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ABSTRACT 
 

The amount of digital information generated each day is increasing at a very high 

rate. Our ability to understand and make sense of such large amounts of unstructured 

data depends on efficient and reliable methods to automate analysis and classification.  

Still and motion imagery make up a large part of this ever expanding digital universe 

and therefore methods that target images and video data are increasingly important.  

The field of image processing has grown to meet this demand and, in particular, 

techniques for recognizing objects are playing a central role in this field. 

 

Digital image processing is a continuum of processes and procedures.  This paper is 

concerned with mid-level image processing, involving segmentation of an image into 

regions or objects, description of those objects, as well as recognition, and 

classification of those objects.  Specifically, techniques and methods to recognize 

individual objects in images are investigated. 

 

The goal of this thesis is to address the problem of analyzing and matching image 

objects.  To achieve this goal, the use of statistical moments of the object signature is 

investigated.  An object signature is derived by taking the Euclidean distance from the 

centroid of the object to every pixel on the boundary of the object.  A relative 

frequency histogram is constructed from the object signature and then used to 

approximate a probability density function for the signature.  Statistical moments are 
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then applied to the histogram to generate a novel set of descriptors that are invariant 

to rotation, translation, and scaling.   

 

Existing techniques that utilize moments of the entire image are examined along with 

moments applied to just the object contour.  Additionally, the use of two-dimensional 

Fourier Descriptors applied to the object contour are considered as well as one-

dimensional Fourier Descriptors applied to the object signature.  Finally, moments 

applied directly to the object signature are investigated.  Experiments are performed 

to evaluate and compare these techniques with the method introduced in this work.  

Recognition accuracy as well as the quality of recognition are used to differentiate 

between the various techniques. 

 

The results of the experiments show the method introduced in this work, statistical 

moments of the histogram of the object signature, proves to be a viable alternative to 

the other methods discussed.  In particular, since only the center bin-values of the 

constructed histogram are used to calculate moments, the computational costs are 

orders of magnitude smaller than the computational cost of other methods considered 

in this thesis.  In addition, the effect of binning the data when constructing the 

histogram compensates for noise introduced by scaling and rotation, resulting in an 

improvement in the quality of recognition over several of the other methods 

investigated.  
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I. INTRODUCTION 
 
 

  
 The International Data Corporation estimates that by 2020, 40 zettabytes of 

digital information will have been generated.  With the increasing use of 

connected smart devices, embedded systems, and sensors, it is expected that most 

of that information will be in the form of unstructured data, such as video and 

images.  Consequently, there is an ever-growing need to automate the analysis of 

this type of data, i.e. still and motion imagery.  The use of computers to extract 

meaningful information from images and video is indispensable as we try to 

understand our digital universe.   

 The types of digital images generated today, range from electron 

microscopy of bacteria to “selfies” posted on Facebook.  They span an enormously 

large range of the electromagnetic spectrum, from gamma rays to radio waves, and 

processing these images involves different techniques and methods.  The science 

of Digital Image Processing has grown to meet this demand.   This paper focuses 

on methods to describe the constituent parts or objects of an image in a way that 

facilitates recognition and differentiation between them.  A good example of this 

process is the modern toll road.  Many newer toll roads no longer employ 

tollbooths but rather use cameras to take pictures of license plates.  The individual 

letters and numbers of the license plate are identified and a bill sent to the 

registered owner.  
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This thesis addresses the problem of analyzing and matching objects in 

images.  The proposed solution is to use moments of the histogram of the object 

signature.  Six experiments are performed.  The first experiment considers a set of 

seven moment-invariant descriptors.  The application of those descriptors to just 

the object contour is then examined.  Next, the use of two-dimensional Fourier 

descriptors applied to the object contour and one-dimensional Fourier descriptors 

applied to the object signature is investigated.  The use of mathematical moments 

to describe the object signature is considered and finally, taking moments of the 

histogram of the object signature is examined.  The accuracy of each method in 

recognizing image objects is compared along with the quality of that recognition.     

The hypothesis of this thesis is that taking moments of the histogram of the 

object signature is more efficient and more accurate than the other methods 

discussed for object recognition. 

The contribution of this research is a novel method for recognizing objects 

in images.  The method utilizes a minimum number of moments of the histogram 

of the object signature, and due to the fact that only the center bin-values of the 

histogram are used in calculating the moments, the number of computations 

required are orders of magnitude smaller, resulting in effective, accurate 

descriptors.  Whereas other authors have applied moments to the entire image or 

directly to the contour or the object signature, no one has investigated applying 

moments to the histogram of the object signature.           
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This paper is organized as follows: Chapter 2 gives an introduction to 

Digital Image Processing concepts and provides the necessary background for this 

research.  The object signature is defined along with histogram, mathematical 

moments, and Fourier descriptors.  Chapter 3 is a literature survey that describes 

the relevant research.  Chapter 4 outlines the experimental setup used to compare 

and evaluate the various methods and techniques for object recognition.  Chapter 5 

includes the results of the experiments and in Chapter 6 the results are analyzed.  

Chapter 7 presents a conclusion of our efforts and highlights future research.   
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II. BACKGROUND 

 

2.1 Image Processing  

Digital image processing is a continuum of processes and procedures.  

Lower level procedures are concerned with primitive operations designed for 

preprocessing the image.  Mid-level image processing involves segmentation of an 

image into regions or objects, description of those objects, recognition, and 

classification of individual objects.  At the highest level, processing consists of 

interpretation of recognized objects [1].  This paper is concerned with mid-level 

processing, specifically techniques and methods to recognize individual objects in 

a segmented image.        

2.1.1 Images 

An image is represented by a two-variable function, , where x and y 

are coordinates in the Cartesian plane. This function defines the intensity, or grey-

level, of the image at any pair of coordinates as follows:   

 𝐼𝐼 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) (1) 

If the quantities x, y, and I are all discrete, the image is a digital image.  A digital 

image is composed of a finite number of picture elements, or pixels, each with 

f x y( , )
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discrete location (x, y) and discrete intensity I.  In a binary image, the pixels only 

take on one of two values, for example zero or one [1].  In this thesis, only binary 

images are considered. 

2.1.2 Neighbors 

For pixels with coordinates (x, y), the set of 4-neighbors is defined to be the 

set of pixels with coordinates 

 {(𝑥𝑥 − 1,𝑦𝑦), (𝑥𝑥 + 1,𝑦𝑦), (𝑥𝑥,𝑦𝑦 + 1), (𝑥𝑥,𝑦𝑦 − 1)} (2) 

The set of 8-neighbors is the union of the 4-neighbors set with the set of pixels that 

have the following coordinates 

 {(𝑥𝑥 − 1,𝑦𝑦 − 1), (𝑥𝑥 + 1,𝑦𝑦 − 1), (𝑥𝑥 + 1,𝑦𝑦 + 1), (𝑥𝑥 + 1,𝑦𝑦 + 1)} (3) 

Figure 1 shows examples of 4-neighbor and 8-neighbor pixels.  

 

Figure 1: 4-Neighbor and 8-Neighbor Sets 
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2.1.3 Digital Path 

A digital path from pixel p with coordinates (𝑥𝑥, 𝑦𝑦)  to pixel 𝑞𝑞  with 

coordinates (𝑠𝑠, 𝑡𝑡) is a sequence of distinct pixels with coordinates 

 [(𝑥𝑥0, 𝑦𝑦0), (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)] (4) 

where (𝑥𝑥0,𝑦𝑦0) = (𝑥𝑥,𝑦𝑦), (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) = (𝑠𝑠, 𝑡𝑡) and the pixels (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) and (𝑥𝑥𝑖𝑖−1,𝑦𝑦𝑖𝑖−1) 

are neighbors for 1 ≤ 𝑖𝑖 ≤ 0.  

2.1.4 Connectivity 

Given an image subset S, the pixel p and pixel q are connected in S if there 

is a path from p to q that consists entirely of pixels in S.  For any pixel p in S, the 

set of all pixels connected to it in S are called a connected component of S.  If 

there is only one connected component in S, then it is a connected set [1]. 

2.1.5 Region 

A subset of pixels is a region if it is contiguous with uniform grey-level.  

That is, the pixels form a connected set and the variance in grey-levels among the 

pixels is small.  If two regions 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗 are adjacent, their union forms a 

connected set.  Regions that are not adjacent are considered disjoint [2,3]. 



7 
 

2.1.6 Contour 

The contour or boundary of a region is the set of pixels that belong to the 

region such that, for every pixel in the set, at least one of its neighbors is outside 

the region.  One way of representing the discrete objects contained in an image is 

by the set of pixels that make up their contours. 

2.1.7 Descriptor  

 A descriptor is a feature or set of features used to describe an object.  

Generally, the features are characteristics that can be quantified as a set of 

numbers (i.e. vectors in 𝑅𝑅𝑑𝑑).  These numbers are the elements of the descriptor’s 

feature vector.  Comparing feature vectors provides an alternative to directly 

comparing objects [14].  In object recognition, an effective descriptor is one that is 

invariant to scaling, translation, and rotation of the image.   

2.1.8 Segmentation 

Segmentation is the process of partitioning an image into disjoint connected 

sets of pixels.  Every image pixel is assigned membership to a set based on 

specific features of the pixels such as its grey-level.  Each set represents a region 

or object within the image.  Segmentation methods typically rely on one of two 

characteristics: discontinuity or similarity.  Generally, discontinuity refers to a 

significant difference in the intensity in grey-level between pixels.  In general, 
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similarity refers to low variance in grey-level.   Two commonly used methods for 

segmentation are image thresholding and clustering.  

2.1.8.1 Image Thresholding 

In image thresholding, pixels with a grey-level above a specific value are 

considered pixels of interest and assigned a value of 1.  All other pixels are 

considered background pixels and assigned a value of 0.  The result is a binary 

image.  Methods for determining the threshold value can be classified into two 

groups: global thresholding and local thresholding.  Global thresholding chooses 

one value that is applied to the entire image.  Analysis of the shape of the image 

histogram is used to determine the specific threshold value.  Local thresholding 

considers the neighbors of each pixel to determine the threshold for that specific 

value.     

2.1.8.2 Clustering-based Segmentation 

Clustering refers to a collection of techniques for grouping together patterns of 

data points into clusters based on a predefined similarity measure.  In clustering-

based segmentation, pixels are grouped together into regions where each of the 

pixels in the region are similar with respect to a certain characteristic such as 

color, texture, or intensity. 
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One example of clustering algorithms is the K-means algorithm. It takes the 

input parameter, k, and partitions a set of n objects into k clusters so the resulting 

intra-cluster similarity is high but the inter-cluster similarity is low.  Cluster 

similarity is measured in regard to the mean value of the objects in a cluster, which 

can be viewed as the cluster’s centroid [15].   Within the context of image 

processing, the algorithm is as follows   

1. Pick k cluster centers, either randomly or based on some heuristic  

2. Assign each pixel in the image to the cluster that minimizes the Euclidean 

distance between the pixel and the cluster center 

3. Re-compute the cluster centers 

4. Repeat steps 2 and 3 until no more changes occur or a maximum number of 

iterations is exceeded.   

2.1.9 Connected Component Labeling 

 Connected Component Labeling (CCL) involves grouping image pixels 

into subsets of connected pixels.  The goal of CCL is to find all the connected 

components of an image and mark each with a distinctive label.   
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2.2 Histogram 

 A frequency distribution is a function showing the number of times a 

variable takes on a value for each possible value.  A frequency histogram is a 

graphical representation of a frequency distribution.  The histogram is constructed 

by first dividing or binning the range of variables into intervals.  A rectangle is 

placed over each interval with a height equal to the number of times a variable 

takes on a value that falls within that interval.  For example, given a finite set of n 

data points [𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑛𝑛] where each 𝑧𝑧𝑖𝑖 represents an independent measurement, 

it is possible to define an interval 𝐿𝐿 = [𝑎𝑎, 𝑏𝑏] such that  

 𝑎𝑎 < 𝑚𝑚𝑚𝑚𝑚𝑚 𝑧𝑧𝑖𝑖 < max  𝑧𝑧𝑖𝑖  < 𝑏𝑏 (5) 

The interval L can then be divided into m number of disjoint sub-intervals, or 

“bins”, each of width 

 𝑤𝑤 = (𝑏𝑏 − 𝑎𝑎)/𝑚𝑚 (6) 

The interval of each 𝑗𝑗𝑡𝑡ℎ bin is therefore defined as 

 𝐵𝐵𝑗𝑗 = (𝑎𝑎 + (𝑗𝑗 − 1)𝑤𝑤,𝑎𝑎 + 𝑗𝑗𝑗𝑗] (7) 

If 𝑛𝑛𝑗𝑗 is equal to the number of measurements that fall in bin 𝐵𝐵𝑗𝑗, the result is a 

frequency distribution.  A frequency histogram is constructed by subdividing the 

horizontal axis of measurement into bins of width w, and placing a rectangle over 



11 
 

each 𝑗𝑗𝑡𝑡ℎ bin with a height equal to 𝑛𝑛𝑗𝑗.  Figure 2 shows an example of frequency 

histogram.   

 

 

 

Figure 2: Example Frequency Histogram 
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The percentage of total measurements in each bin is shown by replacing 𝑛𝑛𝑗𝑗 

with 𝑝𝑝𝑗𝑗 =  𝑛𝑛𝑗𝑗 𝑛𝑛⁄ .   The result is a relative frequency histogram that shows the 

percentage of total measurements in each bin.  A relative frequency histogram 

differs from a frequency histogram only in that the rectangle over each 𝑗𝑗𝑡𝑡ℎ bin 

must have a height equal to 𝑝𝑝𝑗𝑗.    

The probability density function (PDF) is a function that gives the 

probability that a particular measurement has a certain value.  A discrete random 

variable is a variable that can assume only finite (or countably infinite) number of 

values [8].  Using those two concepts, the relative frequency histogram can be 

used to estimate the PDF for a set of measurements.  If the center value for the 𝑗𝑗𝑡𝑡ℎ 

bin is defined as follows 

 𝑣𝑣𝑗𝑗 =  (𝐵𝐵𝑗𝑗+1 − 𝐵𝐵𝑗𝑗) 2⁄  (8) 

then the center values of the bins can be considered to be a discrete random 

variable.  It is then possible to define the probability for each bin as follows  

 𝑝𝑝�𝑣𝑣𝑗𝑗� = 𝑛𝑛𝑗𝑗 𝑛𝑛⁄ = 𝑝𝑝𝑗𝑗 (9) 

and therefore the sum of probabilities is equal to one 

 �𝑝𝑝𝑗𝑗 = 1
𝑗𝑗

 (10) 

 

 



13 
 

2.3 Object Signature 

An object signature represents the object by a one-dimensional function 

derived from object boundary points.  A set of distances from a reference point to 

the boundary pixels is generated.  The reference point is generally the object 

centroid and the distance can be measured at equal angles, or using every pixel in 

the boundary.  In addition to other requirements, the equal angle methods require 

the object to be convex; otherwise the same angle may yield more than one 

distance to the boundary.  Using every pixel generates a variable number of 

samples, which depends on the object.  Figure 3 shows the object signature of a 

circle and square respectively using the equal angle method.   
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Figure 3: Equal Angle Object Signatures for Circle and Square  

 
 
 

 

2.3.1 Acquiring the Object Signature 

In order to obtain an object signature from an image, the image must first 

be segmented, objects have to be identified, and the pixels that reside on the object 

boundary have to be marked.  Image segmentation can be implemented in several 

different ways.  Following segmentation, connected component labeling and 

contour following algorithms are applied to identify the boundary pixels and 

construct the object signature [2, 3].  

 



15 
 

2.4 Moments 

In statistics, moments are a meaningful, numerical description of the 

distribution of random variables.  In physics, they are used to measure the mass 

distribution of a body.  Both interpretations are widely used to describe the 

geometric shapes of different objects.   

2.4.1 Geometric Moments 

 Given a two-dimensional, continuous image 𝑓𝑓(𝑥𝑥, 𝑦𝑦), the geometric moment 

of order (p + q) is defined as 

 
𝑚𝑚𝑝𝑝𝑝𝑝 = � � 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

+∞

−∞

+∞

−∞
 (11) 

for p, q = 0, 1, 2, …. 

The 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑡𝑡ℎ order moment   

 
𝑚𝑚00 = � � 𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

+∞

−∞

+∞

−∞
 (12) 

represents the total mass of the image.  In the case of a segmented object, the 

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑡𝑡ℎ moment of the object is the total object area [10].  

The central moments are defined as 



16 
 

 
𝜇𝜇𝑝𝑝𝑝𝑝 = � � (𝑥𝑥 − 𝑥𝑥)𝑝𝑝(𝑦𝑦 − 𝑦𝑦)𝑞𝑞𝑓𝑓(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

+∞

−∞

+∞

−∞
 (13) 

where 

 𝑥𝑥 =
𝑚𝑚10

𝑚𝑚00
 ,𝑦𝑦 =

𝑚𝑚01

𝑚𝑚00
 (14) 

   

After scaling equation (13) by a factor 𝛼𝛼, the central moments are expressed as  

 

 
𝜇𝜇𝑝𝑝𝑝𝑝′ = � � (𝑥𝑥′ − 𝑥𝑥′)𝑝𝑝(𝑦𝑦′ − 𝑦𝑦′)𝑞𝑞𝑓𝑓′(𝑥𝑥′,𝑦𝑦′)𝑑𝑑𝑑𝑑′ 𝑑𝑑𝑑𝑑′

+∞

−∞

+∞

−∞
= 

 

= � � 𝛼𝛼𝑝𝑝(𝑥𝑥 − 𝑥𝑥)𝑝𝑝𝛼𝛼𝑞𝑞(𝑦𝑦 − 𝑦𝑦)𝑞𝑞𝑓𝑓(𝑥𝑥,𝑦𝑦)𝛼𝛼2 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
+∞

−∞

+∞

−∞
= 𝛼𝛼𝑝𝑝+𝑞𝑞+2𝜇𝜇𝑝𝑝𝑝𝑝 

 

(15) 

 
 
Therefore, scale invariance is achieved by normalizing each moment as follows 

 𝜂𝜂𝑝𝑝𝑝𝑝 =
𝜇𝜇𝑝𝑝𝑝𝑝
𝜇𝜇00𝛾𝛾

 (16) 

where 

 𝛾𝛾 =
𝑝𝑝 + 𝑞𝑞

2
+ 1 (17) 

If 𝑓𝑓(𝑥𝑥,𝑦𝑦) is a digital image, the integrals are replaced with summations 
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 𝑚𝑚𝑝𝑝𝑝𝑝 = ��𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑦𝑦𝑥𝑥

 (18) 

The central moments are expressed as 

 𝜇𝜇𝑝𝑝𝑝𝑝 = ��(𝑥𝑥 − 𝑥̅𝑥)𝑝𝑝(𝑦𝑦 − 𝑦𝑦�)𝑞𝑞𝑓𝑓(𝑥𝑥, 𝑦𝑦)
𝑦𝑦𝑥𝑥

 (19) 

2.4.1.1 Hu’s Moment Invariants 

Developed by Hu in 1962 [7], the following set of moments is invariant to 

rotation, translation and scaling   

 𝜙𝜙1 = 𝜂𝜂20 + 𝜂𝜂02 (20) 

 𝜙𝜙2 = (𝜂𝜂20 − 𝜂𝜂02)2 + 4𝜂𝜂112  (21) 

 𝜙𝜙3 = (𝜂𝜂30 − 3𝜂𝜂12)2 + (3𝜂𝜂21 − 𝜂𝜂03)2 (22) 

 𝜙𝜙4 = (𝜂𝜂30 + 𝜂𝜂12)2 + (𝜂𝜂21 + 𝜂𝜂03)2 (23) 

 𝜙𝜙5 = (𝜂𝜂30 − 3𝜂𝜂12)(𝜂𝜂30 + 𝜂𝜂12)[(𝜂𝜂30 + 𝜂𝜂12)2 − 3(𝜂𝜂21 + 𝜂𝜂03)2]

+ (3𝜂𝜂21 − 𝜂𝜂03)(𝜂𝜂21 + 𝜂𝜂03)[3(𝜂𝜂30 + 𝜂𝜂12)2

− (𝜂𝜂21 + 𝜂𝜂03)2] 

(24) 
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 𝜙𝜙6 = (𝜂𝜂20 − 𝜂𝜂02)[(𝜂𝜂30 + 𝜂𝜂12)2 − (𝜂𝜂21 + 𝜂𝜂03)2]

+ 4𝜂𝜂11(𝜂𝜂30 + 𝜂𝜂12)(𝜂𝜂21 + 𝜂𝜂03) 
(25) 

 𝜙𝜙7 = (3𝜂𝜂21 − 𝜂𝜂03)(𝜂𝜂30 + 𝜂𝜂12)[(𝜂𝜂30 + 𝜂𝜂12)2 − 3(𝜂𝜂21 + 𝜂𝜂03)2]

+  (3𝜂𝜂12 − 𝜂𝜂30)(𝜂𝜂21 + 𝜂𝜂03)[3(𝜂𝜂30 + 𝜂𝜂12)2

− (𝜂𝜂21 + 𝜂𝜂03)2] 

(26) 

2.4.2 Contour Moments 

 Chen shows it is possible to modify the moment equation for two 

dimensions using the shape contour only 

 
𝑚𝑚𝑝𝑝𝑝𝑝 = � 𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞 𝑑𝑑𝑑𝑑

𝐶𝐶

 (27) 

where ∫ is  a line integral along the curve C and 𝑑𝑑𝑑𝑑 = �((𝑑𝑑𝑑𝑑)2 + (𝑑𝑑𝑑𝑑)2).  The 

modified central moments are thus defined as 

 
𝜇𝜇𝑝𝑝𝑝𝑝 = �(𝑥𝑥 − 𝑥𝑥)𝑝𝑝(𝑦𝑦 − 𝑦𝑦)𝑞𝑞 𝑑𝑑𝑑𝑑,

𝐶𝐶

 (28) 

where  

 𝑥𝑥 =
𝑚𝑚10

𝑚𝑚00
, 𝑦𝑦 =

𝑚𝑚01

𝑚𝑚00
 (29) 
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After scaling equation (28) by a factor 𝛼𝛼, the central moments are expressed as 

 
𝜇𝜇𝑝𝑝𝑝𝑝′ = ��𝑥𝑥′ − 𝑥𝑥′�

𝑝𝑝
�𝑦𝑦′ − 𝑦𝑦′�

𝑞𝑞
 𝑑𝑑𝑑𝑑′

𝐶𝐶

= 

 

� 𝛼𝛼𝑝𝑝(𝑥𝑥 − 𝑥𝑥)𝑝𝑝𝛼𝛼𝑞𝑞(𝑦𝑦 − 𝑦𝑦)𝑞𝑞 𝛼𝛼 𝑑𝑑𝑑𝑑
𝐶𝐶

= 𝛼𝛼𝑝𝑝+𝑞𝑞+1𝜇𝜇𝑝𝑝𝑝𝑝 

(30) 

  
Therefore, scale invariance is achieved by normalizing each moment as follows 

 𝜂𝜂𝑝𝑝𝑝𝑝 =
𝜇𝜇𝑝𝑝𝑝𝑝
𝜇𝜇00𝛾𝛾

 (31) 

where 

 𝛾𝛾 = 𝑝𝑝 + 𝑞𝑞 + 1 (32) 

For a digital image, the equation becomes 

 𝜇𝜇𝑝𝑝𝑝𝑝 = � (𝑥𝑥 − 𝑥𝑥)𝑝𝑝(𝑦𝑦 − 𝑦𝑦)𝑞𝑞
(𝑥𝑥,𝑦𝑦)∈𝐶𝐶

 (33) 

The very same functions developed by Hu are then used by Chen to calculate 

rotation, scaling, and translation invariant moments for the object contour [12,13].  
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2.4.3 Raw Moments of the Object Signature 

It is possible to define the raw, or one-dimensional, moments for an object 

signature 𝑧𝑧 = [𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑛𝑛].  The 𝑘𝑘𝑡𝑡ℎ moment about the origin is expressed as  

 𝜇𝜇𝑘𝑘 =
1
𝑛𝑛
�(𝑧𝑧𝑖𝑖)𝑘𝑘
𝑖𝑖

 (34) 

The first moment or mean is defined as 

 𝑚𝑚 =
1
𝑛𝑛
�𝑧𝑧𝑖𝑖
𝑖𝑖

 (35) 

Then the 𝑘𝑘𝑡𝑡ℎ moment about the mean is defined as  

 𝜇𝜇𝑘𝑘 =
1
𝑛𝑛
�(𝑧𝑧𝑖𝑖 − 𝑚𝑚)𝑘𝑘
𝑖𝑖

 (36) 

   

The 𝑘𝑘𝑡𝑡ℎ normalized moments are expressed as  

 𝑚𝑚𝑘𝑘 =
𝑚𝑚𝑘𝑘

(𝜇𝜇2)𝑘𝑘 2⁄  (37) 

 𝜇𝜇𝑘𝑘 =
𝜇𝜇𝑘𝑘

(𝜇𝜇2)𝑘𝑘 2⁄  (38) 
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For an object signature, Gupta and Srinath show the normalized moments (37) and 

(38) are invariant to rotation, scaling, and translation [4].  They note the 

coordinates of a transformed shape 𝐻𝐻(𝑢𝑢, 𝑣𝑣) are related to the original shape 

𝐺𝐺(𝑥𝑥,𝑦𝑦) by a transformation of the form 

 𝐻𝐻(𝑢𝑢, 𝑣𝑣) = 𝐴𝐴 𝐺𝐺(𝑥𝑥,𝑦𝑦) + 𝐵𝐵 (39) 

and provide the following proof [4].  The transformed coordinate variables are 

given by 

 �
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖� = �𝛼𝛼 cos 𝜃𝜃 sin 𝜃𝜃

−sin 𝜃𝜃 𝛼𝛼 cos 𝜃𝜃� �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖� + �𝛽𝛽𝛾𝛾� 

(40) 

where 𝛽𝛽 and 𝛾𝛾 are the translation variables, 𝛼𝛼 is the scale factor, and 𝜃𝜃 is the angle 

through which the shape is rotated.   

Let the contour of the original shape be 𝐺𝐺 and that of the transformed shape be 𝐻𝐻 

 𝐺𝐺 = [𝑔𝑔(1),𝑔𝑔(2), … ,𝑔𝑔(𝑁𝑁)] (41) 

 𝐻𝐻 = [ℎ(1),ℎ(2), … ,ℎ(𝑀𝑀)] (42) 

where 

 𝑔𝑔(𝑙𝑙) = [(𝑥𝑥𝑙𝑙 − 𝑥𝑥)2 + (𝑦𝑦𝑙𝑙 − 𝑦𝑦)2]1 2⁄  (43) 
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 ℎ(𝑘𝑘) = [(𝑢𝑢𝑘𝑘 − 𝑢𝑢)2 + (𝑣𝑣𝑘𝑘 − 𝑣𝑣)2]1 2⁄  (44) 

 (𝑥𝑥,𝑦𝑦) is the centroid of the original shape and it is given as  

 𝑥𝑥 =
𝑚𝑚10

𝑚𝑚00
, 𝑦𝑦 =

𝑚𝑚01

𝑚𝑚00
 (45) 

where 

 𝑚𝑚𝑝𝑝𝑝𝑝 = ��𝑥𝑥𝑝𝑝𝑦𝑦𝑞𝑞
𝑦𝑦

𝐺𝐺(𝑥𝑥,𝑦𝑦)
𝑥𝑥

 (46) 

is the (𝑝𝑝 + 𝑞𝑞)𝑡𝑡ℎ geometric moment of the shape function 𝐺𝐺(𝑥𝑥,𝑦𝑦).  Similarly, 

(𝑢𝑢, 𝑣𝑣) is the centroid of the transformed shape.  Let 𝑚𝑚𝑘𝑘
𝐻𝐻 represent the 𝑘𝑘𝑡𝑡ℎ moment 

of 𝐻𝐻(𝑢𝑢, 𝑣𝑣).  From equations (37) and (38), the normalized contour moments of 

shape 𝐻𝐻(𝑢𝑢, 𝑣𝑣) are  

 𝑚𝑚𝑘𝑘
𝐻𝐻 =

1
𝑀𝑀∑ [ℎ(𝑘𝑘)]𝑘𝑘𝑘𝑘

�1
𝑀𝑀∑ [ℎ(𝑘𝑘) −𝑚𝑚1

𝐻𝐻]2𝑘𝑘 �
𝑘𝑘 2⁄  (47) 

 𝑀𝑀𝑘𝑘
𝐻𝐻

=
1
𝑀𝑀∑ [ℎ(𝑘𝑘) −𝑚𝑚1

𝐻𝐻]𝑘𝑘𝑘𝑘

�1
𝑀𝑀∑ [ℎ(𝑘𝑘) −𝑚𝑚1

𝐻𝐻]2𝑘𝑘 �
𝑘𝑘 2⁄  (48) 

By substituting (40) in (44) and using the resulting ℎ(𝑘𝑘) in (47) and (48), the 

normalized moments 𝑚𝑚𝑘𝑘
𝐻𝐻and 𝑀𝑀𝑘𝑘

𝐻𝐻
of the transformed shape 𝐻𝐻(𝑢𝑢, 𝑣𝑣) are expressed 
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in terms of the original coordinate variables (𝑥𝑥,𝑦𝑦).  Using the definitions of 

normalized moments given in equations (37) and (38), and some algebraic 

manipulations, it can be shown that 

 𝑚𝑚𝑘𝑘
𝐻𝐻 = 𝑚𝑚𝑘𝑘

𝐺𝐺 (49) 

 𝑀𝑀𝑘𝑘
𝐻𝐻

= 𝑀𝑀𝑘𝑘
𝐺𝐺

 (50) 

Gupta and Srinath then define the following set of descriptors that are invariant to 

shape translation, rotation and scaling  

 
𝐹𝐹1 =

(𝜇𝜇2)1 2⁄

𝑚𝑚
 (51) 

 𝐹𝐹2 =
𝜇𝜇3

(𝜇𝜇2)3 2⁄  (52) 

 𝐹𝐹3 =
𝜇𝜇4

(𝜇𝜇2)2
 (53) 

 𝐹𝐹4 =
𝜇𝜇5

(𝜇𝜇2)5 2⁄  (54) 
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2.4.4 Moments of a Random Variable 

Let 𝑦𝑦 = [𝑦𝑦1,𝑦𝑦2,⋯ , 𝑦𝑦𝑚𝑚] be the set of all possible distances from a boundary 

pixel to the centroid in the object signature.  Let Y be a discrete random variable 

for the number of times a distance value occurs in the set 𝑦𝑦.  The probability 

𝑝𝑝( Y = 𝑦𝑦𝑖𝑖) of distance 𝑦𝑦𝑖𝑖 occurring in a given signature is calculated as 

 𝑝𝑝(𝑦𝑦𝑖𝑖) =
𝑛𝑛𝑖𝑖
𝑛𝑛

 (55) 

where 𝑛𝑛𝑖𝑖 is the number of times that the distance 𝑦𝑦𝑖𝑖 occurs in the signature and n 

is the total number of elements in y.  Their sum must be equal to one 

 �𝑝𝑝(𝑦𝑦𝑖𝑖)
𝑖𝑖

= 1 (56) 

with the mean given as 

 𝑚𝑚 = �𝑦𝑦𝑖𝑖
𝑖𝑖

𝑝𝑝(𝑦𝑦𝑖𝑖) (57) 

The 𝑘𝑘𝑡𝑡ℎ moment about the mean is then defined as 

 𝜇𝜇𝑘𝑘 = �(𝑦𝑦𝑖𝑖 − 𝑚𝑚)𝑘𝑘
𝑖𝑖

𝑝𝑝(𝑦𝑦𝑖𝑖) (58) 
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2.4.4.1 Normalized Moments of a Random Variable 

 
To compensate for changes in scale, it is necessary to normalize the 

moments.  For any change in scale α, the set y becomes 
 
 
 α 𝑦𝑦 = [α 𝑦𝑦1,α 𝑦𝑦2,⋯ ,α 𝑦𝑦𝑚𝑚] 

 (59) 

The mean is then defined as 
 
 
 𝑚𝑚′ = �α 𝑦𝑦𝑖𝑖

𝑖𝑖

𝑝𝑝(𝑦𝑦𝑖𝑖) =  α�𝑦𝑦𝑖𝑖
𝑖𝑖

𝑝𝑝(𝑦𝑦𝑖𝑖) =  α 𝑚𝑚  

 
(60) 

 
and the 𝑘𝑘𝑡𝑡ℎmoment about the mean becomes 
 
 
 𝜇𝜇𝑘𝑘′ = �(α 𝑦𝑦𝑖𝑖 − α 𝑚𝑚)𝑘𝑘

𝑖𝑖

𝑝𝑝(𝑦𝑦𝑖𝑖) = �α𝑘𝑘  (𝑦𝑦𝑖𝑖 − 𝑚𝑚)𝑘𝑘
𝑖𝑖

𝑝𝑝(𝑦𝑦𝑖𝑖)

= α𝑘𝑘�  (𝑦𝑦𝑖𝑖 − 𝑚𝑚)𝑘𝑘
𝑖𝑖

𝑝𝑝(𝑦𝑦𝑖𝑖) =   α𝑘𝑘  𝜇𝜇𝑘𝑘 

 

(61) 

The normalized 𝑘𝑘𝑡𝑡ℎmoment about the mean can therefore be calculated as 
  
 
 

𝑚𝑚𝑘𝑘 =
α𝑘𝑘  𝜇𝜇𝑘𝑘

(α 𝑚𝑚)𝑘𝑘
=  

 𝜇𝜇𝑘𝑘
𝑚𝑚𝑘𝑘 

 
(62) 
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2.4.5 Histogram Moments 

 It is possible to approximate the raw moments of the object signature using 

the relative frequency histogram of the set 𝑦𝑦 = [𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑚𝑚].  The center bin-

values of the histogram are considered to be a discrete random variable and the 

relative frequencies are considered the PDF.  To be more precise, let the set v 

contain the center bin-values.  The approximation follows 

 𝑚𝑚 ≈ 𝑚𝑚′ = �𝑣𝑣𝑗𝑗𝑝𝑝𝑗𝑗
𝑗𝑗

 (63) 

where 𝑣𝑣𝑗𝑗 is the value assigned to the 𝑗𝑗𝑡𝑡ℎ bin and 𝑝𝑝𝑗𝑗 is the relative frequency for 

that bin.  The 𝑘𝑘𝑡𝑡ℎ moment about the mean is approximated as 

 𝜇𝜇𝑘𝑘 ≈ 𝜇𝜇𝑘𝑘′ = �(𝑣𝑣𝑗𝑗 − 𝑚𝑚′)𝑘𝑘𝑝𝑝𝑗𝑗
𝑗𝑗

 (64) 

2.4.5.1. Histogram Moment Descriptors 

 The following set of descriptors is proposed to leverage the use of moments 

of the histogram 

 
   

 𝐹𝐹1 =
𝜇𝜇2
𝑚𝑚2 (65) 
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 𝐹𝐹2 =
𝜇𝜇3
𝑚𝑚3 (66) 

 𝐹𝐹3 =
𝜇𝜇4
𝑚𝑚4 (67) 

  

The second, third, and fourth moments of the histogram of the object signature are 

each divided by the first moment raised to the second, third, and fourth power 

respectively.  This ensures the descriptors are invariant to scaling.  Since the 

object signature is never zero in our experiments, the mean is always non-zero and 

hence division by zero is not a concern.  These descriptors only require the use of 

four moments of the histogram compared to the five raw moments used by Gupta 

and Srinath’s set of four descriptors.   

 

2.5 Fourier Descriptors 

The Fourier Descriptor is a technique used for representing shapes.  They 

are simple to compute, intuitive, and easy to normalize.  In addition, they are 

robust to noise and capture both global and local features [5].  The descriptors 

represent the shape of the object in a frequency domain and avoid the high cost of 

matching shape signatures in the spatial domain [6].  The Discrete Fourier 
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Transform is applied to a function of the contour coordinates to obtain the Fourier 

Descriptor.  Figure 4 shows a K-point digital boundary in the xy-plane. 

 

 

Figure 4: K-Point Digital Boundary in the xy-plane 

 
 
The coordinate pairs (𝑥𝑥0,𝑦𝑦0), (𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2) … , (𝑥𝑥𝑘𝑘−1,𝑦𝑦𝑘𝑘−1) can be expressed in 

the form 𝑥𝑥(𝑘𝑘) = 𝑥𝑥𝑘𝑘 and 𝑦𝑦(𝑘𝑘) = 𝑦𝑦𝑘𝑘.  The boundary can be represented as a 

sequence of coordinates 𝑠𝑠(𝑘𝑘) = [𝑥𝑥(𝑘𝑘),𝑦𝑦(𝑘𝑘)], for 𝑘𝑘 = 0,1,2 … ,𝑘𝑘 − 1.  Each 

coordinate pair is expressed as a complex number 

 

 𝑠𝑠(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) + 𝑗𝑗𝑗𝑗(𝑘𝑘) (68) 

The x-axis is treated as the real axis and the y-axis is treated as the imaginary axis.  

The Discrete Fourier Transform of 𝑠𝑠(𝑘𝑘) is 



29 
 

 

 𝑎𝑎𝑛𝑛 = �𝑠𝑠(𝑘𝑘)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋 𝐾𝐾⁄

𝑘𝑘

 (69) 

for 𝑛𝑛 = 0,1, 2 … ,𝐾𝐾 − 1 [1].  The coefficients 𝑎𝑎𝑛𝑛 are referred to as the Fourier 

Descriptors. The one-dimensional Discrete Fourier Transform of an object 

signature can be calculated as 

 

 𝑎𝑎𝑛𝑛 =
1
𝑁𝑁
�𝑧𝑧(𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋 𝑁𝑁⁄

𝑡𝑡

 (70) 

Where z(t) is the object signature for 𝑛𝑛 = 0,1, 2 … ,𝑁𝑁 − 1.  Hu and Li explain that 

rotation invariance of the Fourier Descriptors is achieved by ignoring the phase 

information, only taking into consideration the magnitude values [6].  Scale 

invariance for real-valued signatures is established by dividing the magnitude of 

the first half descriptors by the DC components |𝑎𝑎0|.  Since |𝑎𝑎0| is always the 

largest coefficient, the values of the normalized descriptors should be in the range 

from zero to one [6]   

 𝑉𝑉 = �
𝑎𝑎1
𝑎𝑎0
� , � 

𝑎𝑎2
𝑎𝑎0
� , �
𝑎𝑎3
𝑎𝑎0
� , … , �

𝑎𝑎𝑁𝑁 2⁄

𝑎𝑎0
� (71) 
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2.6 Mean Square Error 

 The Mean Square Error (MSE) is an average of the squared errors.  In this 

thesis we define error to be a distance between corresponding elements of two 

descriptor feature vectors representing image objects.  It is computed as follows  

 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝐹𝐹𝑘𝑘𝑖𝑖 − 𝐹𝐹𝑘𝑘𝑟𝑟�

2

𝑘𝑘

 𝑘𝑘 = 1. .𝑛𝑛 (72) 

 

where 𝐹𝐹𝑘𝑘𝑖𝑖  is the 𝑘𝑘𝑡𝑡ℎ element of the 𝑛𝑛 element vector representing object i and 𝐹𝐹𝑘𝑘𝑟𝑟 is 

the 𝑘𝑘𝑡𝑡ℎ element of the 𝑛𝑛 element vector representing object r.  

 
2.7 Confusion Matrix 

 Results of experiments are presented in this paper using a confusion matrix.  

A confusion matrix is a matrix where element �𝑚𝑚𝑖𝑖,𝑗𝑗� of the matrix m is the Mean 

Square Error (MSE) between the element assigned to row i and the element 

assigned to column j.  For each row in the matrix, the column with the lowest 

MSE is considered a match.  An MSE of zero is an exact match while a higher 

MSE is indicative of dissimilarity between the two elements.  An error occurs 

when �𝑚𝑚𝑖𝑖,𝑗𝑗� is a match but the element assigned to row i is not the same as the 

element assigned to row j.  

 



31 
 

 

2.8 Star-Convex 

 A set of points is considered convex if for any two points in the set, all 

points on the line segment connecting the two points are included in the set.  A set 

is considered to be star-convex if there exists at least one point such that for any 

other point in the set, all points on the line segment connecting the two points are 

included in the set.   
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III. RELATED WORK 
 
 
 

 In this section, relevant research is discussed and compared to the method 

presented in this paper.  This thesis presents a novel method for recognizing 

objects in images.  The method utilizes a minimum number of moments of the 

histogram of the object signature, and requires far less computation operations, 

resulting in effective, accurate descriptors.  Previous research has applied 

moments to the entire image or directly to the contour or the object signature. This 

is the first work that investigates applying moments to the histogram of the object 

signature.   

  

Hu presented the first significant research into the use of moments for two-

dimensional image analysis and recognition [7].  Based on the method of algebraic 

invariants, Hu derived a set of seven moments using nonlinear combinations of 

lower order regular moments.  This set of moments is invariant to translation, 

scaling, and rotation but is a region-based method that treats shapes as a whole.  

The moments must be computed over all pixels of an object, including the 

contour.  This is in stark contrast to the method introduced in this work, which 

utilizes moments of the histogram of the object signature. When calculating the 

moments of the histogram of the object signature, only the center bin-values of the 

constructed histogram are used. As a result, the savings in computation are 
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significant and provide computational complexity that is orders of magnitude 

smaller than using every pixel of the image. In addition, the descriptors introduced 

in this thesis only require computing four moments as opposed to seven, and only 

pixels in the object contour are required.  

 

Chen proposed a modified version of Hu’s method involving the same 

moment invariants, requiring computation over just the pixels that make up the 

object contour [12].  However, like Hu, Chen’s method requires computing seven 

moments as opposed to the method introduced in this thesis which only requires 

four.  Although Chen’s method is computationally less costly than Hu’s, it uses 

every pixel in the contour and therefore, in general, it is expected to be less 

efficient than using the histogram of the object signature.        

 

Mandal et al. offer an approach that employs statistical moments of a 

random variable [15].  They suggest treating the intensity values of image pixels 

as a random variable and using the normalized image histogram as an 

approximation of the PDF for pixel intensities. Moments of the random variable 

are then calculated and used to describe the object.  This is a region-based 

approach that requires consideration of all pixels in the object, including the 

contour.  Our method utilizing moments of the histogram of the object signature 

only involve pixels that make up the contour of the object and since only the 
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center bin-values of the histogram are used to calculate moments, the savings in 

computation are substantial.        

 

Gonzales and Woods suggest representing a segment of the boundary for an 

object as a one-dimensional function of an arbitrary variable [1].  The amplitude of 

the function is treated as a discrete random variable and a normalized frequency 

histogram is used to estimate the PDF for the random variable. Moments of the 

random variable are then calculated and used to describe the shape.  However, the 

authors do not use the entire contour of the object nor do they use the object 

signature.      

 

Gupta and Srinath use the moments of a signature derived from the contour 

pixels of an object to generate descriptors that are invariant to translation, rotation, 

and scaling [4].  The paper, however, requires the contour pixels to be organized 

into an ordered sequence before computing the Euclidean distance between 

contour pixels and the object centroid to produce the signature.  In addition, the 

authors do not group the signature values into a histogram before calculating the 

moments.  Consequently, they use every element of the object signature to 

calculate each moment in contrast to the method introduced in this paper, which 

only uses the center value of each bin in the histogram.  In general, far less 

computation is necessary.  Furthermore, Gupta and Srinath require five moments 

to derive their descriptors.  The method introduced in this work only requires four.    



35 
 

IV. EXPERIMENTAL SETUP 
 

 

This section discusses the setup of the experiments and how results are 

presented and evaluated.  The goal of the experiments is to compare the 

effectiveness of various descriptors in recognizing objects that have been 

translated, scaled, and rotated.  The descriptors evaluated in these experiments are 

as follows:  

 
1. Moment Invariants 
2. Moment Invariants of the Object Contour 
3. 2D Fourier Descriptors of the Object Contour 
4. Moments of the Object Signature 
5. Moments of the Histogram of the Object Signature 
6. 1D Fourier Descriptors of the Object Signature 

 
 
 

4.1 Software 
 
 The experiments for this thesis were developed and implemented using the 

MATLAB computing environment (version 7.14.0.739).     

 

4.2 Hardware  

 A 2.8 GHz Intel Core i5 processor running 64-bit Mac OS X version 10.9.5 

was used to run the experiments.  
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4.3 Dataset  

A library of synthetic images is constructed.  Each image is a binary image 

made up of a background and one set of pixels representing a simple, filled-in 

object.  Ten base objects are considered: five basic geometric shapes and five 

random star-convex objects.  Each object is scaled, rotated, and then scaled and 

rotated to produce 40 different objects in total. The five basic geometric shapes are 

circle, ellipse, square, rectangle, and arrow.  Figure 5 through Figure 9 show the 

five basic geometric shapes: 

 



37 
 

 

Figure 5: Circle 

 

 

Figure 6: Ellipse 

 

Figure 7: Square 

 

 

 

Figure 8: Rectangle 
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Figure 9: Arrow 
 

The five star-convex objects were created using eight, sixteen, twenty-nine, thirty-

seven, and forty-five randomly generated vertices.  Figure 10 through figure 14 show 

the five non-convex, star-convex objects.  

 

 

Figure 10: 8 Point Star-Convex 

 

 

 

Figure 11: 16 Point Star-Convex 
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Figure 12: 29 Point Star-Convex 

 

 

 

Figure 13: 37 Point Star-Convex 

 

 
 

 

Figure 14: 45 Point Star-Convex 

 

 

 

4.4 Descriptors 

  The descriptors, listed above, are grouped into two classes: region-based 

(which use all the pixels in the shape) and contour-based (which use information 

involving the boundary pixels only).  The region-based descriptor class consists of 

Hu’s set of seven moment invariants.  The class of contour-based descriptors 
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includes moments of the object signature, moments of the histogram of the object 

signature, two-dimensional Fourier descriptors of the object contour, one-

dimensional Fourier descriptors of the object signature, and Chen’s application of 

Hu’s moment invariants to the object contour.  The object signature is obtained by 

calculating the Euclidean distance from the centroid of the object to each pixel in 

the object contour. 

 

4.5 Process 

 In each experiment, a different descriptor is used to compare the objects in 

the library against the objects in a database made up of the ten base objects.  First, 

the descriptor feature vectors are computed for all objects in the library and 

database.  Then a confusion matrix is constructed where each row is assigned the 

feature vector representing an input object 𝑂𝑂𝑙𝑙 from the library and each column is 

assigned a feature vector representing a reference object 𝑂𝑂𝑑𝑑  from the database.  

The result is a 40 x 10 matrix.  Each element �𝑚𝑚𝑖𝑖,𝑟𝑟� of the matrix is the Mean 

Square Error (MSE) between the feature vector assigned to row i and the feature 

vector assigned to column r.  For each row, the column with the smallest MSE is 

considered a match.  An MSE of zero is an exact match while a higher MSE is 

indicative of dissimilarity.  If the feature vectors representing two objects are a 

match, then the objects they represent are considered to be a match.  An error 

occurs when an input object 𝑂𝑂𝑙𝑙 from the library is a match with a reference object 

𝑂𝑂𝑑𝑑 from the database but the two objects are not the same.  For example, if the 
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scaled and rotated arrow object from the library is identified as a match with the 

square object from the database, the result is considered an error.    

 

4.6 Comparison  

  Descriptors are compared using recognition accuracy in addition to the 

quality of recognition in the experiment. An effective descriptor should have an 

MSE close to zero for matches and a relatively large MSE for non-matches.  For 

these experiments, the Quality Recognition score is computed by taking the ratio 

of average MSE for matches, 𝑀𝑀𝑚𝑚, to average MSE for non-matches, 𝑀𝑀𝑛𝑛 

 

𝑞𝑞 =
𝑀𝑀𝑚𝑚

𝑀𝑀𝑛𝑛
 

 

The quality of recognition improves as the 𝑞𝑞 number approaches zero. 

 

 The Recognition Rate is the ratio of correct matches to total possible 

correct matches  

 

𝑟𝑟 =
𝑀𝑀 − 𝐸𝐸
𝑀𝑀
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where, E is the total number of errors and M is the total number of possible correct 

matches.   For each of the experiments in this thesis, 𝑀𝑀 = 40. 
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V. EXPERIMENTS AND RESULTS 
 
 
 

 In this section, the experiments conducted as part of this thesis are 

discussed.  Six experiments in total are performed.  For each experiment, a 

confusion matrix that displays the recognition accuracy is presented.  The results 

of each experiment are compared using recognition accuracy.  Quality of 

recognition is used to contrast only those methods that achieve a 100% recognition 

rate.  In the resulting confusion matrices, matches are highlighted in yellow for 

each experiment.  An experiment with 100% recognition shows all matches along 

the diagonal.  Matches that are off the diagonal are incorrect and count against the 

recognition rate. 

 

Experiment 1 

 

The first experiment evaluates Hu’s set of seven moment-invariant 

descriptors as shown in equations (20) – (26).  Table 1 shows the confusion matrix 

derived in the experiment.   
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Table 1: Experiment 1 Results 

 
   Table 1 shows a 100% Recognition Rate.   The Quality Recognition Score 

is .000044842.   

 

Experiment 2 

 

The second experiment evaluates Chen’s application of Hu’s moments to 

the object contour.  The results are shown in Table 2. 
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Table 2: Experiment 2 Results 

 
The experiment incorrectly identifies the scaled arrow and the scaled and 

rotated arrow as the star-convex object with 16 vertices, the scaled ellipse and the 

scaled and rotated ellipse are identified as the rectangle, and it identifies the scaled 

circle and the scaled and rotated circle as the square.  The eight incorrect matches 

result in a Recognition Rate of 80%.   
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Experiment 3 

 

The third experiment evaluates two-dimensional Fourier descriptors of the 

object contour.  The results are shown in Table 3. 

 

 
Table 3: Experiment 3 Results 

 
 

The scaled ellipse and the scaled and rotated ellipse are incorrectly 

identified as the rectangle, the rotated star-convex object with 16 vertices was 

incorrectly identified as the arrow, and the scaled and rotated star-convex object 
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with 16 vertices is misidentified as the star-convex object with 45 vertices.  The 

resulting Recognition Rate is 90%. 

 

Experiment 4 

 

The fourth experiment evaluates the four descriptors derived by Gupta and 

Srinath in equations (53) – (56) applied to the object signature.  The results are 

shown in Table 4.

 

Table 4: Experiment 4 Results 
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The experiment correctly identifies all objects with zero errors, therefore 

the resulting Recognition Rate is 100%.  The Quality Recognition Score is 

calculated to be 0.0673.   

 

Experiment 5 

 

The fifth experiment evaluates the application of moments to the histogram 

of the object signature.  For this experiment the new set of descriptors introduced 

in equations (65) – (67) are used.  The results are shown in Table 5.  
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Table 5: Experiment 5 Results 
 

The experiment correctly identifies all objects.  The resulting Recognition 

Rate is 100%.  The Quality Recognition Score is 0.0128. 

 

Experiment 6 

 

The sixth experiment evaluates one-dimensional Fourier descriptors of the 

object signature. 



50 
 

 

Table 6: Experiment 6 Results 

 
 
The experiment correctly identifies all objects, resulting in a Recognition Rate of 

100% with a Quality Recognition Score of 0.0281.  
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VI. RESULTS EVALUATION 

This section evaluates the results of the experiments outlined in the 

previous chapter.  Six experiments in total are performed, each conducted to 

evaluate the use of specific descriptors to recognize objects in a segmented image.  

First, the Recognition Rate is compared.  Next, the Quality of Recognition is used 

to differentiate between the methods that achieve a 100% Recognition Rate.  Table 

7 shows the Recognition Rate of each of the experiments.  Four of the experiments 

correctly identify every object in the library and achieve a 100% Recognition 

Rate.  Those experiments are Hu’s set of seven moment-invariant descriptors, 

Gupta and Srinath’s set of four descriptors of the object signature, the set of three 

descriptors introduced in this work generated from moments of the histogram of 

the object signature, and one-dimensional Fourier descriptors of the object 

signature.  Chen’s application of Hu’s moments to the object contour incorrectly 

identify eight objects and achieves an 80% Recognition Rate.  Two-dimensional 

Fourier descriptors of the object contour incorrectly identify four objects and 

achieve a 90% recognition rate.   
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Experiment Descriptor Recognition 
Rate 

Experiment 1 Hu’s set of seven moment invariants 100% 

Experiment 2 Chen’s application of Hu’s moments to the object 
contour 80% 

Experiment 3 2D Fourier descriptors of the object contour 90% 

Experiment 4 Gupta & Srinath descriptors applied to the object 
signature 100% 

Experiment 5 Moments of the histogram of the object signature 100% 

Experiment 6 1D Fourier descriptors of the object signature 100% 

 

Table 7: Recognition Rates of Experiments 

 

In order to compare those descriptors that achieve a 100% Recognition 

Rate, we take into consideration the Quality of Recognition.   Table 8 shows the 

Quality Recognition Score for each experiment.   The lower the score, the more 

accurate the descriptor.  Hu’s set of seven moment invariants scores the lowest 

with 4.4842e-05.  The next lowest score belongs to our descriptors generated from 

moments of the histogram of the object signature with a score of 0.0128.  One-

dimensional Fourier descriptors of the object contour are next with a score of 

0.0281.  Finally, Gupta and Srinath’s four descriptors generate a score of 0.0673. 



53 
 

Experiment Descriptor Quality of 
recognition 

Experiment 1 Hu’s set of seven moment invariants 4.4842e-05 

Experiment 4 Four descriptors derived by Gupta & Srinath applied 
to the object signature 

0.0673 

Experiment 5 Moments of the histogram of the object signature 0.0128 

Experiment 6 1D Fourier descriptors of the object signature 0.0281 

 

Table 8: Quality Recognition Scores of Experiments 

 

Hu’s set of seven moment invariants performed better than all other 

methods.  This is expected since it uses all the pixels of the image and therefore 

uses more information compared to methods that only consider the object contour.  

Hu’s moment invariants have a superior Quality of Recognition score but they are 

computationally expensive and higher order moments are hard to derive.  It can be 

seen from equation (11) that the double integrals are to be considered over the 

whole area of the object including its boundary [19].  Chen’s application of Hu’s 

moments only considers the object contour and therefore it reduces the 

computational complexity.  However, this method has the most errors of all the 

descriptors with eight incorrect matches.  Every error involved identifying scaled 
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objects.  Using only the boundary pixels reduces the amount of information to be 

processed.  The method introduced in this work, taking moments of the histogram 

of the object signature, only uses the center bin-values of the constructed 

histogram to calculate moments.  The computational costs are orders of magnitude 

smaller than methods that use every pixel of the image or even just pixels of the 

object contour. 

The descriptors based on moments of the histogram of the object signature 

introduced in this thesis show an improvement over those based on raw moments, 

such as the methods proposed by Gupta and Srinath.  Although both sets of 

descriptors achieve a 100% Recognition Rate, the descriptors derived in this work 

achieve a better Quality of Recognition score.  The effect of binning the data when 

constructing the histogram compensates for any noise introduced due to scaling an 

object.  In addition, only four moments are required compared to Gupta and 

Srinath, who use five.  The computational complexity is reduced by the method 

introduced in this thesis, since the moments are calculated using the bin-values of 

the histogram of the object signature.  The calculations used in deriving Gupta and 

Srinath’s descriptors involve every element of the object signature.  The result is a 

significant improvement in efficiency.   

Based on the results of the experiments, the method introduced in this thesis, 

taking the moments of the histogram of the object signature, proves to be more 

accurate than all other methods with the exception of Hu’s moment invariants.  
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Although Hu’s moment invariants are more accurate, taking moments of the 

histogram of the object signature is computationally less expensive.       

 

Conclusion 

 With the explosion of data generated in the form of images and video, there 

is a growing need to develop methods and techniques to automate their analysis, 

such as recognizing and matching objects in images.  The goal of this thesis is to 

compare various descriptors that do just that.  The six experiments show that the 

region-based moment invariants developed by Hu performed best.  However, it 

was demonstrated that Fourier Descriptors and descriptors that utilize moments of 

the object signature are viable alternatives.  Among those, the set of descriptors 

derived in this work based on moments of the histogram of the object signature, 

have the best Quality of Recognition.  In addition, because the method introduced 

in this thesis uses the histogram when calculating moments, the computational 

costs are orders of magnitude smaller than other descriptors discussed.  

 Future research into the computational complexity of these algorithms will 

better quantify their efficiency.  Experiments with natural images are a logical 

next step for investigation as well.  Additional translation, rotation, and scaling of 

objects can be added to improve comparisons between descriptors.      
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