Show simple item record

dc.contributor.authorSpradlin, Gregory S. ( )
dc.date.accessioned2020-06-10T21:44:15Z
dc.date.available2020-06-10T21:44:15Z
dc.date.issued2001-06-21
dc.identifier.citationSpradlin, G. S. (2001). Interfering solutions of a nonhomogeneous Hamiltonian system. Electronic Journal of Differential Equations, 2001(47), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/11604
dc.description.abstractA Hamiltonian system is studied which has a term approaching a constant at an exponential rate at infinity . A minimax argument is used to show that the equation has a positive homoclinic solution. The proof employs the interaction between translated solutions of the corresponding homogeneous equation. What distinguishes this result from its few predecessors is that the equation has a nonhomogeneous nonlinearity.en_US
dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2001, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectVariational methodsen_US
dc.subjectMinimax argumenten_US
dc.subjectNonhomogeneous linearityen_US
dc.subjectHamiltonian systemen_US
dc.subjectNehari manifolden_US
dc.titleInterfering Solutions of a Nonhomogeneous Hamiltonian Systemen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record