Show simple item record

dc.contributor.authorEzzinbi, Khalil ( )
dc.date.accessioned2021-01-29T13:35:55Z
dc.date.available2021-01-29T13:35:55Z
dc.date.issued2003-11-26
dc.identifier.citationEzzinbi, K. (2003). Existence and stability for some partial functional differential equations with infinite delay. Electronic Journal of Differential Equations, 2003(116), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13167
dc.description.abstractWe study the existence, regularity, and stability of solutions for some partial functional differential equations with infinite delay. We assume that the linear part is not necessarily densely defined and satisfies the Hille-Yosida condition on a Banach space X. The nonlinear term takes its values in space larger than X, namely the extrapolated Favard class of the extrapolated semigroup corresponding to the linear part. Our approach is based on the theory of the extrapolation spaces.en_US
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2003, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectHille-Yosida operatoren_US
dc.subjectExtrapolation spacesen_US
dc.subjectFavard classen_US
dc.subjectRegularityen_US
dc.subjectPartial functional differential equationsen_US
dc.subjectInfinite delayen_US
dc.subjectMild solutionen_US
dc.subjectLinearized stabilityen_US
dc.titleExistence and stability for some partial functional differential equations with infinite delayen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record