Show simple item record

dc.contributor.authorWeiss, Georg S. ( )
dc.date.accessioned2021-04-13T17:26:56Z
dc.date.available2021-04-13T17:26:56Z
dc.date.issued2004-03-29
dc.identifier.citationWeiss, G. S. (2004). Boundary monotonicity formulae and applications to free boundary problems I: The elliptic case. Electronic Journal of Differential Equations, 2004(44), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13372
dc.description.abstractWe derive a monotonicity formula at boundary points for a class of nonlinear elliptic partial differential equations, including the obstacle problem case, quenching, a free boundary problem with Bernoulli-type free boundary condition as well as the blow-up case. As application model we prove - for Dirichlet boundary data satisfying certain assumptions - the global existence of a classical solution of the free boundary problem with Bernoulli-type free boundary condition in two and three dimensions.en_US
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectFree boundaryen_US
dc.subjectBoundary regularityen_US
dc.subjectNon-tangential touchen_US
dc.subjectMonotonicity formulaen_US
dc.subjectGlobal regularityen_US
dc.subjectBernoulli-type free boundary conditionen_US
dc.titleBoundary monotonicity formulae and applications to free boundary problems I: The elliptic caseen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record