Positive Periodic Solutions of Nonlinear Functional Difference Equations
dc.contributor.author | Raffoul, Youssef N. ( ) | |
dc.date.accessioned | 2020-08-11T20:48:06Z | |
dc.date.available | 2020-08-11T20:48:06Z | |
dc.date.issued | 2002-06-13 | |
dc.identifier.citation | Raffoul, Y. N. (2002). Positive periodic solutions of nonlinear functional difference equations. Electronic Journal of Differential Equations, 2002(55), pp. 1-8. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/12357 | |
dc.description.abstract | In this paper, we apply a cone theoretic fixed point theorem to obtain sufficient conditions for the existence of multiple positive periodic solutions to the nonlinear functional difference equations x(n + 1) = a(n)x(n) ± λh(n) f (x(n - τ(n))). | en_US |
dc.format | Text | |
dc.format.extent | 8 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas. | |
dc.subject | Cone theory | en_US |
dc.subject | Positive | en_US |
dc.subject | Periodic | en_US |
dc.subject | Functional difference equations | en_US |
dc.title | Positive Periodic Solutions of Nonlinear Functional Difference Equations | en_US |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |