Show simple item record

dc.contributor.authorBuse, Constantin ( )
dc.date.accessioned2020-08-17T17:32:08Z
dc.date.available2020-08-17T17:32:08Z
dc.date.issued2002-07-25
dc.identifier.citationBuse, C. (2002). A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line. Electronic Journal of Differential Equations, 2002(70), pp. 1-15.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12403
dc.description.abstractWe prove that the evolution semigroup on AAP0 (ℝ+, X) is strongly continuous. Then we prove some properties of the generator of this evolution semigroup and show some applications in the theory of inequalities.en_US
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectPeriodic familiesen_US
dc.subjectAlmost periodic functionsen_US
dc.subjectExponential stabilityen_US
dc.titleA Spectral Mapping Theorem for Evolution Semigroups on Asymptotically almost Periodic Functions Defined on the Half Lineen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record