Show simple item record

dc.contributor.authorEller, Matthias ( )
dc.contributor.authorLagnese, John E. ( )
dc.contributor.authorNicaise, Serge ( )
dc.date.accessioned2020-07-15T16:42:51Z
dc.date.available2020-07-15T16:42:51Z
dc.date.issued2002-02-21
dc.identifier.citationEller, M., Lagnese, J. E., & Nicaise, S. (2002). Stabilization of heteregeneous Maxwell's equations by linear or nonlinear boundary feedbacks. Electronic Journal of Differential Equations, 2002(21), pp. 1-26.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12085
dc.description.abstractWe examine the question of stabilization of the (nonstationary) heteregeneous Maxwell's equations in a bounded region with a Lipschitz boundary by means of linear or nonlinear Silver-Muller boundary condition. This requires the validity of some stability estimate in the linear case that may be checked in some particular situations. As a consequence we get an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. Based on the linear stability estimate, we further obtain certain exact controllability results for the Maxwell system.en_US
dc.formatText
dc.format.extent26 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectMaxwell's systemen_US
dc.subjectControllabilityen_US
dc.subjectStabilityen_US
dc.subjectNonlinear feedbacksen_US
dc.titleStabilization of Heteregeneous Maxwell's Equations by Linear or Nonlinear Boundary Feedbacksen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record