Show simple item record

dc.contributor.authorPalamides, Panos K. ( )
dc.date.accessioned2020-07-13T22:04:57Z
dc.date.available2020-07-13T22:04:57Z
dc.date.issued2002-02-18
dc.identifier.citationPalamides, P. K. (2002). Positive and monotone solutions of an m-point boundary value problem. Electronic Journal of Differential Equations, 2002(18), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12058
dc.description.abstractWe study the second-order ordinary differential equation y''(t) = -f (t,y(t), y'(t)), 0 ≤ t ≤ 1, subject to the multi-point boundary conditions αy(0) ± βy' (0) = 0, y(1) = m-2 Σ i=1 α i y(ξi). We prove the existence of a positive solution (and monotone in some cases) under superlinear and/or sublinear growth rate in f. Our approach is based on an analysis of the corresponding vector field on the (y,y') face-plane and on Kneser's property for the solution's funnel.en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectMultipoint boundary value problemsen_US
dc.subjectPositive monotone solutionen_US
dc.subjectVector fielden_US
dc.subjectSublinearen_US
dc.subjectSuperlinearen_US
dc.subjectKneser's propertyen_US
dc.subjectSolution's funelen_US
dc.titlePositive and Monotone Solutions of an m-point Boundary Value Problemen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record