Show simple item record

dc.contributor.authorCarvajal, Xavier ( Orcid Icon 0000-0001-7836-2464 )
dc.date.accessioned2021-04-05T18:17:25Z
dc.date.available2021-04-05T18:17:25Z
dc.date.issued2004-01-23
dc.identifier.citationCarvajal, X. (2004). Local well-posedness for a higher order nonlinear Schrodinger equation in Sobolev spaces of negative indices. Electronic Journal of Differential Equations, 2004(13), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13332
dc.description.abstract

We prove that the initial value problem associated with

tu + iα∂2xu + β∂3xu + iγ|u|2u = 0, x, t ∈ ℝ,

is locally well-posed in Hs for s > -1/4.

en_US
dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectSchrodinger equationen_US
dc.subjectKorteweg-de Vries equationen_US
dc.subjectTrilinear estimateen_US
dc.subjectBourgain spacesen_US
dc.titleLocal well-posedness for a higher order nonlinear Schrodinger equation in Sobolev spaces of negative indicesen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record