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EXPONENTIAL STABILITY OF SOLUTIONS TO NONLINEAR
TIME-DELAY SYSTEMS OF NEUTRAL TYPE

GENNADII V. DEMIDENKO, INESSA I. MATVEEVA

Abstract. We consider a nonlinear time-delay system of neutral equations
with constant coefficients in the linear terms

d

dt

`
y(t) +Dy(t− τ)

´
= Ay(t) +By(t− τ) + F (t, y(t), y(t− τ)),

where

‖F (t, u, v)‖ ≤ q1‖u‖1+ω1 + q2‖v‖1+ω2 , q1, q2, ω1, ω2 > 0.

We obtain estimates characterizing the exponential decay of solutions at infin-
ity and estimates for attraction sets of the zero solution.

1. Introduction

There is large number of works devoted to the study of delay differential equa-
tions (see for instance the books [1, 3, 13, 15, 16, 17, 18, 20, 21, 22, 23, 29, 31]
and the bibliography therein). The question of asymptotic stability of solutions
is very important from the theoretical and practical viewpoints because delay dif-
ferential equations arise in many applied problems when describing the processes
whose speeds are defined by present and previous states (see for example [14, 24, 25]
and the bibliography therein).

This article presents a continuation of our works on stability of solutions to delay
differential equations [4, 5, 6, 7, 8, 9, 10, 11, 12, 26, 27]. We consider the system of
nonlinear delay differential equations

d

dt

(
y(t) +Dy(t− τ)

)
= Ay(t) +By(t− τ) + F (t, y(t), y(t− τ)), t > 0, (1.1)

where A, B, D are constant (n × n) matrices, τ > 0 is the time delay, and F
is a continuous vector function mapping [0,∞) × Cn × Cn into Cn. We assume
that F (t, u, v) satisfies the Lipschitz condition with respect to u on every compact
G ⊂ [0,∞)× Cn × Cn and the inequality

‖F (t, u, v)‖ ≤ q1‖u‖1+ω1 + q2‖v‖1+ω2 , t ≥ 0, u, v ∈ Cn, (1.2)
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for some constants q1, q2, ω1, ω2 > 0. Here and hereafter we use the following dot
product and vector norm

〈x, z〉 =
n∑
j=1

xj z̄j , ‖x‖ =
√
〈x, x〉.

Our aim is to study the exponential stability of the zero solution; namely, to ob-
tain estimates characterizing the decay rate of solutions at infinity and estimates for
attraction sets of the zero solution. To establish conditions of stability, researchers
often use various Lyapunov or Lyapunov–Krasovskii functionals. At present, there
is large number of works in this direction; for example, see the bibliographies in the
survey [2] and in the book [31] devoted wholly to obtaining conditions of stability
by the use of Lyapunov-Krasovskii functionals. However, not every Lyapunov-
Krasovskii functional makes it possible to obtain estimates characterizing exponen-
tial decay of solutions at infinity. In recent years, the study in this direction has
developed rapidly. For constant coefficients, there are a lot of works for linear delay
differential equations including equations of neutral type (for example, see [15, 20]
and the bibliography therein).

The case of nonlinear equations is of special interest and is more complicated in
comparison with the case of linear equations. Along with estimates of exponential
decay of solutions, a very important question is deriving estimates of attraction
sets for nonlinear equations. The natural problem is to obtain such estimates
by means of the Lyapunov–Krasovskii functionals used for exponential stability
analysis of equations defined by the linear part. To the best of our knowledge, the
first constructive estimates of attraction sets for the system

d

dt
y(t) = Ay(t) +By(t− τ) + F (t, y(t), y(t− τ)), (1.3)

using Lyapunov–Krasovskii functionals associated with the exponentially stable
linear system

d

dt
y(t) = Ay(t) +By(t− τ), (1.4)

were obtained in [4, 5, 6, 28].
To study asymptotic stability of solutions to (1.4) the authors in [4] proposed to

use the Lyapunov–Krasovskii functional

〈Hy(t), y(t)〉+
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds, (1.5)

where the matrices H and K(s) satisfy

H = H∗ > 0, K(s) = K∗(s) ∈ C1[0, τ ], K(s) > 0,
d

ds
K(s) < 0, (1.6)

for s ∈ [0, τ ]. Here H > 0 means that H is positive definite. Using (1.5), we
obtained estimates of exponential decay of solutions to linear systems of the form
(1.4). In [4, 5] the authors considered nonlinear systems of delay differential equa-
tions of the form (1.3) with F (t, u, v) satisfying (1.2). Conditions of asymptotic
stability of the zero solution were obtained, estimates characterizing the decay rate
at infinity were established, and estimates of attraction sets of the zero solution
were derived. Using a generalization of the functional in (1.5), analogous results
were obtained for linear and nonlinear systems of delay differential equations with
periodic coefficients in the linear terms [4, 5, 6, 11, 26, 27].
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To study exponential stability of solutions to the system of linear differential
equations of neutral type

d

dt
(y(t) +Dy(t− τ)) = Ay(t) +By(t− τ) (1.7)

the first author in [7] introduced the Lyapunov-Krasovskii functional

V (ϕ) = 〈H(ϕ(0) +Dϕ(−τ)), (ϕ(0) +Dϕ(−τ))〉

+
∫ 0

−τ
〈K(−s)ϕ(s), ϕ(s)〉 ds, ϕ(s) ∈ C[−τ, 0],

(1.8)

where the matrices H and K(s) satisfy (1.6). In particular, the following result was
obtained.

Theorem 1.1. Suppose that there exist matrices H and K(s) satisfying (1.6) and
the matrix

C = −
(
HA+A∗H +K(0) HB +A∗HD
B∗H +D∗HA D∗HB +B∗HD −K(τ)

)
(1.9)

is positive definite. Then the zero solution to (1.7) is exponentially stable.

Using the functional (1.8), the study of exponential stability of solutions to time-
delay systems of the form (1.1) was conducted in [7, 8, 9, 10, 12, 30]. Note that
in [7, 8, 30] the estimates of exponential decay of solutions to (1.1) were obtained
in the case ‖D‖ < 1 (here and hereafter we use the spectral norm of matrices). In
[9], for the linear case (F (t, u, v) ≡ 0), analogous estimates were established when
the spectrum of the matrix D belongs to the unit disk {λ ∈ C : |λ| < 1}. However,
in the case ‖D‖ < 1, the estimates are weaker in comparison with the estimates
obtained in [7]. More precise exponential estimates for the linear systems were
obtained in [10]. If the spectrum of the matrix D belongs to the unit disk, the
authors in [12] investigated the time-delay system (1.1) with F (t, u, v) satisfying
(1.2) with ω1 = ω2 = 0.

In this article we study a more complicated case; namely, we consider the non-
linear time-delay system (1.1) if ω1, ω2 > 0. Supposing that the spectrum of D
belongs to the unit disk, we establish estimates characterizing exponential decay
of solutions at infinity and estimates for attraction sets of the zero solution. The
main results are formulated in Theorems 2.2–2.8 and their proofs are given in the
next section. It should be noted that some sufficient conditions for exponential
stability of the zero solution to (1.1) are established in [15, Theorem 7.5] in the
case ‖D‖ < 1.

2. Main results

Suppose that the conditions of Theorem 1.1 are satisfied. Using the matrices H
and K(s), introduce the following notation

S =
(
S11 S12

S∗12 S22

)
, (2.1)

S11 = −HA−A∗H −K(0), S12 = HAD +K(0)D −HB,
S22 = K(τ)−D∗K(0)D,

R = S11 − S12S
−1
22 S

∗
12, P = S22. (2.2)
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It is not hard to verify that the matrix C in (1.9) is positive definite if and only if the
matrix S is positive definite (see the proof of Theorem 2.1 for details). Obviously,
R and P are positive definite if and only if the matrix S is positive definite. Denote
by rmin > 0 and pmin > 0 the minimal eigenvalues of R and P , respectively. Let
κ > 0 be the maximal number such that

d

ds
K(s) + κK(s) ≤ 0, s ∈ [0, τ ]. (2.3)

We consider the initial value problem for (1.1),

d

dt
(y(t) +Dy(t− τ)) = Ay(t) +By(t− τ) + F (t, y(t), y(t− τ)), t > 0,

y(t) = ϕ(t), t ∈ [−τ, 0],

y(+0) = ϕ(0),

(2.4)

where ϕ(t) ∈ C1[−τ, 0] is a given vector function. Let y(t) be a noncontinuable
solution to the initial value problem (2.4), defined for t ∈ [0, t′). Using the matri-
ces H and K(s) indicated in Theorem 1.1, we consider the Lyapunov-Krasovskii
functional (1.8). Introducing the conventional notation

yt : θ → y(t+ θ), θ ∈ [−τ, 0],

we have

V (yt) = 〈H(yt(0) +Dyt(−τ)), (yt(0) +Dyt(−τ))〉+
∫ 0

−τ
〈K(−θ)yt(θ), yt(θ)〉 dθ

= 〈H(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))〉

+
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds.

(2.5)

Theorem 2.1. Let the conditions of Theorem 1.1 be satisfied. Then

d

dt
V (yt) ≤ ε0V 1+ω1/2(yt)− (rmin − δ1(‖y(t− τ)‖))‖y(t) +Dy(t− τ)‖2

− (pmin − δ2(‖y(t− τ)‖))‖z(t)‖2 − κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds,

(2.6)

for t ∈ [0, t′), where

ε0 =
2q1‖H‖(1 + ε1)ω1

h
1+ω1/2
min

, (2.7)

δ1(s) =
(
‖S−1

22 S
∗
12‖+

1
4ε2

)
δ0(s), δ2(s) = ε2δ0(s), s ≥ 0, (2.8)

δ0(s) = 2‖H‖
[
q1

(1 + ε1
ε1

)ω1

‖D‖1+ω1sω1 + q2s
ω2

]
,

ε1 > 0, ε2 > 0,

z(t) = S−1
22 S

∗
12(y(t) +Dy(t− τ)) + y(t− τ), (2.9)

and hmin > 0 is the minimal eigenvalue of the matrix H.
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Proof. We use the proof scheme in [4]. Obviously, the time derivative of the func-
tional V (yt) is

d

dt
V (yt) ≡ 〈H(Ay(t) +By(t− τ)), (y(t) +Dy(t− τ))〉

+ 〈H(y(t) +Dy(t− τ)), (Ay(t) +By(t− τ))〉
+ 〈HF (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))〉
+ 〈H(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))〉
+ 〈K(0)y(t), y(t)〉 − 〈K(τ)y(t− τ), y(t− τ)〉

+
∫ t

t−τ
〈 d
dt
K(t− s)y(s), y(s)〉ds.

Using the matrix C defined in (1.9), we obtain

d

dt
V (yt) ≡ −

〈
C

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)〉
+ 〈HF (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))〉
+ 〈H(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))〉

+
∫ t

t−τ
〈 d
dt
K(t− s)y(s), y(s)〉ds.

(2.10)

We consider the first summand in the right-hand side of (2.10). Obviously,(
y(t)

y(t− τ)

)
=
(
I −D
0 I

)(
y(t) +Dy(t− τ)

y(t− τ)

)
.

Then〈
C

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)〉
≡
〈
S

(
y(t) +Dy(t− τ)

y(t− τ)

)
,

(
y(t) +Dy(t− τ)

y(t− τ)

)〉
,

where

S =
(

I 0
−D∗ I

)
C

(
I −D
0 I

)
.

Taking into account (1.9), the matrix S has the form (2.1). By the conditions of
Theorem 1.1, the matrix C is positive definite. Clearly, S is positive definite if and
only if C is positive definite. Using the representation

S =
(
I S12S

−1
22

0 I

)(
S11 − S12S

−1
22 S

∗
12 0

0 S22

)(
I 0

S−1
22 S

∗
12 I

)
,

we have 〈
S

(
y(t) +Dy(t− τ)

y(t− τ)

)
,

(
y(t) +Dy(t− τ)

y(t− τ)

)〉
= 〈R(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))〉+ 〈Pz(t), z(t)〉,

where R, P and z(t) are defined by (2.2) and (2.9), respectively. Obviously, the
matrix S is positive definite if and only if the matrices R and P are positive definite.
Consequently, we derive〈

C

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)〉
≥ rmin‖y(t) +Dy(t− τ)‖2 + pmin‖z(t)‖2, (2.11)

where rmin > 0 and pmin > 0 are the minimal eigenvalues of R and P , respectively.
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We consider the second and the third summands in the right-hand side of (2.10).
In view of (1.2) we have

〈HF (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))〉
+ 〈H(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))〉
≤ 2‖H‖

(
q1‖y(t)‖1+ω1 + q2‖y(t− τ)‖1+ω2

)
‖y(t) +Dy(t− τ)‖

≤ 2‖H‖
(
q1(‖y(t) +Dy(t− τ)‖+ ‖D‖‖y(t− τ)‖)1+ω1 + q2‖y(t− τ)‖1+ω2

)
× ‖y(t) +Dy(t− τ)‖.

It is not hard to show that

(a+ b)1+ω ≤ (1 + ε1)ωa1+ω +
(1 + ε1

ε1

)ω
b1+ω, a, b ≥ 0, ε1 > 0.

Hence,

(‖y(t) +Dy(t− τ)‖+ ‖D‖‖y(t− τ)‖)1+ω1

≤ (1 + ε1)ω1‖y(t) +Dy(t− τ)‖1+ω1 +
(1 + ε1

ε1

)ω1‖D‖1+ω1‖y(t− τ)‖1+ω1 .

For example, choosing ε1 = ‖D‖, we have

(‖y(t) +Dy(t− τ)‖+ ‖D‖‖y(t− τ)‖)1+ω1

≤ (1 + ‖D‖)ω1‖y(t) +Dy(t− τ)‖1+ω1 + (1 + ‖D‖)ω1‖D‖‖y(t− τ)‖1+ω1 .

Consequently,

〈HF (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))〉
+ 〈H(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))〉
≤ 2q1‖H‖(1 + ε1)ω1‖y(t) +Dy(t− τ)‖2+ω1

+ 2‖H‖
[
q1

(1 + ε1
ε1

)ω1

‖D‖1+ω1‖y(t− τ)‖ω1 + q2‖y(t− τ)‖ω2

]
× ‖y(t− τ)‖‖y(t) +Dy(t− τ)‖.

By the definition of z(t),

‖y(t− τ)‖ ≤ ‖S−1
22 S

∗
12‖‖y(t) +Dy(t− τ)‖+ ‖z(t)‖.

Hence,

‖y(t− τ)‖‖y(t) +Dy(t− τ)‖
≤ ‖S−1

22 S
∗
12‖‖y(t) +Dy(t− τ)‖2 + ‖z(t)‖‖y(t) +Dy(t− τ)‖

≤
(
‖S−1

22 S
∗
12‖+

1
4ε2

)
‖y(t) +Dy(t− τ)‖2 + ε2‖z(t)‖2, ε2 > 0.

Then we obtain
〈HF (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))〉
+ 〈H(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))〉
≤ 2q1‖H‖(1 + ε1)ω1‖y(t) +Dy(t− τ)‖2+ω1

+ δ1(‖y(t− τ)‖)‖y(t) +Dy(t− τ)‖2 + δ2(‖y(t− τ)‖)‖z(t)‖2,

(2.12)

where δ1(s), δ2(s) are defined by (2.8).



EJDE-2016/19 EXPONENTIAL STABILITY OF SOLUTIONS 7

By (2.11) and (2.12), we have

−
〈
C

(
y(t)

y(t− τ)

)
,

(
y(t)

y(t− τ)

)〉
+ 〈HF (t, y(t), y(t− τ)), (y(t) +Dy(t− τ))〉
+ 〈H(y(t) +Dy(t− τ)), F (t, y(t), y(t− τ))〉
≤ 2q1‖H‖(1 + ε1)ω1‖y(t) +Dy(t− τ)‖2+ω1

− (rmin − δ1(‖y(t− τ)‖))‖y(t) +Dy(t− τ)‖2 − (pmin − δ2(‖y(t− τ)‖))‖z(t)‖2.

It follows from (2.10) that

d

dt
V (yt) ≤ 2q1‖H‖(1 + ε1)ω1‖y(t) +Dy(t− τ)‖2+ω1

− (rmin − δ1(‖y(t− τ)‖))‖y(t) +Dy(t− τ)‖2

− (pmin − δ2(‖y(t− τ)‖))‖z(t)‖2

+
∫ t

t−τ

〈 d
dt
K(t− s)y(s), y(s)

〉
ds.

By (2.3), we obtain

d

dt
V (yt) ≤ 2q1‖H‖(1 + ε1)ω1‖y(t) +Dy(t− τ)‖2+ω1

− (rmin − δ1(‖y(t− τ)‖))‖y(t) +Dy(t− τ)‖2

− (pmin − δ2(‖y(t− τ)‖))‖z(t)‖2 − κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds.

Using the matrix H, we have

1
‖H‖

〈
H(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))

〉
≤ ‖y(t) +Dy(t− τ)‖2

≤ 1
hmin

〈
H(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))

〉
,

(2.13)

where hmin > 0 is the minimal eigenvalue of H. Hence,

d

dt
V (yt) ≤

2q1‖H‖(1 + ε1)ω1

h
1+ω1/2
min

〈
H(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))

〉1+ω1/2

− (rmin − δ1(‖y(t− τ)‖))‖y(t) +Dy(t− τ)‖2

− (pmin − δ2(‖y(t− τ)‖))‖z(t)‖2 − κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds.

By the definition of V (yt), we obtain

d

dt
V (yt) ≤ ε0V 1+ω1/2(yt)− (rmin − δ1(‖y(t− τ)‖))‖y(t) +Dy(t− τ)‖2

− (pmin − δ2(‖y(t− τ)‖))‖z(t)‖2 − κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds,

where ε0 is defined by (2.7). The proof is complete. �
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The parameters ε1, ε2 > 0 allow us to control ε0, δ1(s), δ2(s) in (2.6).
Let σ > 0 be a number such that

δ0(σ) < min
{ rmin(
‖S−1

22 S
∗
12‖+ 1

4ε2

) , pmin

ε2

}
.

Then rmin − δ1(σ) > 0 and pmin − δ2(σ) > 0. We introduce the notation

γ = min{rmin − δ1(σ), κ‖H‖} > 0, β =
γ

2‖H‖
. (2.14)

Since the spectrum of the matrix D belongs to the unit disk {λ ∈ C : |λ| < 1},
it follows that ‖Dj‖ → 0 as j → ∞. Let l > 0 be the minimal integer such that
‖Dl‖ < 1. We distinguish three cases

‖Dl‖ < e−lβτ , ‖Dl‖ = e−lβτ , e−lβτ < ‖Dl‖ < 1.

We describe in every case an attraction set for the initial function ϕ(t) and show
that the solution to the initial value problem (2.4) with this function is defined for
t > 0. We establish estimates characterizing exponentially decay of this solution at
infinity.

Theorem 2.2. Let the conditions of Theorem 1.1 be satisfied and

‖Dl‖ < e−lβτ . (2.15)

Suppose that ϕ(t) ∈ E1, where

E1 =
{
ϕ(s) ∈ C1[−τ, 0] : Φ < σ, V (ϕ) <

( γ

ε0‖H‖

)2/ω1

,

α
(
1− ‖Dl‖elβτ

)−1
l−1∑
j=0

‖Dj‖ejβτ + max{‖D‖, . . . , ‖Dl‖}Φ < σ
}
,

(2.16)

α =
[
1− ε0‖H‖

γ
V ω1/2(ϕ)

]−1/ω1

√
V (ϕ)
hmin

, Φ = max
s∈[−τ,0]

‖ϕ(s)‖. (2.17)

Then the solution to the initial value problem (2.4) is defined for t > 0 and

‖y(t)‖ ≤
[
α
(
1− ‖Dl‖elβτ

)−1
l−1∑
j=0

‖Dj‖ejβτ

+ max
{
‖D‖eβτ , . . . , ‖Dl‖elβτ

}
Φ
]
e−βt, t > 0.

(2.18)

The proof of the above theorem is based on the next two lemmas.

Lemma 2.3. Let
‖Dl‖ < e−lβτ .

Then

α

k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ

≤
[
α
(
1− ‖Dl‖elβτ

)−1
l−1∑
j=0

‖Dj‖ejβτ

+ max
{
‖D‖eβτ , . . . , ‖Dl‖elβτ

}
Φ
]
e−βt

(2.19)

for t ∈ [kτ, (k+ 1)τ), k = 0, 1, . . . , where α, β, and Φ are defined in (2.14), (2.17).
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Proof. Obviously,

α

k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ

≤
[
α

k∑
j=0

‖Dj‖ejβτ + ‖Dk+1‖e(k+1)βτΦ
]
e−βt, t ∈ [kτ, (k + 1)τ).

In view of the condition on ‖Dl‖, we obtain the estimate

α

k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ

≤
[
α

∞∑
j=0

‖Dj‖ejβτ + max
{
‖D‖eβτ , . . . , ‖Dl‖elβτ

}
Φ
]
e−βt.

(2.20)

We consider the series
∑∞
j=0 ‖Dj‖ejβτ . Obviously,

∞∑
j=0

‖Dj‖ejβτ

=
l−1∑
j=0

‖Dj‖ejβτ +
2l−1∑
j=l

‖Dj‖ejβτ +
3l−1∑
j=2l

‖Dj‖ejβτ + . . .

≤
l−1∑
j=0

‖Dj‖ejβτ + ‖Dl‖elβτ
l−1∑
j=0

‖Dj‖ejβτ +
(
‖Dl‖elβτ

)2 l−1∑
j=0

‖Dj‖ejβτ + . . .

=
(

1 + ‖Dl‖elβτ +
(
‖Dl‖elβτ

)2
+ . . .

) l−1∑
j=0

‖Dj‖ejβτ .

By (2.15), we have
∞∑
j=0

‖Dj‖ejβτ ≤
(
1− ‖Dl‖elβτ

)−1
l−1∑
j=0

‖Dj‖ejβτ .

Using this inequality, we derive (2.19) from (2.20). The proof is complete. �

Lemma 2.4. Let the conditions of Theorem 2.2 be satisfied. Then the solution
to the initial value problem (2.4) is defined for t > 0; moreover, on each segment
t ∈ [kτ, (k + 1)τ), k = 0, 1, . . . , it satisfies the estimate

‖y(t)‖ ≤ α
k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ, (2.21)

where α, β, and Φ are defined in (2.14), (2.17).

Proof. Let t ∈ [0, τ). If the initial function ϕ(t) belongs to the attraction set E1
defined by (2.16), then

max
s∈[−τ,0]

‖ϕ(s)‖ < σ .

Consequently,

rmin − δ1(‖y(t− τ)‖) = rmin − δ1(‖ϕ(t− τ)‖) > rmin − δ1(σ) > 0,
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pmin − δ2(‖y(t− τ)‖) = pmin − δ2(‖ϕ(t− τ)‖) > pmin − δ2(σ) > 0.

By Theorem 2.1,
d

dt
V (yt) ≤ ε0V 1+ω1/2(yt)− (rmin − δ1(σ))‖y(t) +Dy(t− τ)‖2

− κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds

for t ∈ [0, t1), where t1 = min{τ, t′}. Using (2.13), we have

d

dt
V (yt)

≤ ε0V 1+ω1/2(yt)−
rmin − δ1(σ)
‖H‖

〈H(y(t) +Dy(t− τ)), (y(t) +Dy(t− τ))〉

− κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉ds.

Taking into account (2.5), we obtain

d

dt
V (yt) ≤ ε0V 1+ω1/2(yt)−

γ

‖H‖
V (yt),

where γ is defined in (2.14). If ϕ(t) ∈ E1 then

ε0‖H‖
γ

V ω1/2(ϕ) < 1.

By a Gronwall-like inequality (for example, see [19]), we have the estimate

V (yt) ≤
[
1− ε0‖H‖

γ
V ω1/2(ϕ)

]−2/ω1
V (ϕ) exp

(
− γt

‖H‖
)
.

Using the definition of the functional (2.5), we obtain

‖y(t) +Dy(t− τ)‖ ≤

√
V (yt)
hmin

.

Consequently,

‖y(t) +Dy(t− τ)‖ ≤
[
1− ε0‖H‖

γ
V ω1/2(ϕ)

]−1/ω1

√
V (ϕ)
hmin

exp
(
− γt

2‖H‖

)
.

Hence,

‖y(t)‖ ≤ ‖y(t) +Dy(t− τ)‖+ ‖Dy(t− τ)‖

≤ αe−βt + ‖D‖ ‖ϕ(t− τ)‖ ≤ αe−βt + ‖D‖Φ, t ∈ [0, t1),
(2.22)

where α, β, and Φ are defined in (2.14) and (2.17). The function in the right-
hand side of (2.22) is continuous and bounded for t > 0. Then t1 = τ and the
noncontinuable solution y(t) to (2.4) is defined for t ∈ [0, τ ]. Consequently, t′ > τ .
It follows from (2.22) that y(t) satisfies (2.21) for k = 0. Obviously, if the initial
function ϕ(t) belongs to the attraction set E1 then

‖y(t)‖ < σ, t ∈ [0, τ ].

Let t ∈ [τ, 2τ). Consequently,

rmin − δ1(‖y(t− τ)‖) > rmin − δ1(σ) > 0,
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pmin − δ2(‖y(t− τ)‖) > pmin − δ2(σ) > 0.

By Theorem 2.1,

d

dt
V (yt) ≤ ε0V 1+ω1/2(yt)− (rmin − δ1(σ))‖y(t) +Dy(t− τ)‖2

− κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds

for t ∈ [0, t2), where t2 = min{2τ, t′}. Repeating the same reasoning as above, we
have

‖y(t) +Dy(t− τ)‖ ≤ αe−βt, t ∈ [0, t2),

where α and β are defined in (2.17) and (2.14), respectively. Hence,

‖y(t)‖ ≤ ‖y(t) +Dy(t− τ)‖+ ‖Dy(t− τ)‖

≤ αe−βt + ‖Dy(t− τ)−D2y(t− 2τ)‖+ ‖D2y(t− 2τ)‖

≤ αe−βt + α‖D‖e−β(t−τ) + ‖D2‖Φ, t ∈ [τ, t2).

(2.23)

The function in the right-hand side of (2.23) is continuous and bounded for t > 0.
Then t2 = 2τ and the noncontinuable solution y(t) to (2.4) is defined for t ∈ [0, 2τ ].
Consequently, t′ > 2τ . It follows from (2.23) that y(t) satisfies (2.21) for k = 1. By
Lemma 2.3,

αe−βt + α‖D‖e−β(t−τ) + ‖D2‖Φ

≤
[
α
(
1− ‖Dl‖elβτ

)−1
l−1∑
j=0

‖Dj‖ejβτ
]
e−βt + ‖D2‖Φ, t ∈ [τ, 2τ ].

Consequently, if the initial function ϕ(t) belongs to the attraction set E1, then

‖y(t)‖ < σ, t ∈ [0, 2τ ].

Repeating the same reasoning, we obtain that the solution to (2.4) is defined for
t > 0, and it satisfies (2.21) on each segment t ∈ [kτ, (k + 1)τ), k ∈ N. By Lemma
2.3 and the condition ‖Dl‖ < 1, we have

‖y(t)‖ ≤
[
α
(
1− ‖Dl‖elβτ

)−1
l−1∑
j=0

‖Dj‖ejβτ
]
e−βt + max{‖D‖, . . . , ‖Dl‖}Φ, t > 0.

Consequently, if the initial function ϕ(t) belongs to the attraction set E1, then

‖y(t)‖ < σ, t > 0.

The proof is complete. �

By Lemmas 2.3 and 2.4, we obtain that the solution to (2.4) satisfies (2.18).
Therefore, Theorem 2.2 is proved.

Theorem 2.5. Let the conditions of Theorem 1.1 be satisfied and

‖Dl‖ = e−lβτ . (2.24)
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Suppose that ϕ(t) ∈ E2, where

E2 =
{
ϕ(s) ∈ C1[−τ, 0] : Φ < σ, V (ϕ) <

( γ

ε0‖H‖
)2/ω1

,

α

lτβ
elτβ−1

l−1∑
j=0

‖Dj‖ejβτ + max{‖D‖, . . . , ‖Dl‖}Φ < σ
}
.

(2.25)

Then the solution to the initial value problem (2.4) is defined for t > 0 and the
estimate holds

‖y(t)‖ ≤
[
α
(
1 +

t

lτ

) l−1∑
j=0

‖Dj‖ejβτ

+ max
{

1, ‖D‖eβτ , . . . , ‖Dl−1‖e(l−1)βτ
}

Φ
]
e−βt, t > 0,

(2.26)

where α, β, and Φ are defined in (2.14), (2.17).

The proof of the above theorem is based on the next two lemmas.

Lemma 2.6. Let

‖Dl‖ = e−lβτ .

Then

α

k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ

≤
[
α
(
1 +

t

lτ

) l−1∑
j=0

‖Dj‖ejβτ

+ max
{

1, ‖D‖eβτ , . . . , ‖Dl−1‖e(l−1)βτ
}

Φ
]
e−βt

(2.27)

for t ∈ [kτ, (k+ 1)τ), k = 0, 1, . . . . where α, β, and Φ are defined in (2.14), (2.17).

Proof. Obviously,

α

k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ

≤
[
α

k∑
j=0

‖Dj‖ejβτ + ‖Dk+1‖e(k+1)βτΦ
]
e−βt, t ∈ [kτ, (k + 1)τ).

In view of the condition (2.24) on ‖Dl‖, we obtain the estimate

α

k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ

≤
[
α

k∑
j=0

‖Dj‖ejβτ + max
{

1, ‖D‖eβτ , . . . , ‖Dl−1‖e(l−1)βτ
}

Φ
]
e−βt.

(2.28)

If k ≤ l − 1 then (2.27) follows from (2.28).
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Let l ≤ k ≤ 2l − 1; i.e., 1 ≤ t
lτ < 2. We consider the sum

∑k
j=0 ‖Dj‖ejβτ .

Clearly,
k∑
j=0

‖Dj‖ejβτ =
l−1∑
j=0

‖Dj‖ejβτ +
k∑
j=l

‖Dj‖ejβτ

≤
l−1∑
j=0

‖Dj‖ejβτ + ‖Dl‖elβτ
k−l∑
j=0

‖Dj‖ejβτ

=
l−1∑
j=0

‖Dj‖ejβτ +
k−l∑
j=0

‖Dj‖ejβτ .

Then we have
k∑
j=0

‖Dj‖ejβτ ≤
l−1∑
j=0

‖Dj‖ejβτ +
t

lτ

l−1∑
j=0

‖Dj‖ejβτ .

Using this inequality, (2.27) follows from (2.28).
Let ml ≤ k ≤ (m+ 1)l− 1, m = 2, 3, . . . ; i.e., m ≤ t

lτ < m+ 1. We consider the
sum

∑k
j=0 ‖Dj‖ejβτ . It is not difficult to see that

k∑
j=0

‖Dj‖ejβτ

=
l−1∑
j=0

‖Dj‖ejβτ +
2l−1∑
j=l

‖Dj‖ejβτ + · · ·+
k∑

j=ml

‖Dj‖ejβτ

≤
l−1∑
j=0

‖Dj‖ejβτ + ‖Dl‖elβτ
l−1∑
j=0

‖Dj‖ejβτ + · · ·+ ‖Dml‖emlβτ
k−ml∑
j=0

‖Dj‖ejβτ

≤
l−1∑
j=0

‖Dj‖ejβτ +
l−1∑
j=0

‖Dj‖ejβτ + · · ·+
k−ml∑
j=0

‖Dj‖ejβτ

≤ (1 +m)
l−1∑
j=0

‖Dj‖ejβτ .

Consequently,
k∑
j=0

‖Dj‖ejβτ ≤
(
1 +

t

lτ

) l−1∑
j=0

‖Dj‖ejβτ .

In view of this estimate, (2.27) follows from (2.28). Owing to the arbitrariness of
m, the proof is complete. �

Lemma 2.7. Let the conditions of Theorem 2.5 be satisfied. Then the solution to
the initial value problem (2.4) is defined for t > 0; moreover, it satisfies (2.21) on
each segment t ∈ [kτ, (k + 1)τ), k = 0, 1, . . . .

Proof. Recall that the noncontinuable solution to (2.4) is defined for t ∈ [0, t′). Let
t ∈ [0, τ). Repeating the same reasoning as in the proof of Lemma 2.4, we obtain
that y(t) satisfies (2.22) and is defined for t ∈ [0, τ ]. Consequently, t′ > τ . It follows
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from (2.22) that y(t) satisfies (2.21) for k = 0. Obviously, if the initial function
ϕ(t) belongs to the attraction set E2 defined by (2.25), then

‖y(t)‖ < σ, t ∈ [0, τ ].

Let t ∈ [τ, 2τ). Consequently,

rmin − δ1(‖y(t− τ)‖) > rmin − δ1(σ) > 0,

pmin − δ2(‖y(t− τ)‖) > pmin − δ2(σ) > 0.

By Theorem 2.1,
d

dt
V (yt) ≤ ε0V 1+ω1/2(yt)− (rmin − δ1(σ))‖y(t) +Dy(t− τ)‖2

− κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds

for t ∈ [0, t2), where t2 = min{2τ, t′}. By a similar way as in the proof of Lemma
2.4, we have

‖y(t) +Dy(t− τ)‖ ≤ αe−βt, t ∈ [0, t2),
where α and β are defined in (2.17) and (2.14), respectively. Hence,

‖y(t)‖ ≤ ‖y(t) +Dy(t− τ)‖+ ‖Dy(t− τ)‖

≤ αe−βt + ‖Dy(t− τ)−D2y(t− 2τ)‖+ ‖D2y(t− 2τ)‖

≤ αe−βt + α‖D‖e−β(t−τ) + ‖D2‖Φ, t ∈ [τ, t2).

(2.29)

The function in the right-hand side of (2.29) is continuous and bounded for t > 0.
Then t2 = 2τ and the noncontinuable solution y(t) to (2.4) is defined for t ∈ [0, 2τ ].
Consequently, t′ > 2τ . It follows from (2.29) that y(t) satisfies (2.21) for k = 1. By
Lemma 2.6,

αe−βt + α‖D‖e−β(t−τ) + ‖D2‖Φ

≤
[
α

(
1 +

t

lτ

) l−1∑
j=0

‖Dj‖ejβτ
]
e−βt + ‖D2‖Φ, t ∈ [τ, 2τ ].

(2.30)

We consider the function

f(t) =
(
1 +

t

lτ

)
e−βt, t ≥ 0.

It is not difficult to show that

f(t) ≤

{
1
lτβ e

lτβ−1, lτβ ≤ 1,
1, lτβ ≥ 1.

Obviously, 1
lτβ e

lτβ−1 ≥ 1 for τ , β > 0. Then

f(t) ≤ 1
lτβ

elτβ−1, t ≥ 0,

for any τ , β > 0. Taking into account the last inequality, from (2.30) we have

αe−βt + α‖D‖e−β(t−τ) + ‖D2‖Φ

≤ α

lτβ
elτβ−1

l−1∑
j=0

‖Dj‖ejβτ + ‖D2‖Φ, t ∈ [τ, 2τ ].
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Consequently, if the initial function ϕ(t) belongs to the attraction set E2 then

‖y(t)‖ < σ, t ∈ [0, 2τ ].

Repeating the same reasoning, we obtain that the solution to (2.4) is defined for
t > 0, and it satisfies (2.21) on each segment t ∈ [kτ, (k + 1)τ), k ∈ N. By Lemma
2.6 and the condition ‖Dl‖ < 1, we have

‖y(t)‖ ≤
[
α
(
1 +

t

lτ

) l−1∑
j=0

‖Dj‖ejβτ
]
e−βt + max{‖D‖, . . . , ‖Dl‖}Φ

≤ α

lτβ
elτβ−1

l−1∑
j=0

‖Dj‖ejβτ + max{‖D‖, . . . , ‖Dl‖}Φ, t > 0.

Consequently, if the initial function ϕ(t) belongs to the attraction set E2 then

‖y(t)‖ < σ, t > 0.

The proof is complete. �

By Lemmas 2.6 and 2.7, we obtain that the solution to (2.4) satisfies (2.26).
Therefore, Theorem 2.5 is proved.

Theorem 2.8. Let the conditions of Theorem 1.1 be satisfied and

e−lβτ < ‖Dl‖ < 1. (2.31)

Suppose that ϕ(t) ∈ E3, where

E3 =
{
ϕ(s) ∈ C1[−τ, 0] : Φ < σ, V (ϕ) <

( γ

ε0‖H‖
)2/ω1

,

α
(

1−
(
‖Dl‖elβτ

)−1
)−1 l−1∑

j=0

‖Dj‖ejβτ + max{‖D‖, . . . , ‖Dl‖}Φ < σ
}
.

(2.32)

Then the solution to the initial value problem (2.4) is defined for t > 0 and

‖y(t)‖ ≤
[
α
(

1−
(
‖Dl‖elβτ

)−1
)−1 l−1∑

j=0

‖Dj‖ejβτ

+ ‖Dl‖ 1
l−1 max

{
1, ‖D‖, . . . , ‖Dl−1‖

}
Φ
]

exp
( t
lτ

ln ‖Dl‖
)
,

(2.33)

for t > 0, where α, β, and Φ are defined in (2.14), (2.17).

The proof of the above theorem is based on the next two lemmas.

Lemma 2.9. Let
e−lβτ < ‖Dl‖ < 1.

Then

α

k∑
j=0

‖Dj‖e−β(t−jτ) + ‖Dk+1‖Φ

≤
[
α
(

1−
(
‖Dl‖elβτ

)−1
)−1 l−1∑

j=0

‖Dj‖ejβτ

+ ‖Dl‖ 1
l−1 max

{
1, ‖D‖, . . . , ‖Dl−1‖

}
Φ
]

exp
( t
lτ

ln ‖Dl‖
)

(2.34)
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for t ∈ [kτ, (k+ 1)τ), k = 0, 1, . . . . where α, β, and Φ are defined in (2.14), (2.17).

Proof. First we consider the first summand in the left-hand side of (2.34). For
k ≤ l − 1 we obviously have

k∑
j=0

‖Dj‖ejβτ ≤
l−1∑
j=0

‖Dj‖ejβτ .

Let ml ≤ k ≤ (m+ 1)l − 1, m = 1, 2, 3, . . . . Clearly,

k∑
j=0

‖Dj‖ejβτ

=
l−1∑
j=0

‖Dj‖ejβτ +
2l−1∑
j=l

‖Dj‖ejβτ + · · ·+
k∑

j=ml

‖Dj‖ejβτ

≤
l−1∑
j=0

‖Dj‖ejβτ + ‖Dl‖elβτ
l−1∑
j=0

‖Dj‖ejβτ + · · ·+ ‖Dml‖emlβτ
k−ml∑
j=0

‖Dj‖ejβτ

≤
[
1 + ‖Dl‖elβτ + · · ·+ ‖Dl‖memlβτ

] l−1∑
j=0

‖Dj‖ejβτ .

Consequently,

k∑
j=0

‖Dj‖ejβτ

≤ ‖Dl‖memlβτ
[
1 +

(
‖Dl‖elβτ

)−1
+ · · ·+

(
‖Dl‖elβτ

)−m ] l−1∑
j=0

‖Dj‖ejβτ

≤ ‖Dl‖memlβτ
[
1 +

(
‖Dl‖elβτ

)−1
+ · · ·+

(
‖Dl‖elβτ

)−m
+ . . .

] l−1∑
j=0

‖Dj‖ejβτ .

Since ‖Dl‖elβτ > 1 owing to (2.31), we have

k∑
j=0

‖Dj‖ejβτ ≤ ‖Dl‖memlβτ
[
1−

(
‖Dl‖elβτ

)−1
]−1 l−1∑

j=0

‖Dj‖ejβτ .

Taking into account that mlτ ≤ t < (m+ 1)lτ , we obtain

k∑
j=0

‖Dj‖e−β(t−jτ) ≤ ‖Dl‖me−β(t−mlτ)
[
1−

(
‖Dl‖elβτ

)−1
]−1 l−1∑

j=0

‖Dj‖ejβτ

≤ ‖Dl‖ tlτ
[
1−

(
‖Dl‖elβτ

)−1
]−1 l−1∑

j=0

‖Dj‖ejβτ .
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As a result, we derive the estimate for the first summand in (2.34) for every k,

α

k∑
j=0

‖Dj‖e−β(t−jτ)

≤ α
[
1−

(
‖Dl‖elβτ

)−1
]−1( l−1∑

j=0

‖Dj‖ejβτ
)

exp
( t
lτ

ln ‖Dl‖
)
.

(2.35)

We now we consider the second summand in the left-hand side of (2.34). Obviously,
for 0 ≤ k ≤ l − 2 we have

‖Dk+1‖ ≤ max
{
‖D‖, . . . , ‖Dl−1‖

}
.

Let ml − 1 ≤ k ≤ (m+ 1)l − 2, m = 1, 2, . . . . Hence,

‖Dk+1‖ ≤ ‖Dl‖m‖Dk+1−ml‖ ≤ ‖Dl‖m max
{

1, ‖D‖, . . . , ‖Dl−1‖
}
.

Since ‖Dl‖ < 1 and t < ((m+ 1)l − 1)τ , it follows that

‖Dl‖m ≤ ‖Dl‖
t−(l−1)τ

lτ = ‖Dl‖ 1
l−1 exp

( t
lτ

ln ‖Dl‖
)
.

Owing to arbitrariness of m, we infer that

‖Dk+1‖ ≤ ‖Dl‖ 1
l−1 max

{
1, ‖D‖, . . . , ‖Dl−1‖

}
exp

( t
lτ

ln ‖Dl‖
)

for every k. Taking into account the estimate (2.35), we derive (2.34). The proof
is complete. �

Lemma 2.10. Let the conditions of Theorem 2.8 be satisfied. Then the solution
to the initial value problem (2.4) is defined for t > 0; moreover, it satisfies (2.21)
on each segment t ∈ [kτ, (k + 1)τ), k = 0, 1, . . . .

Proof. Recall that the noncontinuable solution to (2.4) is defined for t ∈ [0, t′). Let
t ∈ [0, τ). Repeating the same reasoning as in the proof of Lemma 2.4, we obtain
that y(t) satisfies (2.22) and is defined for t ∈ [0, τ ]. Consequently, t′ > τ . It follows
from (2.22) that y(t) satisfies (2.21) for k = 0. Obviously, if the initial function
ϕ(t) belongs to the attraction set E3 defined by (2.32), then

‖y(t)‖ < σ, t ∈ [0, τ ].

Let t ∈ [τ, 2τ). Consequently,

rmin − δ1(‖y(t− τ)‖) > rmin − δ1(σ) > 0,

pmin − δ2(‖y(t− τ)‖) > pmin − δ2(σ) > 0.

By Theorem 2.1,

d

dt
V (yt) ≤ ε0V 1+ω1/2(yt)− (rmin − δ1(σ))‖y(t) +Dy(t− τ)‖2

− κ
∫ t

t−τ
〈K(t− s)y(s), y(s)〉 ds

for t ∈ [0, t2), where t2 = min{2τ, t′}. Repeating the same reasoning as above, we
have

‖y(t) +Dy(t− τ)‖ ≤ αe−βt, t ∈ [0, t2),
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where α and β are defined in (2.17) and (2.14), respectively. Hence,

‖y(t)‖ ≤ ‖y(t) +Dy(t− τ)‖+ ‖Dy(t− τ)‖

≤ αe−βt + ‖Dy(t− τ)−D2y(t− 2τ)‖+ ‖D2y(t− 2τ)‖

≤ αe−βt + α‖D‖e−β(t−τ) + ‖D2‖Φ, t ∈ [τ, t2).

(2.36)

The function in the right-hand side of (2.36) is continuous and bounded for t > 0.
Then t2 = 2τ and the noncontinuable solution y(t) to (2.4) is defined for t ∈ [0, 2τ ].
Consequently, t′ > 2τ . It follows from (2.36) that y(t) satisfies (2.21) for k = 1. By
Lemma 2.9,

αe−βt + α‖D‖e−β(t−τ) + ‖D2‖Φ

≤ α
[
1−

(
‖Dl‖elβτ

)−1
]−1( l−1∑

j=0

‖Dj‖ejβτ
)

exp
( t
lτ

ln ‖Dl‖
)

+ ‖D2‖Φ,

for t ∈ [τ, 2τ ]. Consequently, if the initial function ϕ(t) belongs to the attraction
set E3, then

‖y(t)‖ < σ, t ∈ [0, 2τ ].

Repeating the same reasoning, we obtain that the solution to (2.4) is defined for
t > 0, and it satisfies (2.21) on each segment t ∈ [kτ, (k + 1)τ), k ∈ N. By Lemma
2.9 and the condition ‖Dl‖ < 1, we have

‖y(t)‖ ≤ α
[
1−

(
‖Dl‖elβτ

)−1
]−1( l−1∑

j=0

‖Dj‖ejβτ
)

exp
( t
lτ

ln ‖Dl‖
)

+ max{‖D‖, . . . , ‖Dl‖}Φ, t > 0.

Consequently, if the initial function ϕ(t) belongs to the attraction set E3 then

‖y(t)‖ < σ, t > 0.

The proof is complete. �

By Lemmas 2.9 and 2.10, we obtain that the solution to (2.4) satisfies (2.33).
Therefore, Theorem 2.8 is proved.

Conclusion. In this article, we investigated the nonlinear time-delay system (1.1)
of neutral type with constant coefficients in the linear terms. Supposing that the
spectrum of D belongs to the unit disk, we indicated sufficient conditions under
which the zero solution to (1.1) is exponentially stable. Depending on the norms
of the powers of D, we established the constructive estimates for solutions to (1.1)
and attraction sets of the zero solution to (1.1) (see Theorems 2.2, 2.5, 2.8). All
the values characterizing the exponential decay rate of the solutions at infinity and
the attraction sets are written out in explicit form.
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