Show simple item record

dc.contributor.authord'Avenia, Pietro ( Orcid Icon 0000-0002-1715-8037 )
dc.contributor.authorPisani, Lorenzo ( Orcid Icon 0000-0002-8484-1581 )
dc.date.accessioned2020-07-15T17:53:11Z
dc.date.available2020-07-15T17:53:11Z
dc.date.issued2002-03-04
dc.identifier.citationd'Avenia, P., & Pisani, L. (2002). Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations. Electronic Journal of Differential Equations, 2002(26), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12090
dc.description.abstractIn this paper we prove the existence of infinitely many radially symmetric standing waves in equilibrium with their own electro-magnetic field. The interaction is described by means of the minimal coupling rule; on the other hand the Lagrangian density for the electro-magnetic field is the second order approximation of the Born-Infeld Lagrangian density.en_US
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectNonlinear Klein-Gordon equationen_US
dc.subjectSolitary wavesen_US
dc.subjectElectromagnetic fielden_US
dc.subjectVariational methodsen_US
dc.titleNonlinear Klein-Gordon Equations Coupled with Born-Infeld Type Equationsen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record