Show simple item record

dc.contributor.authorAnderson, Douglas R. ( Orcid Icon 0000-0002-3069-2816 )
dc.date.accessioned2020-10-19T16:58:27Z
dc.date.available2020-10-19T16:58:27Z
dc.date.issued2003-04-15
dc.identifier.citationAnderson, D. R. (2003). Existence of solutions to higher-order discrete three-point problems. Electronic Journal of Differential Equations, 2003(40), pp. 1-7.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12801
dc.description.abstract

We are concerned with the higher-order discrete three-point boundary-value problem

(∆n x)(t) = ƒ(t, x(t + θ)), t1 ≤ t ≤ t3 - 1, -τ ≤ θ ≤ 1
(∆ix)(t1) = 0, 0 ≤ i ≤ n - 4, n ≥ 4
α(∆n-3x)(t) - β(∆n-2x)(t) = η(t), t1 - τ - 1 ≤ t ≤ t1
(∆n-2x)(t2) = (∆n-1x)(t3) = 0.

By placing certain restrictions on the nonlinearity and the distance between boundary points, we prove the existence of at least one solution of the boundary value problem by applying the Krasnoselskii fixed point theorem.

dc.formatText
dc.format.extent7 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectDifference equationsen_US
dc.subjectBoundary-value problemen_US
dc.subjectGreen's functionen_US
dc.subjectFixed pointsen_US
dc.subjectConeen_US
dc.titleExistence of solutions to higher-order discrete three-point problemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record