Liouville's theorem and the restricted mean property for Biharmonic Functions
dc.contributor.author | El Kadiri, Mohamed ( ) | |
dc.date.accessioned | 2021-04-23T17:41:30Z | |
dc.date.available | 2021-04-23T17:41:30Z | |
dc.date.issued | 2004-04-28 | |
dc.identifier.citation | El Kadiri, M. (2004). Liouville's theorem and the restricted mean property for Biharmonic Functions. Electronic Journal of Differential Equations, 2004(66), pp. 1-5. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/13419 | |
dc.description.abstract | We prove that under certain conditions, a bounded Lebesgue measurable function satisfying the restricted mean value for biharmonic functions is constant, in ℝn with n ≥ 3. | en_US |
dc.format | Text | |
dc.format.extent | 5 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Southwest Texas State University, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas. | |
dc.subject | Biharmonic function | en_US |
dc.subject | Mean property | en_US |
dc.subject | Liouville's theorem | en_US |
dc.title | Liouville's theorem and the restricted mean property for Biharmonic Functions | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |