Show simple item record

dc.contributor.authorKouachi, Said ( Orcid Icon 0000-0001-7356-7620 )
dc.date.accessioned2020-07-02T21:44:46Z
dc.date.available2020-07-02T21:44:46Z
dc.date.issued2001-10-23
dc.identifier.citationKouachi, S. (2001). Existence of global solutions to reaction-diffusion systems via a Lyapunov functional. Electronic Journal of Differential Equations, 2001(68), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/11945
dc.description.abstractThe purpose of this paper is to construct polynomial functionals (according to solutions of the coupled reaction-diffusion equations) which give Lp-bounds for solutions. When the reaction terms are sufficiently regular, using the well known regularizing effect, we deduce the existence of global solutions. These functionals are obtained independently of work done by Malham and Xin [11].en_US
dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2001, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectReaction-diffusion systemsen_US
dc.subjectGlobal existenceen_US
dc.subjectLyapunov functionalen_US
dc.titleExistence of Global Solutions to Reaction-Diffusion Systems via a Lyapunov Functionalen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record