Show simple item record

dc.contributor.authorAlves, Claudianor ( Orcid Icon 0000-0001-6921-7548 )
dc.contributor.authorBertone, Ana Maria ( Orcid Icon 0000-0003-4370-9506 )
dc.date.accessioned2020-11-18T16:24:53Z
dc.date.available2020-11-18T16:24:53Z
dc.date.issued2003-04-16
dc.identifier.citationAlves, C., & Bertone, A. M. (2003). A discontinuous problem involving the p-Laplacian operator and critical exponent in ℝN. Electronic Journal of Differential Equations, 2003(42), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12940
dc.description.abstract

Using convex analysis, we establish the existence of at least two nonnegative solutions for the quasilinear problem

pu = H(u - α)up*-1 + λh(x) in ℝN

where Δpu is the p-Laplacian operator, H is the Heaviside function, p* is the Sobolev critical exponent, and h is a positive function.

en_US
dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectVariational methodsen_US
dc.subjectDiscontinuous nonlinearitiesen_US
dc.subjectCritical exponentsen_US
dc.titleA discontinuous problem involving the p-Laplacian operator and critical exponent in ℝNen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record