Show simple item record

dc.contributor.authorDosly, Ondrej ( )
dc.contributor.authorFisnarova, Simona ( Orcid Icon 0000-0003-4598-8502 )
dc.date.accessioned2021-01-29T13:17:55Z
dc.date.available2021-01-29T13:17:55Z
dc.date.issued2003-11-25
dc.identifier.citationDosly, O., & Fisnarova, S. (2003). Oscillation and nonoscillation of solutions to even order self-adjoint differential equations. Electronic Journal of Differential Equations, 2003(115), pp. 1-21.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13166
dc.description.abstract

We establish oscillation and nonoscilation criteria for the linear differential equation

(-1)n (tαy(n))(n) - γn,α/ t2n-α y = q(t)y, α ∉ {1, 3, ..., 2n - 1},

where

γn,α = 1/ 4n Πnk=1 (2k - 1 - α)2

and q is a real-valued continuous function. It is proved, using these criteria, that the equation

(-1)n (tαy(n))(n) - (γn,α/ t2n-α + γ/ t2n-α lg2t) y = 0

is nonoscillatory if and only if

γ ≤ ~γn,α := 1/ 4nnk=1 (2k - 1 - α)2nk=1 1/ (2k - 1 - α)2
en_US
dc.formatText
dc.format.extent21 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectSelf-adjoint differential equationen_US
dc.subjectVariational methodsen_US
dc.subjectOscillation and nonoscillation criteriaen_US
dc.subjectConditional oscillationen_US
dc.titleOscillation and nonoscillation of solutions to even order self-adjoint differential equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record