‖u‖p +

1

q
[u]qs,q −

φ(u)

p∗s(α)

∫
Ω

|u|p∗s(α)

|x|α
dx− λφ(u)

r

∫
Ω

f(x)
|u|r

|x|c
dx.

In the sequel, we check that Φ(u) satisfies the assumptions of Lemma 5.3. Obviously,

Φ(u) ≥ A‖u‖θp −Bφ(u)‖u‖p
∗
s(α) − λC := ḡ(‖u‖),

where ḡ(t) = Atθp −Bβ(t)tp
∗
s(α) − λC and

ḡ(t) =

{
g(t) if 0 ≤ t ≤ t0,
M1 if t ≥ t1.

By the construction of Φ, the definition of Hα and Lemma 3.6, we verify that Φ
enjoys the following properties.

Lemma 5.4. (i) Φ ∈ C1(X, R), Φ is even, and bounded from below.
(ii) If Φ(u) < M0, then ḡ(‖u‖) < M0, and Φ(u) = I(u) for ‖u‖ < t0.
(iii) There exists Λ such that for any λ ∈ (0,Λ), Φ satisfies a local Palais-Smale

condition for c < M0 ∈ (0,M2), where

M2 = min
{
M1,

( 1

θp
− 1

p∗s(α)

)(
bHθ

α

) p∗s (α)

p∗s (α)−pθ − λ
p∗s (α)

p∗s (α)−rC0

}
with C0 as in Lemma 3.6.

Lemma 5.5. Assume that (A1) holds. Then, for any k ∈ N, there exist δ = δ(k) >
0 such that γ

({
u ∈ X : Φ(u) ≤ −δ(k)

}
\ {0}

)
≥ k.

Proof. Let Ek be a k-dimensional subspace of X. Note that all norms in the finite
dimensional space Ek are equivalent, which yields that there exists αk > 0 such
that ∫

Ω

|x|−c|u|rdx ≥ αk‖u‖r ∀u ∈ Ek.

Therefore, for any u ∈ Ek with ‖u‖ = 1 and sufficiently small dk we have

Φ(dku) ≤ b

θp
dθpk +

C

q
dqk − λ

ω1

r

∫
Ω

|x|−c|u|rdx

≤ b

θp
dθpk +

C

q
dqk − λ

ω1αk
r

drk

:= −δ(k) < 0,

which means that
{
u ∈ Ek : ‖u‖ = dk

}
⊂
{
u ∈ X : Φ(u) ≤ −δ(k)

}
\ {0}. By

Proposition 5.2 (2) then we obtain that γ
({
u ∈ X : Φ(u) ≤ δ(k)

}
\ {0}

)
≥ γ

({
u ∈

X : ‖u‖ = dk
})

= γ(A). Since A = {u ∈ X : ‖u‖ = dk} is a sphere with radius
dk in Ek that is as a k-dimensional subspace of X, it leads to γ(A) = k because of
Proposition 5.2 (4). This completes the proof. �
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Finally, we are in the position to prove Theorem 1.4 by way of Lemma 5.3.

Proof of Theorem 1.4. Recall that Γk = {A ∈ X \ {0} : A is closed and A =
−A, γ(A) ≥ k} and define

ck = inf
A∈Γk

sup
u∈A

Φ(u).

By Lemma 5.4 (i) and Lemma 5.5, we know that −∞ < ck < 0. Therefore, the
assumptions (1) and (2) of Lemma 5.3 are satisfied. This means that Φ has a
sequence of solutions {un} converging to zero. Hence, Theorem 1.4 follows from
Lemma 5.4(ii). �
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