Show simple item record

dc.contributor.authorZubrinic, Darko ( )
dc.date.accessioned2020-08-11T20:37:10Z
dc.date.available2020-08-11T20:37:10Z
dc.date.issued2002-06-11
dc.identifier.citationZubrinic, D. (2002). Nonexistence of solutions for quasilinear elliptic equations with p-growth in the gradient. Electronic Journal of Differential Equations, 2002(54), pp. 1-8.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12354
dc.description.abstractWe study the nonexistence of weak solutions in W1,p loc (Ω) for a class of quasilinear elliptic boundary-value problems with natural growth in the gradient. Nonsolvability conditions involve general domains with possible singularities of the right-hand side. In particular, we show that if the data on the right-hand side are sufficiently large, or if inner radius of Ω is large, then there are no weak solutions.en_US
dc.formatText
dc.format.extent8 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectQuasilinear ellipticen_US
dc.subjectExistenceen_US
dc.subjectNonexistenceen_US
dc.subjectGeometry of domainsen_US
dc.titleNonexistence of Solutions for Quasilinear Elliptic Equations with p-growth in the Gradienten_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record