Show simple item record

dc.contributor.authorAlmira, Jose Maria ( )
dc.contributor.authorDel Toro, Naira ( )
dc.date.accessioned2020-09-14T20:54:27Z
dc.date.available2020-09-14T20:54:27Z
dc.date.issued2003-02-20
dc.identifier.citationAlmira, J. M., & Del Toro, N. (2003). Remarks on semilinear problems with nonlinearities depending on the derivative. Electronic Journal of Differential Equations, 2003(18), pp. 1-11.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12609
dc.description.abstractIn this paper, we continue some work by Cañada and Drábek [1] and Mawhin [6] on the range of the Neumann and Periodic boundary value problems: u''(t) + g(t, u'(t)) = f̄ + f̃(t), t ∈ (a, b) u'(a) = u'(b) = 0 or u(a) = u(b), u'(a) = u'(b) where g ∈ C ([a, b] x ℝn, ℝn), f̄ ∈ ℝn, and f̃ has mean value zero. For the Neumann problem with n > 1, we prove that for a fixed f̃ the range can contain an infinity continuum. For the one dimensional case, we study the asymptotic behavior of the range in both problems.en_US
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectNonlinear boundary-value problemen_US
dc.subjectNeumann and Periodic problemsen_US
dc.titleRemarks on semilinear problems with nonlinearities depending on the derivativeen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record