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ON THE φ0-STABILITY OF IMPULSIVE DYNAMIC SYSTEM ON
TIME SCALES

PEIGUANG WANG, MENG WU

Abstract. This paper concerns impulsive dynamic system on time scales. We

obtain sufficient conditions of the φ0-stability for such systems by employing

cone-valued Lyapunov functions.

1. Introduction

Dynamic systems with impulses have been subject of numerous investigations,
and are used as mathematical models of various real processes and phenomena in
physics, biology, control theory and so on, which during their evolutionary processes
experience an abrupt change of state at certain moments of time. Furthermore, the
theory of such systems is much richer than the corresponding theory of differential
systems without impulses. The past ten years have seen a significant development
in the theory of impulsive differential equations. For the basic theory and recent
developments, see the monograph [4] and references cited therein.

Recently, the stability theory of dynamic equations on time scales is emerging
as an important area of investigation since it demonstrates the interplay of the two
different theories, namely, the theories of continuous and discrete dynamic systems
[5]. However, the corresponding theory of such equations is still at an initial stage
of its development, especially the impulsive dynamic system on time scales. For
the various of stability problem, it is well known that the method of cone-valued
Lyapunov functions is beneficial in applications and circumvents the limitations of
the useful and well-known method of both the scalar and vector Lyapunov functions.
Lakshmikantham and Leela [6] introduced the concept of cone-valued Lyapunov
functions. Since then, Akpan [3], Akinyele [1], Akinyele and Adeyeye [2], Soliman
[8] investigated the stability and φ0-stability of the differential systems, impulsive
control systems, hybrid systems and perturbed impulsive systems by employing the
method of cone-valued Lyapunov functions. However, there are few results for the
stability of various of impulsive dynamic system on time scales [7]. In this paper,
utilizing the framework of the theory of dynamic systems on time scale, we establish
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new comparison results in terms of cone-valued Lyapunov functions and investigate
impulsive dynamic system on time scales relative to φ0-stability.

2. Preliminaries

Let T be a time scale (any subset of R with order and topological structure
defined in a canonical way) with t0 ≥ 0 as minimal element and no maximal element.
The basic concepts on time scales can be seen in [5].

Definition 2.1. The mapping g : T → X, where X is a Banach space, is called
rd-continuous if at each right-dense t ∈ T, it is continuous and at each left-dense t,
the left-sided limit g(t−) exists.

Definition 2.2. For each t ∈ T, let N be a neighborhood of t, Then, we define the
generalized derivative (or Dini derivative), D+u∆(t), to mean that, given ε > 0,
there exists a right neighborhood Nε ⊂ N of t such that

u(σ(t))− u(t)
µ(t, s)

< D+u∆(t) + ε, for s ∈ Nε, s > t, where µ(t, s) ≡ σ(t)− s.

When t is the right-scattered and u is continuous at t, we have, as in the case of
the derivative

D+u∆(t) =
u(σ(t))− u(t)

µ∗(t)
,

where µ∗(t) = σ(t)− t.

Definition 2.3. A proper subset K of Rn is called a cone if

(i) λK ⊆ K, λ ≥ 0;
(ii) K + K ⊆ K
(iii) K = K
(iv) K0 6= ∅
(v) K ∩ (−K) = {0},

where K and K0 denote the closure and interior of K, respectively, and ∂K denotes
the boundary of K. The order relation on Rn induced by the cone K is defined as
follows: x ≤K y iff y − x ∈ K and x <K0 y if and only if y − x ∈ K0.

Definition 2.4. The set K∗ = {φ ∈ Rn : (φ, x) ≥ 0, for all x ∈ K} is said to be
adjoint cone if it satisfies the properties (i)-(v).

x ∈ K0 if (φ, x) > 0,

and

x ∈ ∂k if (φ, x) = 0, for some φ ∈ K∗
0 , K0 = K − {0}.

Definition 2.5. A function g : D → Rn, D ∈ Rn is said to be quasimonotone
relative to K if x, y ∈ D and y − x ∈ ∂K implies that there exists φ0 ∈ K∗

0 such
that

(φ0, y − x) = 0 and (φ0, g(y)− g(x)) ≥ 0.
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3. Comparison results

Consider the impulsive dynamic system

x∆ = f(t, x), t ∈ T, t 6= tk,

x(t+) = x(t) + Ik(x), t = tk, k ∈ N
x(t+0 ) = x0, t0 ≥ 0,

(3.1)

under the following assumptions:
(i) 0 < t1 < t2 < · · · < tk < . . . , and limk→∞ tk = ∞
(ii) f ∈ Crd[T×Rn, Rn] is rd-continuous in (tk−1, tk]×Rn and for each x ∈ Rn,

k ∈ N, lim(t,y)→(t+k ,x) f(t, y) = f(t+k , x)
(iii) Ik ∈ Crd[Rn, Rn].
We will assume for the remainder of the paper that, for each k ∈ N, the points

of impulsive tk are right-dense. To define the solution of (3.1), we shall consider
the space

PC =
{

x : T → Rn : xk ∈ Crd[[tk−1, tk], Rn], k ∈ N and there exist

x(t−k ) and x(t+k ), k ∈ N with x(t−k ) = x(tk)
}

,

which is a Banach space with the norm

‖x‖PC = sup{|xk|, k = 0, 1, 2, . . . },

where xk is the restriction of x to [tk−1, tk], k ∈ N.

Definition 3.1. A function x ∈ PC ∩
⋃∞

k=1 Crd[(tk−1, tk), Rn] is said to be a
solution of (3.1), if it satisfies

x∆ = f(t, x) everywhere on T \ {tk}, k ∈ N,

and for each k ∈ N the function x satisfies the conditions x(t+k ) − x(t−k ) = Ik(xk)
and the initial condition x(t+0 ) = x0.

For ρ > 0, define S(ρ) = {x ∈ Rn : ‖x‖ < ρ}. Let V ∈ Crd[T×S(ρ),K]. Then V
is said to belong to the class V0 if V is locally Lipschitzian in x and rd-continuous
in (tk−1, tk]× S(ρ), and for each x ∈ S(ρ), k ∈ N, lim(t,y)→(t+k ,x) V (t, y) = V (t+k , x)
exists.

Following Definition 2.2, we say that V ∈ Crd[T×S(ρ),K], D+V ∆(t, x(t)) if for
each ε > 0, there exists a right neighborhood Nε ⊂ N of t such that

1
µ(t, s)

[V (σ(t), x(σ(t)))− V (s, x(σ(t)))− µ(t, s)f(t, x(t))] < D+V ∆(t, x(t)) + ε

for each s ∈ Nε, s > t. As before, if t is right-scattered and V (t, x(t)) is continuous
at t, this reduces to

D+V ∆(t, x(t)) =
V (σ(t), x(σ(t)))− V (t, x(t))

µ∗
.

Lemma 3.2 ([4]). Let m ∈ Crd[T, Rn] be a mapping that is differentiable for each
t ∈ T and that satisfies

m∆(t, x) ≤ g(t, m(t)), t ∈ T,
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where g ∈ Crd[T, Rn] and g(t, u)µ∗(t) be nondecreasing in u for each t ∈ T. Then
m(t0) ≤ u0 implies

m(t) ≤ r(t), t ∈ T,

where r(t) is the maximal solution of u∆ = g(t, u), u(t0) = u0 ≥ 0 existing on T.

Consider the comparison system

u∆ = g(t, u), t ∈ T, t 6= tk,

u(t+k ) = Jk(u(tk)), k ∈ N
u(t+0 ) = u0 ≥ 0.

(3.2)

Assume that
(i) g ∈ Crd[T × K, Rn], g is rd-continuous in (tk−1, tk] × K, K is a cone in

Rn, and for each u ∈ K, lim(t,v)→(t+k ,u) g(t, v) = g(t+k , u), g(t, u)µ∗(t) + u is
quasimonotone nondecreasing in u relative to K for each (t, u)

(ii) V ∈ Crd[T× S(ρ),K], V is locally Lipschitzian in x relative to K and

D+V ∆(t, x) ≤K g(t, V (t, x)), t 6= tk

(iii) Jk ∈ Crd[K, K], and Jk is quasimonotone nondecreasing relative to K such
that

V (t, x + Ik(x)) ≤K Jk(V (t, x)), t = tk.

Lemma 3.3. Assume (i)–(iii) above, and let r(t, t0, u0) be the maximal solution of
(3.2) existing on T. Then for any solution x(t) = x(t, t0, x0) of (3.1) which exists
on T, we have

V (t, x(t)) ≤K r(t, t0, u0) provided that V (t+0 , x0) ≤K u0.

Proof. Let x(t) = x(t, t0, x0) be the solution of (3.1) existing for t ≥ t0, t ∈ T, and
set m(t) = V (t, x(t)). Then by assumption (ii), it is easy to derive

D+m∆(t) ≤K g(t, m(t)).

For t ∈ [t0, t1], m(t0) = V (t0, x0) = u0. Then we get by Lemma 3.2

m(t) ≤K r0(t, t0, u0),

where r0(t, t0, u0) is the maximal solution of (3.2) with r0(t+0 , t0, u0) = u0. Since
J1(u) is quasimonotone nondecreasing relative to K, and by (iii),

m(t1) ≤K J1(m(t1)) ≤K r0(t1, t0, u0) = u+
1 ,

where u+
1 ≤ J1(r0(t1, t0, u0)). By (3), (3) and Lemma 3.2,

m(t) ≤K r1(t, t1, u+
1 ), t ∈ (t1, t2],

where r1(t, t1, u+
1 ) is the maximal solution of (3.2) with r1(t+1 , t1, u

+
1 ) = u+

1 . This
procedure can be repeated successively to arrive at

m(t) ≤K rk(t, tk, u+
k ), t ∈ (tk, tk+1],

where rk(t, tk, u+
k ) = u+

k for each k = 0, 1, 2, . . . . It is clear that m(t) ≤K u(t),
t ≥ t0 and m(t) ≤K r(t, t0, u0), t ≥ t0. Therefore,

V (t, x(t)) ≤K r(t, t0, u0), t ≥ t0, t ∈ T.

The proof is complete. �
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4. Main results

Definition 4.1. The trivial solution u = 0 of (3.2) is φ0-equistable if for each ε > 0
and t0 ∈ T, there exists a positive function δ = δ(t0, ε) that is rd-continuous in t0
for each ε such that for φ0 ∈ K∗

0

(φ0, u0) < δ implies (φ0, r(t)) < ε, t ≥ t0, t ∈ T.

In the above definition, and for the rest of this paper, r(t) denotes the maximal
solution of (3.2) relative to the cone K ⊆ Rn. Other φ0-stability concepts can be
similarly defined.

Definition 4.2. The trivial solution u = 0 of (3.2) is uniformly φ0-stable if δ in
Definition 4.1 is independent of t0.

Definition 4.3. The trivial solution u = 0 of (3.2) is φ0-equi-asymptotically stable
if it is φ0-equistable, and for each ε > 0, t0 ∈ T, there exist δ0 = δ0(t0) > 0 and
T = T (t0, ε) such that

(φ0, u0) < δ0 implies (φ0, r(t)) < ε, t ≥ t0 + T (t0, ε), t ∈ T.

Definition 4.4. The trivial solution u = 0 of (3.2) is uniformly φ0-asymptotically
stable if δ and T in Definition 4.3 is independent of t0.

Definition 4.5. A function a(r) is said to belong to the class κ if a ∈ Crd[R+, R+],
a(0) = 0, and a(r) is strictly monotone increasing function in r.

Next we discuss stability criteria for the trivial solution of (3.1) under the as-
sumptions

(iv) f(t, 0) = 0, g(t, 0) = 0, and for some φ0 ∈ K∗
o , (t, x) ∈ T× S(ρ),

b(‖x‖) ≤ (φ0, V (t, x)) ≤ a(‖x‖), a, b ∈ κ.

(v) There exists a ρo such that x ∈ S(ρ0) implies that x + Ik(x) ∈ S(ρ) for all
K.

Theorem 4.6. In addition to the hypothesis of Lemma 3.3, we assume that (iv), (v)
are satisfied. Then the φ0-stability properties of the trivial solution of the compari-
son system (3.2) imply the corresponding stability properties of the trivial solution
of (3.1).

Proof. Let ε ∈ (0, ρ0) and t0 ∈ T be given. Suppose that the trivial solution of
(3.2) is φ0-stable. Then given b(ε) > 0, and t0 ∈ T, there exists a δ∗ = δ∗(t0, ε) > 0
such that

(φ0, u0) < δ∗ implies (φ0, u(t, t0, u0)) < b(ε), t ∈ T
where u(t) = u(t, t0, u0) is any solution of (3.2). Choose δ = δ(t0, ε) > 0 such that

a(δ) < δ∗.

We claim that if ‖x0‖ < δ, then ‖x(t)‖ < ε, t ∈ T, where x(t) = x(t, t0, x0) is any
solution of (3.1). If this is not true, there would exist a t∗ ∈ T, t∗ > t0 such that
tk < t∗ ≤ tk+1 for some k, and a solution x(t) = x(t, t0, x0) of (3.1) satisfying

ε ≤ ‖x(t∗)‖ and ‖x(t)‖ < ε for t0 ≤ t ≤ tk. (4.1)

Since 0 < ε < ρ0, it follows from assumption (v) that ‖x+
k ‖ = ‖xk + Ik(xk)‖ < ρ.

Hence, we can find a t∗∗ ∈ (tk, t∗] such that ε ≤ ‖x(t∗∗)‖ < ρ. Setting m(t) =
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V (t, x(t)) for t0 ≤ t ≤ t∗∗ and using condition (ii), we get by Lemma 3.3, the
estimate

V (t, x(t)) ≤K r(t, t0, u0), t0 ≤ t ≤ t∗∗.

Now the relations (4), (4.1), (4) and the assumption (iv) yield

b(ε) ≤ b(‖x(t∗∗)‖) ≤ (φ0, V (t∗∗, x(t∗∗))) ≤ (φ0, r(t∗∗, t0, x0)) < b(ε),

since (φ0, u0) = (φ0, V (t0, x0)) ≤ a(‖x0‖) < a(δ) < δ∗ by (4). This contradiction
proves the claim. Thus the trivial solution of (3.1) is stable.

Now, suppose that the trivial solution of (3.2) is φ0-asymptotically stable. Let
ε ∈ (0, ρ0) be given. Then there exist δ∗ = δ∗(t0, ε) > 0 and T > 0 such that

(φ0, u0) < δ∗ implies (φ0, u(t, t0, u0)) < b(ε), t ∈ T, t ≥ t0 + T.

We assert that for any solution x(t) = x(t, t0, x0) of (3.1) with ‖x0‖ < δ, ‖x(t)‖ < ε,
t ≥ t0 + T , where δ is the same as (4). If this is not true, then there would exist a
solution x(t) of (3.1) and a divergent sequence {tn}, tn ≥ t0 +T , with the property
‖x(tn)‖ ≥ ε. Since we have

V (t, x(t)) ≤K r(t, t0, u0), t ≥ t0,

it follows that

b(ε) ≤ b(‖x(tn)‖) ≤ (φ0, V (tn, x(tn))) ≤ (φ0, r(tn, t0, x0)) < b(ε), t ≥ t0 + T,

which is a contradiction. Thus the trivial solution of system (3.1) is φ0-asymptotically
stable. The proof of other stability properties is similar. �

Corollary 4.7. The function g(t, u) = 0 is admissible in Theorem 4.6 to yield
uniform stability of the trivial solution of (3.1).

Corollary 4.8. The choice of the function g(t, u) = −c(t), c ∈ κ in Theorem 4.6
implies uniform asymptotic stability of the trivial solution of (3.1).

Proof. Uniform stability of (3.1) follows from Corollary 4.2. Then, set ε = ρ, for
some ρ > 0 and designate by δ0 = δ0(ρ) so that we have

x0 < δ implies ‖x(t)‖ < ρ, t ≥ t0, t ∈ T.

Setting

L(t, x(t)) = V (t, x(t)) +
∫ t

t0

c[V (s, x(s))]∆s,

we see that

D+L∆(t, x(t)) = D+V ∆(t, x) + c[V (t, x)] ≤ g(t, V (t, x)) + c[V (t, x)] = 0.

Then

L(t, x(t)) ≤ L(t0, x0) = V (t0, x0), t ≥ t0. (4.2)

Choose T = T (ε) > 0, for any given ε > 0, to satisfy T > a(δ0)/c[b(δ)], where
δ = δ(ε). Because of the trivial solution of (3.1) is uniformly φ0-stable, it is sufficient
to show that there exists a t∗ ∈ [t0, t0 + T ] such that ‖x(t∗)‖ < δ. If this is not
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true, we should have ‖x(t)‖ ≥ δ, t ∈ [t0, t0 + T ] and hence (φ0, V (t, x(t))) ≥ b(δ),
t ∈ [t0, t0 + T ]. It then follows from (4.2)

a(δ0) < Tc[b(δ)]

≤ (φ0, V (t0 + T, x(t0 + T ))) +
∫ t0+T

t0

(φ0, c[V (s, x(s))])∆s

≤ (φ0, V (t0, x0))

≤ a(‖x0‖) ≤ a(δ0),

which is a contradiction. The proof is complete. �
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