Show simple item record

dc.contributor.authorZhidkov, Peter E. ( )
dc.date.accessioned2020-07-02T22:18:13Z
dc.date.available2020-07-02T22:18:13Z
dc.date.issued2001-12-04
dc.identifier.citationZhidkov, P. E. (2001). Sufficient conditions for functions to form Riesz bases in L_2 and applications to nonlinear boundary-value problems. Electronic Journal of Differential Equations, 2001(74), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/11950
dc.description.abstractWe find sufficient conditions for systems of functions to be Riesz bases in L2(0, 1). Then we improve a theorem presented in [13] by showing that a ``standard'' system of solutions of a nonlinear boundary-value problem, normalized to 1, is a Riesz basis in L2(0, 1). The proofs in this article use Bari's theorem.en_US
dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2001, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectRiesz basisen_US
dc.subjectInfinite sequence of solutionsen_US
dc.subjectNonlinear boundary-value problemen_US
dc.titleSufficient Conditions for Functions to Form Riesz Bases in L_2 and Applications to Nonlinear Boundary-Value Problemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record