Show simple item record

dc.contributor.authorPoppenberg, Markus ( )
dc.date.accessioned2020-11-23T21:21:57Z
dc.date.available2020-11-23T21:21:57Z
dc.date.issued2003-05-05
dc.identifier.citationPoppenberg, M. (2003). Nash-Moser techniques for nonlinear boundary-value problems. Electronic Journal of Differential Equations, 2003(54), pp. 1-33.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/12994
dc.description.abstractA new linearization method is introduced for smooth short-time solvability of initial boundary value problems for nonlinear evolution equations. The technique based on an inverse function theorem of Nash-Moser type is illustrated by an application in the parabolic case. The equation and the boundary conditions may depend fully nonlinearly on time and space variables. The necessary compatibility conditions are transformed using a Borel's theorem. A general trace theorem for normal boundary conditions is proved in spaces of smooth functions by applying tame splitting theory in Frechet spaces. The linearized parabolic problem is treated using maximal regularity in analytic semigroup theory, higher order elliptic a priori estimates and simultaneous continuity in trace theorems in Sobolev spaces.en_US
dc.formatText
dc.format.extent33 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectNash-Moseren_US
dc.subjectInverse function theoremen_US
dc.subjectBoundary-value problemen_US
dc.subjectParabolicen_US
dc.subjectAnalytic semigroupen_US
dc.subjectEvolution systemen_US
dc.subjectMaximal regularityen_US
dc.subjectTrace theoremen_US
dc.titleNash-Moser techniques for nonlinear boundary-value problemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record