Show simple item record

dc.contributor.authorBenzekri, Fatiha ( )
dc.contributor.authorEl Hachimi, Abderrahmane ( )
dc.date.accessioned2021-01-28T20:18:55Z
dc.date.available2021-01-28T20:18:55Z
dc.date.issued2003-11-11
dc.identifier.citationBenzekri, F., & El Hachimi, A. (2003). Doubly nonlinear parabolic equations related to the p-Laplacian operator: Semi-discretization. Electronic Journal of Differential Equations, 2003(113), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13164
dc.description.abstract

We study the doubly nonlinear parabolic equation

∂β(u)/ ∂t - Δpu + ƒ(x, t, u) = 0 in Ω x ℝ+,

with Dirichlet boundary conditions and initial data. We investigate a time-discretization of the continuous problem by the Euler forward scheme. In addition to proving existence, uniqueness and stability questions, we study the long time behavior of the solution to the discrete problem. We prove the existence of a global attractor, and obtain its regularity under additional conditions.

en_US
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectp-Laplacianen_US
dc.subjectNonlinear parabolic equationsen_US
dc.subjectSemi-discretizationen_US
dc.subjectDiscrete dynamical systemen_US
dc.subjectAttractoren_US
dc.titleDoubly nonlinear parabolic equations related to the p-Laplacian operator: Semi-discretizationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record