Show simple item record

dc.contributor.authorColliander, James ( )
dc.contributor.authorStaffilani, Gigliola ( )
dc.date.accessioned2020-08-17T20:44:40Z
dc.date.available2020-08-17T20:44:40Z
dc.date.issued2002-08-20
dc.identifier.citationColliander, J., & Staffilani, G. (2002). Regularity bounds on Zakharov system evolutions. Electronic Journal of Differential Equations, 2002(75), pp. 1-11.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12408
dc.description.abstractSpatial regularity properties of certain global-in-time solutions of the Zakharov system are established. In particular, the evolving solution u(t) is shown to satisfy an estimate ||u(t)||Hs ≤ C|t|(s - 1)+, where Hs is the standard spatial Sobolev norm. The proof is an adaptation of earlier work on the nonlinear Schrödinger equation which reduces matters to bilinear estimates.en_US
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2002, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectInitial value problemsen_US
dc.subjectBilinear estimatesen_US
dc.subjectZakharov systemen_US
dc.subjectWeak turbulenceen_US
dc.titleRegularity Bounds on Zakharov System Evolutionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record