Show simple item record

dc.contributor.advisorPerez, Eduardo
dc.contributor.authorJoshi, Alakshendra ( Orcid Icon 0000-0002-8051-978X )
dc.date.accessioned2020-11-18T14:15:21Z
dc.date.available2020-11-18T14:15:21Z
dc.date.issued2020-11
dc.identifier.citationJoshi, A. (2020). Forecasting and stochastic programming models to address uncertainty in the trauma system configuration problem (Unpublished thesis). Texas State University, San Marcos, Texas.
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12932
dc.description.abstract

Trauma is an essential aspect that must be considered by governing bodies when providing and expanding healthcare services across their jurisdiction. This thesis focuses on analyzing and forecasting physical trauma sustained from accidents, in environments both personal and work related, pertaining to individual injuries and to formulate a stochastic programming model that utilizes recorded injuries as demands to place trauma centers in the most optimal location. The first part of the thesis is to better understand the limitations faced by the existing trauma healthcare infrastructure by forecasting the expected number of people requiring the services of trauma facilities for both rural and urban locations in Texas. Five types of forecasting methods were analyzed to determine the best option to utilize for forecasting for individual data sets. The aim is to identify which forecasting model performs the best for given data sets that can be used to forecast patient demand for a given location and determine the optimal locations for trauma network expansion.

The second part of the thesis proposes a stochastic programming model that considers variable demand in a specific geographical location. Trauma care services are a vital part of all healthcare-based network as timely accessibility is important for citizens. Trauma care access is even more relevant when unexpected events such as the COVID19 pandemic overload the capacity of the hospitals. Research literature has highlighted that access to trauma care is not even for all populations, especially when comparing rural and urban groups. Historically, the configuration of a trauma system was often not considered as a whole but instead hinged on the designation and verification of individual hospitals as trauma care centers. Recognition of the benefits of an inclusive trauma system has precipitated a more holistic approach. The optimal geographic configuration of trauma care centers is key to maximizing accessibility while promoting the efficient use of resources. This thesis reports on the development of a two-stage stochastic optimization model for geospatial expansion of a trauma network in the state of Texas. The stochastic optimization model recommends the siting of new trauma care centers according to the geographic distribution of the injured population. The model has the potential to benefit both patients and institutions, by facilitating prompt access and promoting the efficient use of resources.

dc.formatText
dc.format.extent154 pages
dc.format.medium1 file (.pdf)
dc.language.isoen
dc.subjectTrauma
dc.subjectForecasting
dc.subjectARIMA
dc.subjectStochastic programming
dc.subjectFacility location
dc.subject.lcshStochastic processes
dc.subject.lcshEmergency medicine
dc.titleForecasting and Stochastic Programming Models to Address Uncertainty in the Trauma System Configuration Problem
txstate.documenttypeThesis
dc.contributor.committeeMemberNovoa, Clara
dc.contributor.committeeMemberMendez Mediavilla, Francis
thesis.degree.departmentEngineering
thesis.degree.disciplineEngineering
thesis.degree.grantorTexas State University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science
txstate.departmentIngram School of Engineering


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record