Show simple item record

dc.contributor.authorHempel, Rainer ( )
dc.contributor.authorBesch, Alexander ( )
dc.date.accessioned2020-11-23T18:52:09Z
dc.date.available2020-11-23T18:52:09Z
dc.date.issued2003-04-24
dc.identifier.citationHempel, R., & Besch, A. (2003). Magnetic barriers of compact support and eigenvalues in spectral gaps. Electronic Journal of Differential Equations, 2003(48), pp. 1-25.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12988
dc.description.abstractWe consider Schrödinger operators H = -Δ + V in L2(ℝ2) with a spectral gap, perturbed by a strong magnetic field B of compact support. We assume here that the support of B is connected and has a connected complement; the total magnetic flux may be zero or non-zero. For a fixed point in the gap, we show that (for a sequence of couplings tending to ∞) the signed spectral flow across E for the magnetic perturbation is equal to the flow of eigenvalues produced by a high potential barrier on the support of the magnetic field. This allows us to use various estimates that are available for the high barrier case.en_US
dc.formatText
dc.format.extent25 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectSchrodinger operatoren_US
dc.subjectMagnetic fielden_US
dc.subjectEigenvaluesen_US
dc.subjectSpectral gapsen_US
dc.subjectStrong couplingen_US
dc.titleMagnetic barriers of compact support and eigenvalues in spectral gapsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record